ebook img

Simultaneous Removal of Hg(II) PDF

15 Pages·2017·4.23 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Simultaneous Removal of Hg(II)

metals Article Simultaneous Removal of Hg(II) and Phenol Using Functionalized Activated Carbon Derived from Areca Nut Waste Lalhmunsiama1,SeungMokLee1,SukSoonChoi2andDiwakarTiwari3,* 1 DepartmentofEnvironmentalEngineering,CatholicKwandongUniversity,522Naegok-dong, Gangneung210-701,Korea;[email protected](L.);[email protected](S.M.L.) 2 DepartmentofBiologicalandEnvironmentalEngineering,SemyungUniversity,Jecheon27136,Korea; [email protected] 3 DepartmentofChemistry,SchoolofPhysicalSciences,MizoramUniversity,Aizawl796004,India * Correspondence:[email protected];Tel.:+91-389-2301806;Fax:+91-389-2330834 Received:30April2017;Accepted:28June2017;Published:3July2017 Abstract: Arecanutwastewasutilizedtoobtainhighsurfaceareaactivatedcarbon(AC),anditwas furtherfunctionalizedwithsuccinicanhydrideundermicrowaveirradiation.Thesurfacemorphology andsurfacefunctionalgroupsofthematerialswerediscussedwiththehelpofscanningelectron microscope(SEM)imagesandfouriertransforminfra-red(FT-IR)analysis. Thespecificsurfacearea oftheACandfunctionalized-ACwasobtainedbytheBrunauer-Emmett-Teller(BET)method,and found to be 367.303 and 308.032 m2/g, respectively. Batch experiments showed that higher pH favouredtheremovalofHg(II),whereasthephenolremovalwasslightlyaffectedbythechanges inthesolutionpH.Thekineticdatafollowedpseudo-firstorderkineticmodel,andintra-particle diffusionplayedasignificantroleintheremovalofbothpollutants. Themaximumsorptioncapacity ofHg(II)andphenolwereevaluatedusingLangmuiradsorptionisotherms,andfoundtobe11.23 and5.37mg/g, respectively. TheremovalofHg(II)wassignificantlysuppressedinthepresence of chloride ions due to the formation of a HgCl species. The phenol was specifically adsorbed, 2 formingthedonor–acceptorcomplexesorπ–πelectroninteractionsatthesurfaceofthesolid. Further, afixed-bedcolumnstudywasconductedforbothHg(II)andphenol. Theloadingcapacityofthe columnwasestimatedusingthenonlinearThomasequation,andfoundtobe2.49and2.70mg/g, respectively. Therefore,thestudyshowedthatfunctionalizedACobtainedfromarecanutwastecould beemployedasasustainableadsorbentforthesimultaneousremovalofHg(II)andphenolfrom pollutedwater. Keywords: arecanutwaste;activatedcarbon;Hg(II);phenol;adsorption 1. Introduction Waterpollutionisaseriousenvironmentalconcern,andisgrowingrapidlyduetotheextreme use of harmful substances/chemicals by various industries. The wastewaters produced from manufacturing processes and petroleum refineries usually contain heavy metals and other toxic organic pollutants [1,2]. The partly treated or untreated effluents from these industries greatly contaminate the receiving water bodies. Heavy metals and phenolic compounds, which are the most common water pollutants, are found to be highly toxic towards living organisms and are difficulttoeliminatefromwaterbodiesorevenfromthebiosystemonceentered[3–5]. Mercuryhas receivedgreaterenvironmentalconcernduetoitshightoxicity,persistenceintheenvironment,and highbioaccumulation[6,7]. DissolvedHg(II)inanaquaticenvironmentisreadilytransformedinto methylmercury,whichisahighlytoxic,persistent,andbioaccumulativeformofmercurypresentin Metals2017,7,248;doi:10.3390/met7070248 www.mdpi.com/journal/metals Metals2017,7,248 2of15 nature. Mercuryspeciesarevolatile,andtheinhalationofitsvapourproducesdetrimentaleffects tothenervous,digestive,andimmunesystems[8]. Moreover,theintakeofmercurywasreported toaffectthenormalgrowthofthecentralnervoussystem, andalsocausesDNAdamagethrough multiplemechanisms[9]. Ontheotherhand,phenolanditsderivativesarepotentialwaterpollutants, andhaveshownadverseeffectstowardslivingorganisms[10]. Exposuretophenolisreportedtobe relatedtoproteindegeneration,malfunctioninthecentralnervoussystem,andisabletodisturbthe functionofthekidney,liver,andpancreasinthehumanbody[11]. Furthermore,thephenolpresent inaquaticenvironmentiseasilytransformedthroughasimpleoxidationprocessintochlorophenol, acarcinogeniccompound[12]. Therefore,mercuryandphenolareclassifiedasprioritycontaminants, andtheiracceptableconcentrationindrinkingwateraccordingtotheUnitedStatesEnvironmental ProtectionAgency(USEPA)is2µg/Land0.5mg/L,respectively[12,13]. Anadsorptiontechniqueislargelyemployedfortheremovalofawiderangeofwaterpollutants, as it offers several advantages over the conventional methods. The advantages of an adsorption processincludehighremovalefficiencyevenatalowconcentrationofpollutants,easyoperationand maintenance,flexibility,andthepossibilityofrecoveringthematerial[14]. Activatedcarbons(ACs) havebeenextensivelyusedintheremovalofmercuricionsfromaqueoussolutions[15,16]. Moreover, differenttypesofmaterials,suchaselectrospunsulfurcopolymers[17],lignocellulosicmaterialderived fromtheSpanishbroomplant[18],andlignin[19]werereportedaseffectiveadsorbentsforreducing Hg(II) concentrations in aquatic media. Recently, Li and co-workers [20] synthesized a mercury “nano-trap”byfunctionalizingahighsurfaceareaporousorganicpolymerwithahighdensityof strongmercurychelatinggroups.Thismercury“nano-trap”exhibitsanextremelyhighuptakecapacity ofmercury,i.e.,over1000mg/gandcaneffectivelyreduceHg(II)concentrationtoacceptablelimits ofdrinkingwaterstandards. ACsandtheirmodifiedmaterialswerealsoefficientlyutilizedforthe treatment of aqueous effluents polluted with phenol [21–23]. AC is undoubtedly one of the most effectivematerialsinwastewatertreatmentduetoitslargespecificsurfacearea,porousstructure,and highperformance. Inspiteofpossessinghighsorptioncapacity,theuseofcommercialACisnotviable becauseofitshighcost. Therefore,manyresearchershaveutilizedwastematerials,suchasricehusk, sugarcanebagasse[24],grapebagasse[25],peanutshell[26],andcoconuthusk[27],forobtaininglow costACstoemployintheremovalofvariouspollutantsfromanaquaticenvironment. Areca nut, popularly known as betel nut, is widely cultivated in many Asian countries and parts of Africa. Areca nut waste, a lignocellulose material, is available in large quantities in many countriesandthereisnoreportaboutitspossibleapplicationforusefulpurposes[28]. Theconversion of areca nut waste into AC could probably be an alternative method to exploit this agriculture by-productinbioremediation[29]. Previously,theACpreparedfromarecanutwastewasutilizedin theremovalofhexavalentchromium[30,31],congored[32],directblue[33],andacidblue[34]from aqueoussolutions. Therefore,thepresentworkaimstoutilizethisabundantlyavailableagriculture by-productforthepreparationofACanditsfurtherfunctionalizationwithsuccinicanhydrideunder microwaveirradiation.Theincorporationofsuccinicanhydridepossiblyincreasesthenumberofactive functionalgroupsontotheAC’ssurface,andsubsequentlyenhancestheinteractionofthematerials with pollutants. Previously, agriculture waste materials such as maize straw [35], olive stone [36], corncob[37],andsugarcanebagasse[38]weremodifiedwithsuccinicanhydride,andthematerials werefoundtobeefficientintheremovalofseveraltoxicmetalionsfromaqueoussolutions. Inthis study,ACwaspreparedfromarecanutwasteanditwasfurtherfunctionalizedusingsuccinicanhydride undermicrowaveirradiation. Themicrowave-assistedmethodemployedforthefunctionalizationof ACoffersseveraladvantagesovertheconventionalmethodsintermsofselectivityinoperation,fast anduniformirradiation,andreducingreactiontimeandenergy. Furthermore,thereisnoreportonthe simultaneousremovaloforganicandinorganicpollutantsusingsuccinicanhydridefunctionalized activatedcarbons,soitisinterestingtoassessthesematerialsforthesimultaneousremovaloftoxic heavymetalsandorganiccontaminantsfromaqueousmedia. Therefore,thefunctionalized-ACwas Metals2017,7,248 3of15 assessedforitscapabilitytoremoveHg(II)andphenolsimultaneouslyfromaqueoussolutionsunder batchandfixed-bedadsorptionsystems. 2. MaterialsandMethods 2.1. Materials ThearecanutwastewascollectedfromAizawlcity,Mizoram,India. Itwasrepeatedlywashed with pure water to remove any impurity, and then dried in an oven (Chang Shin Scientific Co., Busan, South Korea) (at 80 ◦C. Dry areca nut waste was soaked in concentrated H SO for 2 h at 2 4 thetemperatureof120◦C.Thesolidbiomasswasthencompletelytransformedintoitscarbonform. Theobtainedcarbonwascarefullywashedwithpurewatertoeliminateexcessacids,anddriedat 70◦C.Anyexcessacidremainingwithinthecarbonsolidwasthentitratedwithammoniasolutionfor neutralization. ThecarbonwasagainwashedwithdistilledwaterseveraltimesuntilthepHreached ~7.0, and then finally dried at 70 ◦C. The solid sample was cooled and then ground to obtain fine powder. Furthermore,thecarbonpowderwasactivatedinamufflefurnace(ChangShinScientificCo., Busan,SouthKorea)at500◦Cfor4hunderanN atmosphere. Theactivatedcarbonobtainedwas 2 thenkeptinsideacloseplasticcontainerforfurtheruse. 2.2. ModificationofActivatedCarbon The functionalization of the activated carbon was carried out as follows: 5.0 g of succinic anhydridewasdissolvedin100mLofacetone. Tengrams(10g)ofactivatedcarbonobtainedfrom arecanutwastewasaddedtothissuccinicanhydridesolution. Themixturewaskeptundermicrowave irradiationat60◦Cfor60minwithconstantstirring(Model: MASII,SineoMicrowaveChemistry TechnologyCo.,Ltd.,Shanghai,China).Thefunctionalizedactivatedcarbonwasseparatedandwashed withdistilledwaterthreetimesandthendriedcompletelyat80◦C.Thefunctionalized-ACwasused forthesimultaneousremovalofHg(II)andphenolunderbatchandfixed-bedcolumnsystems. 2.3. CharacterizationofMaterials The surface morphology of the AC before and after functionalization was observed by the SEM(scanningelectronmicroscope)analysis(FE-SEM-Model: SU-70, Hitachi, Tokyo, Japan). The specificsurfaceareaoftheactivatedcarbonbeforeandafterfunctionalizationwasmeasuredbythe Brunauer-Emmett-Teller(BET)surfaceareaanalyzer(Model:ASAP2020,ProtechKoreaCo. Ltd,Seoul, SouthKorea). Moreover,FourierTransformInfra-Red(FT-IR)spectroscopy(Tensor27,BrukerCo., Billerica,MA,USA)wasusedfortheidentificationofvariousfunctionalgroupspresentintheACand functionalized-ACsolids. 2.4. BatchAdsorptionExperiment BatchexperimentswereperformedtostudytheeffectofpH,initialHg(II)/phenolconcentrations, contacttime,andbackgroundelectrolyteconcentrationsontheremovalofHg(II)andphenolusing functionalized-AC.Theexperimentswereperformedusing0.10goffunctionalized-ACtakeninto 50mLofHg(II)/phenolsolutionandkeptinanautomaticshaker(KukjeMachineryCo.,Ltd.,Okcheon, SouthKorea)for12hat25◦C.Thesolutionwasfilteredusinga0.45µmsyringefilter,andthefinal concentrationofHg(II)wasanalyzedbyafastsequentialatomicabsorptionspectrometer(AAS)(Model: AA240FS, Varian, Australia), whereas the phenol concentration was measured using a UV-visible spectrophotometer(Model: HumasHS3300,HumasCo.,Ltd.,Daejeon,SouthKorea). ThepHofthe solutionswasadjustedbyaddingdropsof1MHClor1MNaOH. 2.5. Fixed-BedColumnAdsorption A glass column with a 1 cm inner diameter was used for performing a fixed-bed column experiments. Accurately1.0goffunctionalized-ACwasfirmlypackedinthemiddleofthecolumn Metals2017,7,248 4of15 usingglassbeads. TheaqueoussolutioncontainingbothHg(II)andphenolwaspumpedupwardby ahigh-pressureliquidchromatographicpump(AcuflowSeriesII,DongwooScienceCo.,Ltd.,Hanam, SouthKorea),andtheflowratewasmaintainedat0.5mL/min. Theeffluentsampleswerecollected usingaSpectra/ChromCF-2fractioncollector(Model: Retriever500,TeledyneISCO,Lincoln,NE, USA),andthenfilteredwitha0.45µmsyringefilter. TheconcentrationofHg(II)andphenolinthe Metals 2017, 7, 248 4 of 14 effluentwasmeasuredusinganAASandaUV-visspectrophotometer,respectively. collected using a Spectra/Chrom CF-2 fraction collector (Model: Retriever 500, Teledyne ISCO, 3. ResuLlintscoalnn,d NDEi, sUcSuAss),i oannd then filtered with a 0.45 µm syringe filter. The concentration of Hg(II) and phenol in the effluent was measured using an AAS and a UV-vis spectrophotometer, respectively. 3.1. CharacterizationofMaterials 3. Results and Discussion TheSEMmicrographsofthearecanutwasteACandfunctionalized-ACareshowninFigure1. Thema3c.1r.o Cphoarreacsteprirzeasteionnt oifn MtahteerAialCs solidsareclearlyvisible,andtheporediametersarefoundtobein therangeof5–15µmasobtainedfromtheSEMimages. Further,thesmallerporeswerealsovisiblein The SEM micrographs of the areca nut waste AC and functionalized-AC are shown in Figure 1. theSEMThiem maagceroopfotrhese pAreCs.enFti ginu rthee1 AbCsh soowlidss aanreS cEleMarliym vaisgiebloe,f atnhde tfhuen pcotiroen dailaimzeedte-rAs Car.eI tfoiusnodb stoe rbvee dthat theincionr tphoer raatnigoen oof f5–s1u5c µcimni acsa onbhtayinderdid freosmig tnheifi ScEaMn tilmyacgheas.n Fguerdthtehr,e thseu srmfaaclelemr poorrpesh woleorge yalsoof vthiseibAle C,and theporine sthaer eSEleMs simvaisgieb olef tahfet eArCth. Feigfuurnec 1tibo snhaolwizsa atino SnEoMf timheagAe Cof. tAhep fruenvcitoiounsalriezepdo-rAtCa.l sIto ish oabdsesrhvoedw nthat that the incorporation of succinic anhydride significantly changed the surface morphology of the AC, thesurfacemorphologyofmaizestrawwassignificantlychangedaftertheincorporationofsuccinic and the pores are less visible after the functionalization of the AC. A previous report also had shown anhydride[35]. ThenitrogenadsorptionisothermsoftheACandfunctionalized-ACareshownin that the surface morphology of maize straw was significantly changed after the incorporation of Figure2. AccordingtoInternationalUnionofPureandAppliedChemistry(IUPAC)classification, succinic anhydride [35]. The nitrogen adsorption isotherms of the AC and functionalized-AC are thetwosolidsamplesdisplayaH4typehysteresisloop[39]. ThespecificsurfaceareaoftheACwas shown in Figure 2. According to International Union of Pure and Applied Chemistry (IUPAC) foundctloasbseifi3ca6t7io.3n0, tmhe2 t/wgo. sTohlied ssuamrfpalcees adrisepalasyli ga hHt4ly tydpeec hreyastseeredsitso lo3o0p8 .[0339]m. T2h/eg spaefctiefrict shuerfiancceo arrpeao ration ofsuccoifn tihcea AnCh ywdarsi dfoeu.nTdh tios bdee 3c6r7e.a30s emi2n/gs. pTehcei fisucrfsaucref aarceea asrliegahtilsy adseccrriebaesedd dtou e30t8o.0t3h me2a/gc cauftmer uthlaet ionof succiniinccaonrphoyrdatrioidne owf siuthccininitch aenphoydrerisdoe.f Tthhies AdeCcr.eMasoe rieno svpeerc,iftihc esuinrfcaocer paoreraa tiiso nascorfibseudc cdiunei ctoa nthhey dride accumulation of succinic anhydride within the pores of the AC. Moreover, the incorporation of withintheporesofACcausedaslightdecreaseintheporesizeandporevolumeoftheAC,from succinic anhydride within the pores of AC caused a slight decrease in the pore size and pore volume 3.13to2.78nmandfrom0.028to0.016cm3/g,respectively. of the AC, from 3.13 to 2.78 nm and from 0.028 to 0.016 cm3/g, respectively. (a) (b) Figure 1. Scanning electron microscope (SEM) micrograph of (a) activated carbon (AC) and (b) Figure 1. Scanning electron microscope (SEM) micrograph of (a) activated carbon (AC) and functionalized-AC. (b)functionalized-AC. The FT-IR analytical results are graphically shown in Figure 3. The predominant peak that ThapepFeTar-eIdR aat naraolyuntidc a3l43r4e scuml−t1s isa artetrigbruatpedh itcoa tlhley sstrheotcwhinngi nvibFriagtuiorne o3f .–OTHh egrporuepds.o Smevineraanl twpeaeka k that appearpeedakast oabrtoauinnedd 3a4t 32485c6m, 2−9215i,s aantdtr 2ib97u2t ecdm−t1o arteh eatstrtirbeutctehdi ntog tvhieb praretisoenncoe fo–f OalHdehgyrdoeu pgrso.uSpesv aenrdal weak peaksoasbstiagnineedd toa tth2e8 s5tr6e,t2ch9i2n5g, aanndd s2ci9s7so2ricnmg −of1 Ca–rHe abtotnridbsu. tMedoretoovtehre, tpher ebsaenndcse thoafta olcdceuhrryedde atg 1r6o2u0p sand and 1700 cm−1 are assigned to the C=C and C=O groups [40]. Further, the vibration peaks in the region assignedtothestretchingandscissoringofC–Hbonds. Moreover,thebandsthatoccurredat1620and of 1042 cm−1 are due to the C–O–C stretching [36]. The weak peaks that occurred at around 1458 cm−1 1700cmsh−o1waerde tahses Cig–nHe dvibtoratthioen Cin= –CCaHn2–d dCef=oOrmgartoiounp. sM[o4r0e]o.vFeur, roththeerr, vthiberavtiibonra btaionndsp tehaakt socicnutrhreedr aetg ionof 1042cm87−4 1anarde 7d40u cemto−1 athree dCu–eO to– aCn setxrteetrcnhailn bgen[d3i6n]g. Tofh –eCw–Hea fkorp veaarikosusth sautbsotcitcuuterdre bdenazteanreo ruinngds 1[4415]8. cm−1 showeIdt itsh weoCrt–hH mvenibtiroantiinogn thinat –thCeH int–endseitfyo orfm thaet ipoena.k Mococurerroevde art, 1o7t0h0e crmv−i1 b(irta atpiopneabreadn adss at shhaotuoldcecru),r redat 2 874andwh7i4c0h cinmd−ic1ataerse thdaut ethteo satnretecxhtienrgn vailbbraetniodni nogf tohfe– CC=–OH gfroorupv aisr isoiugnsifsiucabnsttliyt uintecrdeabseendz aefnteer rtihneg s[41]. functionalization of AC. These changes eventually indicate the successful incorporation of succinic anhydride into the AC solids [42]. Previous studies have shown that a new distinguished peak was Metals2017,7,248 5of15 Itisworthmentioningthattheintensityofthepeakoccurredat1700cm−1(itappearedasashoulder), which indicates that the stretching vibration of the C=O group is significantly increased after the functionalizationofAC.Thesechangeseventuallyindicatethesuccessfulincorporationofsuccinic anhydMriedtaels 2in01t7o, 7t, h24e8 A Csolids[42]. Previousstudieshaveshownthatanewdistinguished5 opf 1e4a kwas observMedetaalst 20a1r7o, 7u, n24d8 1730cm−1aftertheincorporationofsuccinicanhydrideintoposidonia5a onf 1d4 maize observed at around 1730 cm−1 after the incorporation of succinic anhydride into posidonia and maize straw[o3b5s,e4r3v]e.dH aot waroeuvnedr, 1in73t0h cisms−1t uafdteyr, tahen einwcoprpeoarkatoiovne rolfa spupcceidniwc ainthhytdhreidper ein-teox pisotsiindognipae aankds manaidzec aused straw [35,43]. However, in this study, a new peak overlapped with the pre-existing peaks and caused anincrsetaraswe i[n35t,h43e].p Heaokweinvteer,n isni ttyh.isF suturtdhye, ram neowre p,ethake odveecrrlaepapseedin wtihthe tihnet penres-ietxieisstionfg tpheeakasb asnodrp ctaiuosnedb andat an increase in the peak intensity. Furthermore, the decrease in the intensities of the absorption band 1042cmaatn −1 i10n4ca2rs ecsamisge−n1 iaensd sthigfeon rpedetah fkeo riCn tth–eeOn Cs–i–tCyO. b–FCou nrbtdohnesrdtmr seottrrceeht,c ithnhiegn gds euscugrgeggaeesssett ssin tt hthheee s suinuctcceicnnisyniltyaietliaso tonifo otnfh teoh faeb tAhsoCer pA[3tiC5o,n3[6 3b]5.a ,n3d6 ]. at 1042 cm−1 assigned for the C–O–C bond stretching suggests the succinylation of the AC [35,36]. Figure 2. Nitrogen adsorption–desorption isotherm of AC and functionalized-AC. Figure2.Nitrogenadsorption–desorptionisothermofACandfunctionalized-AC. Figure 2. Nitrogen adsorption–desorption isotherm of AC and functionalized-AC. Functionalized-AC Functionalized-AC nce (a.u.)e (a.u.) AACC ac nsmittmittan as Tran Tr 0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 Wa15v0e0leng2th0 0(0cm-1)2500 3000 3500 4000 Wavelength (cm-1) Figure 3. Fourier transform infra-red (FT-IR) spectra obtained for AC and functionalized-AC. FigureFi3g.uFreo u3.r Fieorurtirearn tsrafonrsfmormin firnafr-ar-erded( F(FTT--IIRR)) ssppeeccttrraa oobbtatianiende fdorf oArCA aCnda fnudncftuionncatliiozenda-lAizCe.d -AC. 3.2. Batch Adsorption Experiments 3.2. Batch Adsorption Experiments 3.2. BatchAdsorptionExperiments 3.2.1. Effect of pH on Hg(II)/Phenol Adsorption 3.2.1. Effect of pH on Hg(II)/Phenol Adsorption 3.2.1. EffecptHof ips Ha ocrnuHciagl (IpIa)/raPmheetenro linAflduesnocripntgi otnhe adsorption of Hg(II) and phenol from aqueous pH is a crucial parameter influencing the adsorption of Hg(II) and phenol from aqueous solutions, since it determines the speciation of Hg(II) and/or the ionization of phenol as well as the pHsoliustaiocnrsu, csiinaclep iat rdaemteertmeriniensfl tuhee nspciencgiattihoen aodf sHogr(pIIt)i oanndo/forH tgh(eI Iio)nainzdatipohn eonf oplhfernooml aasq wueelol uass tshoel utions, surface charge of the adsorbents [44,45]. Therefore, the effect of pH was studied between pH 2.0 and since i8ts.u0dr fueatsceienr gmch aia nsrogelesu ottifho tneh ecs opandetscaoiianrbtineiongnt 5s .o[44 fm4,H4g5/gL].( IToIfh) Heargne(fdIoIr/)e ao, nrthdte h9 e.e3ff6ei ocmtn goi/zfL ap toHifo wpnhaeosn fsotpul.dh Tiehendeo pbleeatrwcseenwetnae gplleH ar es2m.0toh avenadsl urface 8.0 using a solution containing 5.4 mg/L of Hg(II) and 9.36 mg/L of phenol. The percentage removal chargeofo fHtgh(IeI) aadnsdo prbheennotsl a[s4 4a, 4fu5n].ctTiohne orfe fionirteia,l tphHe eisf fsehcotwonf pinH Fiwguarse s4t. uTdhiee dpHb edtewpeenednenpcHe s2tu.0dya nd 8.0 of Hg(II) and phenol as a function of initial pH is shown in Figure 4. The pH dependence study usingashsoowluedti tohnatc Hogn(tIaI)i nreimngov5a.l4 wmasg s/igLniofifcaHngtl(yI Iin)carneadse9d.3 w6hmileg i/ncLreoafsipngh ethneo slo.lTuthioenp peHrc feronmta g2.e0 troe moval showed that Hg(II) removal was significantly increased while increasing the solution pH from 2.0 to of Hg(4I.I0), aanndd rpemheainnoeld aaslmaofsut nuncctihoanngoefd ibneiytioanldp pHH i4s.0s. hAotw lonwi pnHF, itghue rpeer4c.enTtahgee psoHrpdtieopn eonf dHegn(IcIe) study 4.0, and remained almost unchanged beyond pH 4.0. At low pH, the percentage sorption of Hg(II) was relatively low, due to the competition between Hg2+ and H+ ions towards the same active sites on showewdatsh raetlaHtigve(IlyI) lorewm, douvea tlow thaes csoimgnpeifitictiaonnt blyetwinecerne aHsge2d+ awndh Hile+ iionncsr teoawsainrdgs tthhee ssaomluet aioctnivpe Hsitefrs oomn 2.0to the functionalized-AC [38]. At higher pH values, the H+ ions concentration is decreased, and 4.0,andthree mfuanicntieodnaallizmedo-sAtCu n[c3h8a].n Aget dhibgehyeor npdHp Hval4u.e0s., Athtelo Hw+ pioHn,st hcoenpceenrctreanttioang eiss odrepctrieoanseodf, Hangd(I I)was Metals2017,7,248 6of15 relativelylow,duetothecompetitionbetweenHg2+andH+ionstowardsthesameactivesitesonthe Metals 2017, 7, 248 6 of 14 functionalized-AC[38]. AthigherpHvalues,theH+ionsconcentrationisdecreased,andconsequently enhancMcoeentsasltseh q20eu1e7u,n p7t,l t2ya4 k8e en hoafnHcegs( ItIh)ei ounpstafkreo mof aHqgu(IeIo) uiosnsso flruotmio nasq.uAeoupsr esvoilouutiosnrse.p Ao rptraelvsiooushs orewpeodrt6 t aholfas 1ot4 Hg(II) showed that Hg(II) removal using activated biocarbon was relatively low at lower pH values and removalusingactivatedbiocarbonwasrelativelylowatlowerpHvaluesandincreasedunderhigher icnocnrseeaqseude nutlnyd eenr hhaingcheesr tphHe ucpontadkieti oonf sH [g46(I]I.) Cioonnsv efrrosemly ,a qpuheeonuosl rseomluotivoanls .w Aas psrleigvhiotluys arfefpecotretd a lbsyo pHconditions[46]. Conversely,phenolremovalwasslightlyaffectedbychangingthesolutionpH cshhaonwgeindg t hthate Hsogl(uItIi)o rne mpHov farlo ums i2n.g0 atoc t8iv.0a.t eItd w baiosc raerpboornt ewd atsh aret lpathievneloyl plorwed aotm loinwaenrt lpy Hex visatleude sin a nitds from2.0to8.0. Itwasreportedthatphenolpredominantlyexistedinitsundissociatedformwithinthe uinncdriesassoecdia utendd feorr mhi gwheitrh ipnH t hceo npdHit iroengsio [n4 6b]e. tCwoenenve 2r.s0e layn, dp h8.e0n; otlh ereremfoorvea, lt hwea as dssloigrhpttliyo na foffe cptehden boyl pHregwchiaoasnn ignbisneiggtwn tihefieec ansno2tllu.y0t iioannnfl dupeH8n. c0fer;dotm hbey 2r t.eh0f eot osr oe8l,.u0tt.hi oIetn aw pdaHsso [r3rep]p. toAiro tsneidmo itflhaparth t rpeenhneodnl wowla pas rspeirdneovsmiiogiunnsailfinytc loaybn setexlryivsteiendd fli niun te hintesc edby thesorluuenmtdiooisvnsaoplc Hioaft [ep3dh] .efonAromls i amws iitalha ifrnut nrthceteni odpnHw o arf espgpHior neu vbsiieontugw sealeycntio v2ba.0ste eadrnv dcea d8rb.i0on; ntt hhfeiebreerfreosmr eao,n vtdha els uoardffsapochrep eftnuioonnlc taoisof napahfliueznneodclt ionof pHusawincatgisv aianctsetidigv nsaeitfreiiccdaitnceta l[yr4b 7in,o4fn8lu].fie nbceerds bayn dthes usorfluatcieonfu pnHc t[i3o].n Aa lsiizmeidlaar ctrteivnadt wedass perreicviitoeu[s4ly7 ,o4b8s]e.rved in the removal of phenol as a function of pH using activated carbon fibers and surface functionalized activated sericite [47,48]. FigureFi4g.uEreff e4c. tEofffepcHt oifn ptHhe irne mthoe vraelmoofvHalg o(IfI )Hagn(dII)P ahnedn oPlhbeynoful nbyct ifounnactliiozneadl-iAzeCd-fA roCm fraoqmu eaoquuesosuosl utions solutions (Initial (Hg(II)/phenol) concentration: ~10 mg/L, solid dose: 2.0 g/L, contact time: 12 h). (Initial(Hg(II)/phenol)concentration:~10mg/L,soliddose:2.0g/L,contacttime:12h). Figure 4. Effect of pH in the removal of Hg(II) and Phenol by functionalized-AC from aqueous 3.2.2.s Aoldustioornps t(iIonnit iKali n(Hetgi(cIsI) o/pfh Hengo(lI)I )c oanncde nPthraetnioonl: ~10 mg/L, solid dose: 2.0 g/L, contact time: 12 h). 3.2.2. AdsorptionKineticsofHg(II)andPhenol In order to obtain the adsorption equilibrium time of Hg(II) and phenol by functionalized-AC, 3.2.2. Adsorption Kinetics of Hg(II) and Phenol Inthoe redxteerntt oofo tbhtea rienmtohveala adts voarrpiotuios nineteqruvaillisb orfi utimmet wimase aonfalHyzge(dI,I )wahnilde kpehepeninogl ab cyonfustnanctti soonluatliiozne d-AC, the exptHen, taInno dof rttdhheeer itnroei tomibalto avcionan ltcheaent atrvdasatoirorinpo tuioosfn Hi enqgtu(eIirIl)vi baarlnisudm op fthiteminmeo loe fa wHt ~ga1(sI0I )am anngad/lLy p.z hTeehdne,o lpw behyrc ifeluenntackgteieoe npraeilmnizgoevdaa-Al coCof,n stant solutioHthnge(p eIIHx)t/ep,nahtne ondfo ttlh haeet r ievnmairtoiiovaualslc aointn vtecarervnioatulrsas otinifo ttenirmvoeaf lsHis o ggf (itIviIme)nea nwinda Fsp iaghnuearnley oz5le. adTt,h w~e1h t0iwlemo k gepe/oplLliun.tgTa anh tecso penexshtracinbetint s tosailgmuetiiloraenrm oval spoHrp, taionnd kthine eitnicisti,a lw choinchce natrrearteiolant ivoef lyH gs(lIoIw) a. nTdh ep hpeenrocle natta ~g1e0 amdsgo/Lrp. tTiohne opfe rHcegn(tIaIg) ea rnedm opvhaeln oolf of Hg(II)/phenol at various intervals of time is given in Figure 5. The two pollutants exhibit cHogn(tIiIn)u/pohuesnlyo li nact rveaasreiosu, sa nindt eardvsaolrsp otifo tni meqeu iisl igbirviuemn iins Facighuiervee 5d. wThiteh itnw 3o0 p0 omlluint aonft sc oenxthaicbti tt ismime ifloarr similarsorptionkinetics,whicharerelativelyslow. ThepercentageadsorptionofHg(II)andphenol bsoorthp tHiogn( IIk)i annetdic psh, ewnohli.c h arerelatively slow. The percentage adsorption of Hg(II) and phenol continuouslyincreases,andadsorptionequilibriumisachievedwithin300minofcontacttimefor continuously increases, and adsorption equilibrium is achieved within 300 min of contact time for bothHbgot(hII H)agn(IdI) panhde npohle.nol. Figure 5. Percentage removal of Hg(II) and phenol using functionalized-AC at various intervals of time (Initial (Hg(II)/phenol) concentrations: ~10 mg/L, pH: 5.0, solid dose: 2.0 g/L, contact time: 12 h). F igureFi5g.uPree r5c. ePnetracegnetargeem roemvaolvoalf oHf gH(gII(I)I)a nanddp phheennooll uussiinngg fufuncntciotinoanliazelidz-eAdC- AatC vaartiovuasr iionutesrvianltse orfv alsof time (Initial (Hg(II)/phenol) concentrations: ~10 mg/L, pH: 5.0, solid dose: 2.0 g/L, contact time: 12 h). time(Initial(Hg(II)/phenol)concentrations:~10mg/L,pH:5.0,soliddose:2.0g/L,contacttime:12h). Metals2017,7,248 7of15 Metals 2017, 7, 248 7 of 14 The pseudo-first order kinetic (Equation (1)) and pseudo-second order kinetic (Equation (2)) modelswereemployedtoperformthekineticmodellingusingthetimedependentadsorptiondataof The pseudo-first order kinetic (Equation (1)) and pseudo-second order kinetic (Equation (2)) Hg(ImI)oadnedls pwheerne oelmbpylothyeedf uton cpteirofnoramliz tehde -kAinCe.tiTch meoedqeullaintigo nussiwnge trheet atikmeen dineptehnedirenlitn aedasrofroprtimon: data of Hg(II) and phenol by the functionalized-AC. The equations were taken in their linear form: ln(q −q ) =lnq −k t (1) ln(qe −qt)=lnqe−kt1 e t e 1 (1) t 1 t = + (2) qtt = k21q2e + qte (2) q k q2 q whereqeisthemaximumamountofHg(II)/ptheno2laedsorebedatequilibrium(mg/g),andqt(mg/g)is theawmhoeurne tqoe ifst htheeH mga(xIIim)ourmp haemnooulnatd osfo Hrbge(dII)a/tpthimeneolt .akd1so(mrbiend− a1t) eaqnudilkib2r(igu/mm (gm/gm/gi)n, )aanrde qtth (emagd/gs)o irsp tion ratetchoen asmtaonutnst ooff ththee Hpg(sIeI)u odro p-hfiernstolo arddseorrbaendd at tthimeep ts. ek1u (dmoi-ns−e1)c aonndd k2o (rgd/merg/mmoind) ealrse, threes apdescotripvteiolyn [49]. Theurantek ncoonwstnanvtasl uofe sthseu pcsheuadsoq-f,irkst, oarndderk anwd ethree cpaslecuudloa-tseedcofrnodm oradeprl omtoodfellns,( qres−peqct)ivveelyrs [u4s9]t., Tahned the e 1 2 e t plotsuonfkntowagna vinalsutets, srueschp eacst qive,e kl1y, ,afnodr kth2 weeprsee cuadlcou-lfiatresdt ofrrodme rak pilnoet toicf lann(qde −p qste) uvderos-usse ct,o anndd othrde eprloktisn etic tqt modoefl s,anadgarientsut rtn, erdesipnecTtaivbelley1, .foTrh tehRe 2pvseauludeos-fiirnsdt iocradteerd kthinaettitch eanadd sposreputdioo-nsekcionnedt icorddaetra kfiintteetdic well q tothepsetudo-secondorderkineticmodelratherthanthepseudo-firstorderkineticmodelforboth thepmoollduetlasn, tasn.d returned in Table 1. The R2 values indicated that the adsorption kinetic data fitted well to the pseudo-second order kinetic model rather than the pseudo-first order kinetic model for both In porous materials, intra-particle diffusion usually plays a crucial role in controlling the the pollutants. adsorptionofvariouspollutantsfromaqueoussolutions. Therefore,thetime-dependentintra-particle In porous materials, intra-particle diffusion usually plays a crucial role in controlling the diffusion rate of Hg(II)/phenol from the outer surface active sites to the inside pores of the adsorption of various pollutants from aqueous solutions. Therefore, the time-dependent intra- functionalized-ACwasevaluatedusinganintra-particlediffusionmodel(Equation(3))developedby particle diffusion rate of Hg(II)/phenol from the outer surface active sites to the inside pores of the WeberandMorris[50]. Theequationistakenas: functionalized-AC was evaluated using an intra-particle diffusion model (Equation (3)) developed by Weber and Morris [50]. The equation is taken as: 1 qt = kidt2(cid:3117) +Z (3) (cid:1869)(cid:2930)=(cid:1863)(cid:2919)(cid:2914)(cid:1872)(cid:3118)+(cid:1852) (3) wherwehkeidrei skitdh ise tihnet rian-tpraa-rptaicrlteicdlei fdfuifsfuiosnionra rtaetec ocnonstsatanntt( g(g//mmgg//mminin1/21)/, 2a)n,da nZd isZ thise tihneteirncteeprtc. eTphte. Tgrhaepgh raph waspwlaost tpeldotftoedr tfhore tahme aomunoutnotf oHf gH(gII()I/I)p/phheennooll aaddssoorrbbeedd aat tvvaariroiuous scocnotnactat ctitmtiems (eqst)( aqgt)aaingsat itnhset stqhueasrqe uare rootroofotti mof eti(mt1e/ 2(t)1/a2)n adndil liullsutsrtartaeteddi ninF Fiigguurree 66.. TThhee iinnttrraa-p-paratritcilcel edidffiuffsuiosnio pnloptslo ftosr fHorg(HII)g a(InId) apnhdenpohl enol showsehdowaegdo oad glionoeda rliitnyewariitthy awhiitghh aR 2hvigahl uRes2 ,vwalhuiecsh, inwdhiiccaht eidndthicaatteindt rtah-apta rintitcrlae-pdaifrftuicsleio ndicfofunstiroinb uted avitacolnrotrliebuintetdh ea svoirtaplt iroonleo ifnH thge( IsI)orapntdiopn hoefn Holgo(InI)t oanfud npchtieonnoal loiznetdo -fAuCnc.tHioonwaliezveedr-,AaCm. Hinoowredvivere,r ag ence minor divergence from the origin was observed in the case of phenol, which was perhaps due to the fromtheoriginwasobservedinthecaseofphenol,whichwasperhapsduetothevariationinthe variation in the solutes movement during the initial and final steps of the adsorption process [51]. solutesmovementduringtheinitialandfinalstepsoftheadsorptionprocess[51]. Theintra-particle The intra-particle diffusion constants along with the R2 values are summarized in Table 1. diffusionconstantsalongwiththeR2valuesaresummarizedinTable1. 3.5 3 Phenol 2.5 y = 0.13x + 0.803 ) R² = 0.995 g 2 / g m (1.5 Hg(II) e q 1 Phenol Hg(II) y = 0.172x + 0.234 0.5 R² = 0.992 0 0 4 8 12 16 20 t1/2 FiguFreigu6r.e 6P. loPtlostso foft htehe inintrtara-p-paarrttiiccllee ddiiffffuussiioonn mmooddele lfofro rHHg(IgI() IIa)ndan dphepnhoel nroelmroevmalo vuaslingu sing funcftuionnctailoinzaeldiz-eAdC-A(CIn (iItniaitlia(lH (gH(gII()I/I)p/phheennooll)) ccoonncceennttrraatitoionns:s :~1~01 0mmg/Lg,/ pLH,p: H5.0:,5 s.0o,lisdo ldidosed:o 2s.e0: g2/.L0, g/L, contact time: 12 h). contacttime:12h). Metals2017,7,248 8of15 Metals 2017, 7, 248 8 of 14 Table1.Rateconstants(k1andk2),sorptioncapacity(qe),andR2valuesobtainedfromthepseudo-first Table 1. Rate constants (k1 and k2), sorption capacity (qe), and R2 values obtained from the pseudo-first order and pseudo-second order kinetic models, along with the intra-particle diffusion constants order and pseudo-second order kinetic models, along with the intra-particle diffusion constants obtainedfortheadsorptionofHg(II)andphenolbyfunctionalized-AC. obtained for the adsorption of Hg(II) and phenol by functionalized-AC. PsPesueduodo-F-Fiirrsstt OOrrddeerrK Kinienteictic PsPesuedudoo-S-Seeccoonndd OOrrddererK Kinientiectic InItnrtara-P-Paarrttiiccllee DDififfufsuisoinon Sample Sample k1(k1/1m in) qe(qme g/g) RR22 k2(g/mkg2 /min) qqee ((mmgg/g/g)) RR22 Kid(mKg/igd/ min1/2) ZZ RR22 Hg(II) 5(.10/m×i1n0−) 3 (m1g.7/2g) 0.95 (g1/.0m×g/1m0−i2n) 3.19 0.97 (mg/g0/.m12in1/2) 0.23 0.99 HPgh(eInI)o l 55..00 ×× 1100−−33 11.7.428 00..9950 61..00× × 1100−−32 33..2179 00..9957 00.1.123 00.2.830 00..9999 Phenol 5.0 × 10−3 1.48 0.90 6.0 × 10−3 3.27 0.95 0.13 0.80 0.99 3.2.3. AdsorptionIsothermStudies 3.2.3. Adsorption Isotherm Studies TheeffectofinitialHg(II)concentrationwasstudied,increasingtheinitialconcentrationfrom 2.0to2T5h.0e mefgfe/cLt oinf itnhiteiapl rHesge(nIIc)e coofn1ce0n.0trmatgio/nL wpahse sntouldaietdp, Hin5cr.0e.asSiinmg itlahrel yin,itthiael ecfofenccteonftriantiiotina lfprohmen ol co2n.0ce tnot 2ra5t.0io mngw/La sins tthued pierdes,einnccer eoafs 1in0.g0 tmhge/Lin pithiaelncool natc epnHtr 5a.t0i.o Snimfriolamrly1,. 0thteo e2ff0e.c0t mofg in/iLtiainl pphreensoeln ce ofc1o0n.c0emntgra/tiLonH wg(aIsI )satutdpiHed5, .i0n.crTehaesineqg uthileib irniiutimal sctoangceensotrraptitoionn frdoamta 1o.0b ttoa i2n0e.d0 mwge/rLe pinl optrteesdenbceet wofe en th1e0p.0e mrcge/nLt aHgge(IrIe)m ato pvHal s5.a0g. Taihnes teqtuhielibinriiutimal sbtauglke ssoorrppttioivne dcaotan coebntatrinateido nwser(me pgl/oLtt)eda nbdetwgreaepnh tihcea lly shpoewrcnenintaFgieg urerme7oav,abl.s Aagnaeinnsht atnhcee idniptiearlc beunltka gseoropftiavdes ocorpnctieonntrwataiosnosb (smergv/Led) aantdlo gwraeprhciocnaclleyn sthraotwionn of soilnu Fteigs,uersep 7eac,bia. lAlyn iennhthaencceads epeorfcepnhteangoe lo,fa anddsogrrpatdiouna wllyasr oebdsuecrevdedw aitt lhowinecrr ceoansicnengttrhateioinn iotifa slosluotrepst,i ve especially in the case of phenol, and gradually reduced with increasing the initial sorptive concentration. The uptake amount of Hg(II) and phenol was found to be increased from 0.65 to concentration. The uptake amount of Hg(II) and phenol was found to be increased from 0.65 to 5.65 5.65mg/gand0.58and5.44mg/g,respectively,whileincreasingtheinitialsorptiveconcentrations mg/g and 0.58 and 5.44 mg/g, respectively, while increasing the initial sorptive concentrations as as mentioned above. It is interesting to observe that the percentage removal of phenol remained mentioned above. It is interesting to observe that the percentage removal of phenol remained almost almostunchangedwhileincreasingtheinitialconcentrationofHg(II)from2.0to25.0mg/L(Figure7a). unchanged while increasing the initial concentration of Hg(II) from 2.0 to 25.0 mg/L (Figure 7a). Similarly,therewasnosignificanteffectonHg(II)removalbyincreasingthephenolconcentration Similarly, there was no significant effect on Hg(II) removal by increasing the phenol concentration from1.0to20mg/L(Figure7a). Therefore,thesestudiesinferthatthefunctionalized-ACisableto from 1.0 to 20 mg/L (Figure 7a). Therefore, these studies infer that the functionalized-AC is able to removeHg(II)andphenolsimultaneouslyfromwater,andsuggestthepresenceofdifferentbinding remove Hg(II) and phenol simultaneously from water, and suggest the presence of different binding sitesavailableforthesetwodifferenttypesofpollutants[48]. sites available for these two different types of pollutants [48]. Figure 7. The concentration dependence removal of (a) Hg(II) in presence of ~10 mg/L phenol (Initial Figure7.Theconcentrationdependenceremovalof(a)Hg(II)inpresenceof~10mg/Lphenol(Initial (Hg(II)) concentration: 1–25 mg/L, pH: 5.0, solid dose: 2.0 g/L, contact time: 12 h) and (b) phenol in (Hg(II))concentration:1–25mg/L,pH:5.0,soliddose:2.0g/L,contacttime:12h)and(b)phenolin presence of ~10 mg/L Hg(II) (Initial (phenol) concentration: 1–20 mg/L, pH: 5.0, solid dose: 2.0 g/L, presenceof~10mg/LHg(II)(Initial(phenol)concentration:1–20mg/L,pH:5.0,soliddose:2.0g/L, contact time: 12 h). contacttime:12h). The equilibrium state adsorption data obtained at various sorptive concentrations were further moTdheleedeq uusiilnibgr iLuamngsmtauteir a(dEsqouraptitoionn (4d)a) taanodb tFarienuenddalitcvh a(rEioquusatsioonrp (t5iv))e acdosnocrepntitorna tiisoontshewrmerse. fTuhreth er maoddseolrepdtiuosni nmgodLealns gwmeruei rta(kEeqnu taot iiotsn n(o4n))linaenadr fForremusn d[5l2ic]:h (Equation (5)) adsorption isotherms. The adsorptionmodelsweretakentoitsnonlinearfor(cid:1869)ms(cid:1837)[5(cid:1829)2]: (cid:2923) (cid:2896) (cid:2915) (cid:1869) = (4) (cid:2915) 1+(cid:1837) (cid:1829) q K(cid:2896)C(cid:2915) q = m L e (4) e 1+KL(cid:3117)Ce (cid:1869) =(cid:1837) (cid:1829)(cid:3289) (5) (cid:2915) (cid:2890) (cid:2915) 1 q = K Cn (5) e F e Metals2017,7,248 9of15 Metals 2017, 7, 248 9 of 14 whereq istheamountofHg(II)/phenoladsorbed(mg/g)byfunctionalized-AC,andC isthebulk e e Hgw(hIIe)r/ep qhee ins otlhceo anmceonutnrat toiof nH(gm(IgI)//pLh)eantoelq audilsiobrrbiuemd .(mKgL/igs) tbhye Lfuanncgtmionuairlirzaetde-AcoCn,s atanndt C(Le /isg t)h,ae nbdulqkm is thHeLg(aInI)g/pmhueinroml coonnocleanyterratsioonrp (tmiogn/Lc)a pata ceiqtyui(limbrgi/ugm).. KKLF iiss tthhee LFarnegumnduliirc hracteo ncostnasntat,nwt (hLi/cgh),c aonrrde sqpm oisn ds totthhee Laadnsgomrputiior nmcoanpoalcaiytyer( smogrp/tgio),na cnadp1a/cintyi s(mthge/gso).r KptFi iosn thine tFernesuitnyd.lTichhe cnoonnsltianneta, rwphlioctho cfotrhreesLpaonngdms uir to the adsorption capacity (mg/g), and 1/n is the sorption intensity. The nonlinear plot of the andFreundlichadsorptionisothermsfortheremovalofHg(II)andphenolareshowninFigure8a,b, Langmuir and Freundlich adsorption isotherms for the removal of Hg(II) and phenol are shown in respectively. Moreover,theadsorptioncapacityoffunctionalized-ACforHg(II)andphenolalongwith Figure 8a,b, respectively. Moreover, the adsorption capacity of functionalized-AC for Hg(II) and theisothermconstantsvaluesaregiveninTable2. TheadsorptionofHg(II)ontofunctionalized-ACat phenol along with the isotherm constants values are given in Table 2. The adsorption of Hg(II) onto variousconcentrationsfollowedtheFreundlichisothermratherthantheLangmuirmodel,whereas functionalized-AC at various concentrations followed the Freundlich isotherm rather than the theexperimentaldataobtainedforphenoladsorptiononfunctionalized-ACwerereasonablyfitted Langmuir model, whereas the experimental data obtained for phenol adsorption on functionalized- welltoboththeLangmuirandFreundlichmodels. Furthermore,theadsorptionisothermstudieswere AC were reasonably fitted well to both the Langmuir and Freundlich models. Furthermore, the conductedforthebareactivatedcarbonundertheidenticalexperimentalconditions. Langmuirand adsorption isotherm studies were conducted for the bare activated carbon under the identical FreundlichadsorptionisothermstudieswereconductedfortheadsorptionofHg(II)andphenolbythe experimental conditions. Langmuir and Freundlich adsorption isotherm studies were conducted for activatedcarbonobtainedfromarecanutwaste,andtheresultsareshowninFigure8a,b. Theisotherm the adsorption of Hg(II) and phenol by the activated carbon obtained from areca nut waste, and the constantsvaluesaresummarizedinTable2. ItisobservedthattheLangmuirmonolayeradsorption results are shown in Figure 8a,b. The isotherm constants values are summarized in Table 2. It is caopbasceirtvyefdo rtHhagt (ItIh)ew Laasndgomuubilre dmaofnteorlatyheer fuadnscotiropntiaolniz actaipoanciwtyi thfosru Hccgin(IiIc) awnahsy ddroiudbel.eMd oarfeteorv ethr,et he fufnucntciotinoanlaizliaztaitoionno wf tihthe sAuCccicnaiuc saendhayndriindcer. eMasoereinovtehre, athdes ofurpntcitoionncaalipzaatciiotny ooff pthhee nAoCl fcraoumse3d. 8a4n6 to 5.5in5c5rmeagse/ ign. the adsorption capacity of phenol from 3.846 to 5.555 mg/g. Figure 8. Plots of Langmuir and Freundlich adsorption isotherms for the removal of (a) Hg(II) and (b) Figure8. PlotsofLangmuirandFreundlichadsorptionisothermsfortheremovalof(a)Hg(II)and phenol using functionalized-AC and bare AC. (b)phenolusingfunctionalized-ACandbareAC. Table 2. Langmuir and Freundlich constants along with R2 values obtained for the removal of Hg(II) Table2.LangmuirandFreundlichconstantsalongwithR2valuesobtainedfortheremovalofHg(II) and phenol using modified-AC. andphenolusingmodified-AC. Langmuir Freundlich Material Pollutant Material Pollutant qo (mg/gL)a ngmKuLi r(L/g) R2 1/n FKreF(umndgl/igc)h R2 Functionalized-AC Hg(II) qo(m1g1/g.2)35 KL(L/0g.)079 R02.848 01./7n92 KF0(.m84g3/g ) 0.9R523 AcFtiuvnactteiodn aclairzbedo-nA (CAC) HHg(gII()II) 11.2355.555 0.0790.199 0.804.8977 00..759826 00..894432 00.9.92553 AFcutinvactteiodncaalribzoend(-AACC) HPgh(IeIn)ol 5.5555.376 0.1991.706 0.907.7970 00..518968 30..914024 00.9.96285 FunctionAalCiz ed-AC PhPehneonlol 5.3736.846 1.7060.116 0.907.0997 00..149483 13..130240 00.9.95648 AC Phenol 3.846 0.116 0.997 0.443 1.320 0.954 3.2.4. Effect of Background Electrolyte Concentrations 3.2.4. EffectofBackgroundElectrolyteConcentrations The effect of background electrolyte concentrations is a significant parameter to study the Theeffectofbackgroundelectrolyteconcentrationsisasignificantparametertostudythebinding binding nature of pollutants onto the solid materials, and it is usually exploited to make a distinction natureofpollutantsontothesolidmaterials,anditisusuallyexploitedtomakeadistinctionbetween between non-specific and specific adsorption. Specific sorption is unaffected by varying the non-specific and specific adsorption. Specific sorption is unaffected by varying the background background electrolyte concentration, whereas non-specific adsorption is significantly affected by eleincctrroealystinegc othnec ebnactrkagtrioounn,dw ehleercetraoslyntoen c-osnpceecnifitrcataiodnsos r[p53ti,5o4n].i sIns iogrndiefir ctaon sttluydayf ftehcet eaddsboyrpitniocrne naasitnugret he baocfk Hgrgo(IuIn) adnedl epchteronloyl toenctoon fucenncttiroantiaolnizsed[5-3A,5C4, ]a.nI nefofercdt eorf tboacsktugdroyutnhde ealdecstorroplytitoe nconnacteunrteraotfioHn gst(uIId)ya nd phwenaso lcoonntdoufcutendc,t iuosnianlgiz Neda-CAl Cas, aan beafcfkegctrooufnbdac eklgecrotruonlydtee.l eScimtroillayrtley,c othnec erenmtroatviaoln bsethuadvyiowuar socfo Hngd(uIIc)t ed, uswinags NstuaCdileads ina bthaec kpgreroseunncde eolfe NctarNolOyt3e. .TShiem ciolanrcleyn,ttrhaetiorenm oof vHagl(bIIe) haanvdi opuhrenooflH wga(sII )mwaianstasitnueddi eadt in Metals2017,7,248 10of15 Metals 2017, 7, 248 10 of 14 thepresenceofNaNO . TheconcentrationofHg(II)andphenolwasmaintainedatapproximately 3 ap5prmoxgi/mLaatetlpyH 5 m5.0g,/Lan adt pthHe 5c.o0n, caenndt rtahtei ocnonocfeNntarCatliaonnd oNf NaNaCOl 3anwda sNianNcrOea3 swedasf rinomcre0a.s0e0d1 ftroo0m.1 0m.0o0l1/ L. to T0.h1e mpoelr/cLe.n Tthaeg eperercmenotvaagleo rfemmeorvcaulr oyf amnedrcpuhreyn aonlda sphaefnuonlc atsio an fuonfcbtaiockng orfo buancdkgerloecutnrodl yelteecstrisolsyhtoesw n is sinhoFwignu irne F9i.gIutrwe a9s. oItb wsearsv oebdstehravteadn thinact raena sinecirneNasaeC inl cNonaCcel nctornactieonntsraftrioomns0 f.r0o0m1 t0o.000.11 mto o0l./1L mcoalu/Lse d cauasceodn as icdoenrsaibdleerdabecler edaescerienasteh einu tphtea kueptoafkHe go,f wHhgi,l ewahnilein acnre ianscereinasteh ienc tohnec ceonntrcaetniotrnatoiofnN oafN NOa3NtoOt3 he to stahme esaemxtee netxdteidntn doitda fnfeoctt athffeecHt gth(IeI) Hregm(IoI)v arle.mAolvaarlg. eAd elacrregaes edeincrmeaesrec uinry mreemrcouvrayl rinemthoevpalr eisne nthcee of preNseanCclew oafs NexapClla iwneads ewxipthlatihneedh ewlpitho ftmhee rhceulrpy osfp meceiartciuorny. Isnpeacqiuateioouns. Isno lauqtiuoeno,uHs gs(oIIl)uftoiornm, sHvga(rIiIo) us forcmoms vpalerxioeussw ciothmtphleecxhelso wriditehs ,thi.ee .,chHlgoCrild+e,sH, ig.eC.l, 2H,HgCgCl+,l 3H−g,aCnl2d, HHggCCll43−2,− a,nadlo HnggCwli4t2h−, tahleonmgi xweidths pthecei es miHxegd( OspHe)cCiels. HIng(tOheHp)CHl. rIeng tihone pbHet wreegeinon3 .b5etawndee5n. 53,.5t haendH 5g.C5,l 2thies HagpCrel2d ios ma ipnraendtosmpiencaienst (sip.ee.c,ioesv er (i.e8.0, %ov)e[r1 88,109%].) M[18e,a1n9w]. hMileea,nthwehaildes, otrhpet iaodnseoxrppteiroinm eenxptewriamsecnatr rwieads ocuatrraitedp Hou5t. 0aitn ptHhe 5p.0r eisne ntchee of precshelonrcied oe,f icnhwlohriidche,t hine wprheidcohm thine apnrtesdpoemciiensainstH sgpCecl2ie.sT ihse HregfoCrle2,. tThheeHregfCorle2,s tpheec iHesgwCle2r sepneoctieesf fiwcieernet ly nort eemffoicvieendtlbyy rtehmeofuvendct iboyn athliez efudn-ActCio,naanldizecdau-AseCd, aanddr acsatuicsedde car edarsaestiinc tdheecrreeamseo vinal tohfe mreemrcouvrayl forof m metrhceuaryq uferoomus tshoelu atqiouneso.uAs lsteorlnuatitoivnesl.y A,tlhteerunpattiavkeelyo,f tHheg (uIIp)traekme aoifn eHdga(IlIm) oresmtcaoinnsetda natlmwohsilte cionncsretaansitn g whthilee NinacNreOas3incgo nthceen NtraaNtioOn3s cfornomcen0t.r0a0t1iotnos0 f.1rommo 0l/.0L0.1T thoe 0s.e1r mesoull/tLs.s Tuhgegsees treedsuthltas tstuhgegHesgt(eIdI) tihoants twhee re Hgs(pIIe)c iifiocnasl lywaedres osrpbeecdifaicnadllyfo ramdseodrb‘iendn earnsdp hfeorremceodm p‘ilnenxeers ’sopnhtehree scuormfapceleoxfesfu’ nocnt iothnea liszuerdfa-AceC o[5f 3]. funOcntiothnealoiztehde-rAhCa n[5d3,]t.h Oenp tehrec eonthtaegre hraenmd,o tvhael poefrpcehnetnaoglew reamsorevmala oinf epdhecnoonls wtaanst rwemhialeiniendc rceoanssintagntth e whNilaeC inlccroenacseinntgr athtieo nNfarComl c0o.n0c0e1nttora0t.i1onm forlo/mL. 0T.0h0is1 rteos u0.l1t smugogl/eLs.t Tedhitsh raetspuhlte nsuoglsgwesetered atlhsaot sppheecinfioclasl ly wearde saolrsboe sdptehcriofiucaglhlyt haedsfoorrbmeadt itohnrooufgdho nthoer –faocrcmepattioornc oomf dpolenxoers–,aicncewphtoicr hcothmepclaerxbeos,n iynl gwrhoiucph othfeth e carfbuonncytilo gnraoliuzpe do-fA tChei sfuanncetiloenctarloizneddo-AnCor iasn adn tehleecatrroomn adtoicnroirn agnsdo fthpeh eanroomlaarteice rleinctgrso nofa pccheepntoolr asr[e5 5]. eleMctororeno avcecre,ppthoernso [l5s5w]. eMreotrreaopvpeerd, pwhiethnionlst hweepreo rtersapopftehde wsoitlhidinm tahtee rpiaolrse,sa onfd thpeo sssoiblildy mfoarmteriniaglsa, astnrdon g pobssoinbdlyt hforromuginhgt hae sπtr–oπngel ebcotnrodn tihnrtoeuragcht itohne oπf–thπe ebleecntzreonne inritnegraicntipohne onfo tlhaen dbeπn-zeelencet rroinngs pinre psehnetnwoli th antdh πe-seolleicdtrmonaste priraelsse[n5t6 w,57it]h. the solid materials [56,57]. FigFuirgeu r9e. 9E.ffeEcftf eocft boafcbkagcrkogurnodu nedlecetlreocltyrotely ctoenccoenncteranttiroantiso nins tihnet hreemreomvaolv oafl HofgH(IIg)( IaIn)da npdhepnhoeln boyl by momdiofdieidfi-eAd-CA fCrofmro maqauqeuoeuosu ssosluotliuotniosn (sIn(Iitniiatli a(lH(gH(gII()I/Ip)/hpehneonl)o cl)oncocnencetrnattriaotniosn: s~:1~0 1m0gm/Lg,/ pLH,p: H5.:05, .s0o,lsido lid dosdeo: s2e.:0 2g.0/Lg, /cLon,ctaocntt aticmttei:m 12e: h1,2 bha,ckbgacrokugrnodu enldecetlreocltyrtoel:y Ntea:CNl/aNCal/NNOa3N). O ). 3 3.3. Fixed-Bed Column Adsorption 3.3. Fixed-BedColumnAdsorption In addition to batch reactor experiments, a fixed-bed column adsorption study was conducted. Inadditiontobatchreactorexperiments,afixed-bedcolumnadsorptionstudywasconducted. In this study, the pH of the influent solution was maintained at pH 5.0, and the initial concentrations Inthisstudy,thepHoftheinfluentsolutionwasmaintainedatpH5.0,andtheinitialconcentrations of Hg(II) and phenol was taken 4.5 and 7.89 mg/L, respectively. It was observed that the of Hg(II) and phenol was taken 4.5 and 7.89 mg/L, respectively. It was observed that the functionalized-AC could efficiently remove the Hg(II) and phenol even in a continuous flow system. functionalized-ACcouldefficientlyremovetheHg(II)andphenoleveninacontinuousflowsystem. The nonlinear Thomas equation (Equation (6)) was utilized to fit breakthrough data obtained for ThenonlinearThomasequation(Equation(6))wasutilizedtofitbreakthroughdataobtainedforHg(II) Hg(II) and phenol to optimize the loading capacity of functionalized-AC under dynamic conditions [58]. The equation is taken as: (cid:1829) 1 (cid:2915) = (6) (cid:1829)(cid:2925) 1+(cid:1857)(cid:4666)(cid:3012)(cid:3152)(cid:4666)(cid:3044)(cid:3173)(cid:3040)(cid:2879)(cid:3004)(cid:3173)(cid:3023)(cid:4667)(cid:4667)/(cid:3018)

Description:
Protection Agency (USEPA) is 2 µg/L and 0.5 mg/L, respectively [12,13]. and uniform irradiation, and reducing reaction time and energy. concentration of Hg(II) was analyzed by a fast sequential atomic absorption Figure 2. According to International Union of Pure and Applied Chemistry (IUPAC)
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.