ebook img

Simulations of the merging galaxy cluster Abell 3376 PDF

2.4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Simulations of the merging galaxy cluster Abell 3376

Mon.Not.R.Astron.Soc.000,1–12(2012) Printed21January2013 (MNLATEXstylefilev2.2) Simulations of the merging galaxy cluster Abell 3376 1⋆ 1 Rubens E. G. Machado and Gasta˜o B. Lima Neto 3 1InstitutodeAstronomia,Geof´ısicaeCieˆnciasAtmosfe´ricas,UniversidadedeSa˜oPaulo,R.doMata˜o1226,05508-090Sa˜oPaulo,Brazil 1 0 2 Accepted2013January18.Received2013January10;inoriginalform2012October25 n a J ABSTRACT 8 Observed galaxy clusters often exhibit X-ray morphologies suggestive of recent interaction 1 withaninfallingsubcluster.Abell3376isanearby(z =0.046)massivegalaxyclusterwhose bullet-shapedX-rayemissionindicatesthatitmayhaveundergonearecentcollision.Itdis- ] playsa pairof Mpc-scale radiorelics andits brightestclustergalaxyis located 970h−1kpc O 70 away from the peak of X-ray emission, where the second brightest galaxy lies. We attempt C to recoverthe dynamicalhistory of Abell 3376.We performa set of N-bodyadiabatic hy- . drodynamicalsimulationsusingtheSPHcodeGadget-2.Thesesimulationsofbinarycluster h p collisions are aimed at exploring the parameter space of possible initial configurations. By - attempting to match X-ray morphology,temperature, virial mass and X-ray luminosity, we o setapproximateconstraintsonsomemergerparameters.Our bestmodelssuggestacollision r t of clusters with mass ratio in the range 1/6–1/8, and having a subcluster with central gas s densityfourtimeshigherthanthatofthemajorcluster.Modelswithsmallimpactparameter a [ (b < 150kpc),ifany,arepreferred.We estimatethatAbell3376isobservedapproximately 0.5Gyraftercorepassage,andthatthecollisionaxisisinclinedbyi ≈ 40◦ withrespectto 1 theplaneofthesky.Theinfallingsubclusterdrivesasupersonicshockwavethatpropagates v atalmost2600km/s,implyingaMachnumberashighasM∼4;butweshowhowitwould 4 havebeenunderestimatedasM∼3duetoprojectioneffects. 3 4 Keywords: methods:numerical–galaxies:clusters:individual:A3376–galaxies:clusters: 4 intraclustermedium . 1 0 3 1 1 INTRODUCTION have frequently focused on the Bullet Cluster (e.g. Takizawa : v 2005, 2006; Milosavljevic´etal. 2007; Springel&Farrar 2007; Mergersaretheprocessesthroughwhichgalaxyclustersassemble i Mastropietro&Burkert 2008).Recently, vanWeerenetal.(2011) X inthehierarchicalscenarioofstructureformation.Observedgalaxy carriedouthydrodynamical simulationstomodelthegalaxy clus- r clustersoftendisplayperturbedmorphologiessuggesting theyun- ter CIZAJ2242.8+5301 and used its double radio relics to set a derwentrecentinteractionswithlessmassivesubclusters. constraints on the merger geometry, mass ratio and time-scale. Anumberofgalaxyclustersexhibitdiffuseradioemissionin Bru¨ggenetal. (2012) modelled 1RXSJ0603.3+4214, another ra- theirperiphery,whichisnotassociatedwithgalacticsources(e.g. dioreliccluster,asatriplemerger. Feretti&Giovannini1996;vanWeerenetal.2009;Bonafedeetal. In fully cosmological hydrodynamical simulations, clusters 2012).TheseMpc-scalestructuresareknowasradiorelicsandthey mergers are studied in a more realistic but less well-controlled are useful as probes of merger shocks. They are generally inter- environment, and sometimes at the cost of lower spatial or mass pretedasbeingdrivenbyshockwavesthatpropagateoutwardsat resolution. They provide useful analyses of the statistical proper- supersonicspeeds,re-acceleratingrelativisticelectronsthroughthe ties of merger shocks, such as cold fronts (Hallmanetal. 2010) Fermi mechanism in the very low-density outskirts of the cluster and the distributions of Mach numbers (e.g. Vazzaetal. 2011; (e.g.Fujitaetal.2003;Gabici&Blasi2003). Araya-Meloetal. 2012; Planelles&Quilis 2012). Typical Mach From the theoretical standpoint, idealised numerical sim- numbersinshocksdrivenbyclustercollisionstendtobe . 3, ulations of binary cluster mergers supply a wealth of insight M butstrongshocksmayariseundersomecircumstances.Forexam- into the outcomes of these events (e.g. Roettigeretal. 1993; ple, Finoguenovetal. (2010) obtained 2 from the density Schindler&Mueller 1993; Pearceetal. 1994; Roettigeretal. M ∼ andtemperaturedropsinAbell3667andMarkevitchetal.(2005) 1997; Ricker 1998; Roettiger&Flores 2000; Ricker&Sarazin had found a similar value for Abell 520. A shock as strong as 2001; Ritchie&Thomas 2002; Pooleetal. 2006; ZuHoneetal. 4wasestimatedbyvanWeerenetal.(2010)fromtheradio 2009, 2010; ZuHone 2011). Hydrodynamical simulations of M ∼ relicsofCIZAJ2242.8+5301. merging cluster designed to model specific observed objects Using Suzaku X-ray observations, Akamatsuetal. (2012) measured the temperature jump in the western radio relic of ⋆ E-mail:[email protected] Abell 3376, obtaining = 2.91 0.91. From polarisation M ± 2 R. E. G.Machado&G. B. Lima Neto and spectral indices studies of the radio relics of Abell 3376, mi=1 108M⊙ forbothspecies.Theminorcluster’smassand × Kaleetal.(2011,2012) estimated 2.2 3.3. From a cos- particle number are scaled down such that all particles have the M ∼ − mological simulation, Pauletal.(2011)wereabletoidentifyone samemass. mergingclusterwhoseshockstructureresemblestheradiorelicsof Simulations were performed using the public version of the Abell3376. parallelSPHcodeGadget-2(Springel2005)withasofteninglength Abell3376(hereafterA3376)isanearby(z=0.046)massive ofǫ = 5kpcand amaximum timestepof0.001 Gyr.Theintra- galaxyclusterwithadistinctivebullet-likemorphology,suggesting clustermediumisrepresentedbyanidealgaswithadiabaticindex anongoingcollisiontakingplace.Itispossiblytheclosestcluster γ =5/3.Asafirstapproximation,coolingisnottakenintoaccount exhibitingsuchamorphology.Initsoutskirts,apairofprominent in the simulations, since the cooling time-scale is larger than the Mpc-scale radio relics are present (Bagchietal. 2006). Its virial merger time-scale. Galaxies themselves account for a small frac- massisestimatedas5.0 1014M⊙(Girardietal.1998,basedon tionofthetotalclustermass( 3%,e.g.Lagana´etal.2008)and × ∼ galaxyvelocitydispersion)andits0.1–2.4keVluminosityisL theirgravitationalinfluencemaybedisregarded. Sincewedonot X 2.5 1044 erg/s (Ebelingetal. 1996, based on Rosat data). Th≃e includestarsinthesesimulations,feedbackandstarformationare × firstandsecondbrightestclustergalaxies(BCG)areseparatedby notpresent.Eventhoughmagneticfieldsarebelievedtogiveriseto 970h−1 kpc, but it isthesecond BCGthat coincides withthe theradiorelicsobservedinA3376,theyarenotexpectedtoplayan 70 ∼ peakofX-rayemission. important roleindetermining theglobal cluster morphology, and Bagchietal.(2006)haveanalysedearlyXMM-NewtonX-ray areignoredinoursimulations.Theevolutionofthesystemisfol- andVLAradiodata,proposingthattheradiorelicsobserved may lowedfor5Gyr,buttherelevantphasestakeplaceinatime-scale alsobethesiteofaccelerationofveryenergeticcosmicrays,upto of not more than about 1 Gyr. Because of that, and of the small 1018eV.Thiswouldbepossiblewithfirst-orderFermimechanism spatialextentofthesystem,cosmologicalexpansionisneglected. attheshockwavefront.Theysetforthtwopossiblescenariosthat Simulationswerecarriedoutona2304-coreSGIAltixcluster. couldberesponsibleforproducing theshock: (i)theaccretionof intergalacticmediumflowingdowntowardsthecluster;or(ii)the collisionoftwoclusters,buttheissueremainedunresolved. 2.2 Initialconditionsandmodels Our goal in this work is to run N-body+SPH simulations For the dark matter halo, a Hernquist (1990) density profile is tailored forthe specificcase of A3376 using more recent XMM- adopted: Newtondatainordertoconstraintheactual dynamical historyof M r thissystem. ρ (r)= h h (1) Thispaperisorganizedasfollows.Simulationtechniquesand h 2π r(r+rh)3 initialconditionsaredescribedinSection2.X-rayobservationsare whereM isthedarkmatterhalomass,and r isascalelength. h h describedinSection3.InSection4wepresenttheglobalmerger ThisissimilartotheNFWprofile(Navarro,Frenk&White1997) evolution, explore the parameter space of different possible col- except intheoutermost partsbeyond the r200 radius(alsounder- lisions,andcomparethesimulationresultstoobservations; Mach stood as the virial radius), with the advantage of having a finite numberanddarkmatterdistributionarediscussed.Finally,wesum- totalmass.Conveniently,manyofitsproperties(suchaspotential, mariseandconcludeinSection5.Throughoutthisworkweassume cumulativemassanddistributionfunction) canbeexpressed ana- a standard ΛCDM cosmology with ΩΛ = 0.7, ΩM = 0.3 and lytically. H0=70kms−1Mpc−1. Forthegasdistribution,weemployaDehnen(1993)density profile: (3 γ)M r 2 SIMULATIONS ρg(r)= −4π g rγ(r+gr )4−γ (2) g We set up an idealised numerical model to represent the merg- whereM isthegasmassandr isascalelength.Thishastheben- g g ingof twoinitiallyisolatedgalaxy clusters. Themainpurpose of efitofpreserving theanalyticalsimplicityofseveral usefulquan- these simulations is to reproduce certain features of the galaxy tities(chieflythederivativesofthepotential),whilealsoallowing clusterA3376,especiallytheglobalmorphologyoftheintracluster thepossibilityofaflatcore,whichisachievedbysettingitsγ pa- medium.Eventhoughthismodelreliesonseveralsimplifications, rametertozero.Theresultingprofileresemblesthatofa β-model itallowsustoreconstructapossiblescenarioforthedynamicalhis- (Cavaliere&Fusco-Femiano1976)andisthussuitabletorepresent toryofA3376.Bycomparingtheresultsofalargesetofsimula- the intracluster medium of an undisturbed cluster without a pro- tions,itispossibletosetapproximateconstraintsonsomecollision nouncedcool-core,i.e.withoutasteepdensityprofileinthecentre. parameters. Tocreateanumericalrealisationofthisdarkmatter+gassys- tem,wesetuptheinitialpositionsandvelocitiesfollowingthepro- cedure outlined by Kazantzidisetal. (2006). First, the dark mat- 2.1 Techniques tercumulativemassfunctionisuniformlysampledintheinterval Weconsiderthecollisionoftwosphericallysymmetricgalaxyclus- [0,M ] and the inverse function r(M) is used to provide r, the h ters:amoremassiveclusterA(themajorcluster)andalessmas- distancefromthecentre,foreachdarkmatterparticle.Thesameis siveclusterB(alsoreferredtoastheminorclusterorthesubclus- doneforthegasparticles.Fromtheseradii,cartesiancoordinates ter).Arangeofmassratios M /M isexplored. Eachclusteris areobtainedbyassigningrandomdirectionstothepositionvectors. B A composedofdarkmatterparticlesandgasparticles,andabaryon One possible method to obtain the velocities of the colli- fractionof0.18isadoptedthroughout. sionless particles is the so called ‘local Maxwellian approxima- In all simulations, the major cluster has a total of tion’. It consists in drawing velocities from Maxwellian distribu- N =6 106 particles proportionally divided between dark tions with dispersions obtained from solving the Jeans equation A × matter and gas, such that the mass resolution is the same at each radius (Binney&Tremaine 1987). However, due to the Simulationsofthemerginggalaxycluster Abell3376 3 inadequacies of this approach which have been pointed out by Table1.Initalconditionparameters.Model233isthefiducialmodel. Kazantzidisetal.(2004),onemustresorttothedistributionfunc- tlioocnalitsshealfp.eInotfhtihsewvaey,loncoityassduismtrpibtiuotniosnne(eadpatrot bfreommatdheeaabsosuutmthpe- model label MMBA nn00,,BA v0 b0 Ntotal (km/s) (kpc) tionsofisotropyandsphericalsymmetry)andtheexactdistribution function f( )isgiven byEddington’s formula(Eddington 1916; 231 mr2 1/2 4 1500 0 9×106 Binney&TEremaine1987): 232 mr4 1/4 4 1500 0 7.5×106 233 mr6 1/6 4 1500 0 7×106 1 E d2ρ dΨ 1 dρ 234 mr8 1/8 4 1500 0 6.75×106 f( )= h + h (3) E √8π2 (cid:20)Z0 dΨ2 √E−Ψ √E (cid:18)dΨ(cid:19)Ψ=0(cid:21) 241 b150 1/6 4 1500 150 7×106 242 b350 1/6 4 1500 350 7×106 where Ψ = Φ = (Φh +Φg) is the relative total potential, 243 b500 1/6 4 1500 500 7×106 and = Ψ −v2/2 i−s the relative energy. For physically mean- ingfuElρh(r)a−ndΨ(r),thelastterminequation(3)vanishes.This 238 v500 1/6 4 500 0 7×106 leavesanintegrandthatdependson(thesecondderivativeof)the 239 v1000 1/6 4 1000 0 7×106 dark matterdensity expressed asafunction of the totalpotential, 240 v2000 1/6 4 2000 0 7×106 ρ = ρ (Ψ). The integration is evaluated numerically and the h h 235 n1 1/6 1 1500 0 7×106 function f( ) istabulated in a finegrid over a range of energies E 236 n2 1/6 2 1500 0 7×106 andtheninterpolatedwherevernecessary.Randompairs( ,f)are drawnandvaluesofv2areacceptedaccordingtothevonNEeumann 237 n6 1/6 6 1500 0 7×106 (1951)rejectiontechnique.Thisassignsaspeedtoeachcollision- lessparticleandcartesianvelocitycomponentsareobtainedassum- ingrandomdirectionsforthevelocityvectors. 3 X-RAYDATA Sincethegasisassumedtobeinhydrostaticequilibrium,each 3.1 Observations volumeelement of thefluidisinitiallyat rest.TheSPHparticles requireanadditionalquantitytobesetup:theirinternalenergy(i.e. The numerical simulations presented here will be compared to temperature). From the assumption of hydrostatic equilibrium, it archival X-ray observations. A3376 was observed twice by the followsthatforachosengasdensityρ (r),thetemperatureprofile XMM-Newtonsatellite,in2003 (revolution 0606, P.I.M. Marke- g isuniquelyspecifiedas: vitch) and in 2007 (revolution 1411, P.I. M. Johnston-Hollitt). Whilethe2003observationwaspartiallyanalysedbyBagchietal. µm 1 ∞ GM(r′) (2006)(theydidnotusethepndetector),the2007observationis, T(r)= p ρ (r′) dr′ (4) k ρg(r)Zr g r′2 asfarasweknow,unpublished. Both observations were done in Prime Full Window with where µisthemeanmolecularweight, m istheprotonmass, k “medium”filter.WehaveruntheScienceAnalysisSystem(SAS1 p istheBoltzmannconstantandM(r′) = M (r′)+M (r′)isthe 11.0)pipeline,removingbadpixels,electronicnoise,andcorrect- g h totalmassinsidetheradiusr′. ingforchargetransferlosses.FortheEPICMOS1andMOS2cam- Eachclustermodelisallowedtorelaxinisolationforaperiod eraswehavekeptonlyeventswithPATTERN612andFLAG= of5Gyr,typicallyafewdynamicaltime-scales,priortothebegin- 0(eventsonthefieldofview).Forthepncamera,havekeptevents ning of the actual collision. Thisensures that transient numerical with PATTERN6 4 and FLAG = 0, following the standard pro- effects,howeverminor,willhavehadtimetosubside.Theclusters cedure recommended by the SAS team. Both observations were arethenplacedatasufficientlylargeinitialseparation d0,having screenedforhighparticlebackgroundperiods.Wehaveconstructed aninitialrelativevelocityv0inthedirectionofthex-axis.Toavoid light-curvesinthe[1-12keV]bandandfilteredouttimeintervals spurioustidaleffectsintheinitialconditions,weemployaninitial ofanomalouslyhighflux.Thefinalexposuretimesforthe2003ob- separationofd0 = 4Mpc,whichisapproximatelytwiceaslarge servationwere23.0,22.9,and16.0ksfortheMOS1,MOS2,and asthesumoftheclusters’virialradii. pn,respectively.Forthe2007observationtheywere36.8,39.8,and Numerouscombinationsofplausibleinitialconditionparam- 25.6ksfortheMOS1,MOS2,andpn,respectively. etersarepossibleand,inthesearchfora‘best-fitting’model,hun- When necessary, the background was taken into account by dreds of simulations were run. Table 1 lists the initial condition usingthepubliclyavailableEPICblankskytemplatesdescribedby parametersofthesampleofmodelsthatarereportedinthispaper. Read&Ponman(2003),takingintoaccounttheobservationmode Thissamplefocusesonthevariationsoffourparameters,namely: andfilter.Eachblankskybackgroundwasfurthernormalisedusing thetotalmassratioM /M ,rangingfrom1/2to1/8;theratioof theobservedspectrumobtainedinanannulus(between12.5–14.0 B A thecentralgasdensitiesn0,B/n0,Arangingfrom1to6;theinitial arcmin),takingcaretoavoidtheclusteremission. relativevelocityv0,rangingfrom500to2000km/s;andtheimpact parameterb0,rangingfrom0to500kpc. Themajorcluster’stotalmassisalwaysMA =6 1014M⊙ 3.2 Analysis anditscentralgasdensityisn0,A =1.2 10−2cm−3×inallcases. Withthecleanedeventfiles,wehaveproducedtheexposure-map × Thesevalueswerechosentoensurethatboththetotalmassandthe corrected images in the [0.5–8.0 keV] band combining all XMM totalX-rayluminosityoftheresultingobject arewithinthesame dataavailable.Thisimagewillbecomparedbelowtoasimulated orderofmagnitudeastheobservedcluster.Theinitialrelativeve- imagefromtheN-bodysimulation. locityisalwaysparalleltothex-axis,evenwhenanon-zeroimpact parameter(ashiftintheinitialpositionofthesubclusteralongthe y-axisdirection)ispresent. 1 Seehttp://xmm.esac.esa.int/ 4 R. E. G.Machado&G. B. Lima Neto Wehavealsoproduceda2Dtemperaturemap,usinganadap- tive kernel technique (Durret&LimaNeto 2008). A cell of vari- able size must have a minimum count number (of the order of 103 afterbackgroundsubtraction).Acellthatmeetsthiscriterium hasitsspectrumfittedbyanabsorbed,singletemperatureMEKAL model(bremsstrahlungandemissionlines,Kaastra&Mewe1993; Liedahletal. 1995) using the XSPEC 12.5 package2 (Arnaud 1996). The free parameters are the intra-cluster plasma tempera- tureandmetallicity(metalabundance,mainlyiron). Thespectralfitsaredoneinthe[0.7–8.0keV]band.Wefixed theabsorptionusingtheGalacticvalueoftheneutralhydrogencol- umndensity(4.6 1020cm−2;Leiden/Argentine/Bonn(LAB)Sur- vey),estimatedw×iththenhtaskfromFTOOLS3.Theeffectivearea files(ARFs)andtheresponsematrices(RMFs)werecomputedfor eachcellintheimagegrid.Weproducedatemperaturemapcom- bining both observations, which will be compared toour simula- tionsbelow. 4 RESULTS 4.1 Globalevolution Toillustratethetemporalevolutionofaclustermergersimulation, Fig.1displaysasequenceofsnapshots(ofmodel233)spacedby 0.2 Gyr, in frames of 1.6 1.6 Mpc. This is a head-on collision × alongthex-axis,whichappearsarbitrarilyrotatedontheplaneof the sky merely to match the position angle of the observation, a rotationhavingofcoursenofurtherrelevance.Themeaningfulori- entationistheinclinationanglei,betweenthecollisionaxisandthe planeofthesky.AllframesinFig.1areprojectedatainclination i=40◦,discussedindetailinSection4.2.5.Toallowforasome- whatfaircomparisonwithobservations,wecomputetheprojected X-raysurfacebrightness(leftcolumnofFig.1)andtheprojected emission-weightedtemperature(rightcolumnofFig.1). Even though the simulationsthemselves areadiabatic, when generating these simulated images we assume the X-ray radia- tivelossescanbedescribedbyacoolingfunctionthattakesmore thanjustbremsstrahlungintoaccount.Fromthesimulationoutput, weestimatetheemissionusingacoolingfunctionΛ(T)thatwas computed using the MEKAL emission spectrum model with the XSPEC12.5package,appropriateforaplasmaofmetallicityequal to0.3Z⊙.At highenergiesthefree-freeemission (∝ n2e√T) is predominant(andthatisthequantityusuallyemployedasaproxy foremissioningalaxyclustersimulations),butatlowenergiescol- lisionalexcitationdominates.Theemissionisthenprojectedalong theline of sight togive theX-ray surface brightness maps. Tem- peraturemapsaregeneratedbyweightingparticletemperaturesby theiremission,andprojectingthemalongthelineofsight. InFig.1thesubclustercomesfromthelowerrightcornerof theframetowardsthemajorcluster.Mostoftherelevantdynamical evolutionofthemergertakesplacewithinanintervalof1Gyr.The simulationstartsatt = 0whentheclustersare4Mpcapart,and central passage occurs at t 2.15 Gyr. Approximately 0.5 Gyr ≃ aftercentralpassageaconfigurationisreachedinwhichtheoverall gasmorphologyapproximatesfairlywelltheshapeoftheobserved cluster.Atthismoment,thesubclusterhaspassedbeyondthemajor cluster centre while remaining significantly denser, which makes Figure1. Temporal evolution ofmodel 233: (a) projected X-ray surface theemissionslightlymoreintenseintheregionofthenoseofthe brightness, intheleft column; and(b)projected emission-weighted tem- perature,intherightcolumn.Thesixrowsdisplaysinstants0.2Gyrapart. Eachframeis1.6×1.6Mpc,thespatialscaleisthesameforallframes,and 2 Seehttp://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/ thesurfacebrightnessandtemperaturerangesarebothconstant. 3 Seehttp://heasarc.gsfc.nasa.gov/ftools/ Simulationsofthemerginggalaxycluster Abell3376 5 shockthaninthegasbehindit.Atearliertimesnosuchdistinction sensitivetothesamenumberofvisualcuesandatthesamelevel isnoticeable,whereasatlatertimestheglobalshapeisexcessively offlexibilitythatevaluationbyeyecanafford. elongatedandadetachmentdevelopsbetweenthesubclustercore Herewepresentasystematiccomparison ofasampleofthe andthegasleftbehind. modelsweexplored.ThisismeanttoallowacomparisonoftheX- In this particular model, the subcluster has 1/6 of the main raymorphologyofthemodelslistedinTable1.Takingmodel233 cluster’stotalmass,butthegasinitscoreismorecentrallyconcen- tobethestandard,Fig.2displaysvariationsaroundthatmodel.The trated,beingdenserbyafactorof4.Thesubclusterisalsocolder, surfacebrightnessscaleandspatialscalearethesameasinFig.1. havinganinitialcentraltemperatureof 1keV,whilethemajor EachrowinFig.2displaysvariationsofonegivenparameter:(a) ∼ clusterhas4 5keV.Theheatedgasaheadofthecoldsubclusteris mass ratio; (b) impact parameter; (c) initial relative velocity; (d) − visibleasabowshockintherightcolumnofFig.1anditisfurther relativecentralgasdensities;and(e)inclination.Foreachofthese discussedinSection4.4. properties,fourvariantsaregiven, oneof thembeing thefiducial Attheinstantofbestmatch(t = 2.625Gyrformodel 233) model itself.Thishighlightstheindividual effect of varyingeach the system evidently lacks spherical symmetry. Nevertheless we parameterseparately.Withtheexceptionofrow(e),everymodelis measure the spherically averaged density profile, centred on the shownwiththesameinclinationi=40◦toallowforafaircompar- point of highest total density. This is located at the major clus- ison.Allsnapshotsareshownatthesameinstantt = 2.625Gyr, ter’s dark matter peak, around which the bulk of the total mass withtheexceptionofrow(c),becausemodelswithdifferentinitial stilllies(seeSection4.5).Weobtaintheradiusr200 1.5Mpc, velocitieshavesubstantiallydifferenttime-scales. ≃ at which the mean density has dropped to 200 times the critical densityρ .Thisradiusalsoencompassestheminorcluster’sdark c matter peak, as well as all the gaseous structures discussed here. The mass enclosed within r200 is M200 ≃ 4.0×1014M⊙. The 4.2.1 Massratio integrated X-ray luminosity (within r200 and inthe energy range 0.1–2.4 keV) is LX 4.3 1044 erg/s if the emission comes Row (a) of Fig. 2 shows the outcome of cluster mergers having solelyfrombremsstrah≃lung, o×r LX 6.8 1044 erg/sifmetals mass ratios of 1/2, 1/4, 1/6 and 1/8. It is clear that major merg- ≃ × andlineemissionarealsotakenintoaccount. ersresultinaquitedistinctmorphology.ModelshavingM /M B A in the range of 1/6 – 1/8 are to be preferred. Neistein&Dekel (2008),basedontheextendedPress-Schechterformalism,provide estimatesoftherateofmergershavingmassratioaboveacertain 4.2 Explorationofparameterspace valueatagivenredshift.Aclusterofmodel233’sM200atA3376’s In order to attempt to constrain some of the merger parameters, redshift will have undergone one merger per 4.8 Gyr having ∼ weexplorednumerousdifferentinitialconditionconfigurations,in MB/MA>1/6. searchofa‘best-fitting’model.Suchamodelwouldhavetosimul- taneouslysatisfy,toanapproximatedegree,thefollowingcriteria: theoverallgasmorphologyshouldbereminiscentoftheX-rayob- servation of A3376; thetemperature should bein theappropriate 4.2.2 Impactparameter observed range; thetotalmassand totalluminosity should fallin thesameorderofmagnitudeasthoseinferredfromobservations.A Typicalimpactparametersingalaxyclustermergersareoftheor- possiblyimportantadditional criteriumregardingthedistancebe- derofafew100kpc(Sarazin2002;Ricker1998;Ricker&Sarazin tweenthetwobrightestclustergalaxiesisdiscussedinSection4.5. 2001).Thefourmodelsshowninrow(b)ofFig.2haveinitialim- WetaketheBCGsseparationtobeaproxyfortheseparationbe- pactparameters b0 = 0,150,350and500kpc.Themostevident tweenthetwodarkmatterpeaks. Whilemodel233 maynot nec- effectofoff-centremergersisthelossofsymmetryaroundthecol- essarilybetheonethatstrictlyoptimiseseachsinglecriterium,it lisionaxis.Thecurvedtrajectoryofthesubclusterispartlyrespon- is the one that provided the most acceptable compromise among sibleforthedistinctiveshapeoftheresultingobjects.Inahead-on them. It is of course not possible to rule out the existence of al- collision,themajorcluster’scentralgasisspreadoutasthedenser ternativecombinationsofparametersthatmightresultinsimilarly subclusterpassesthroughit,decreasingitsdensity.Ifhoweverthe acceptablemodels.Weexploredphysicallymotivatedrangesofpa- twoclustersdon’tpassthrougheachother’scentre,themajorclus- rameters (albeit in a limited number of combinations due to the ter’scoreremainsrelativelyundisturbed, andasaresulttwosep- computationalcost)and,atleastfortheseranges,certainconfigu- arateclumpsofdensegasarestillvisible.Theasymmetrydueto rationsmaymereliablyexcluded. acurvedtrajectorycouldbehiddenfromviewiftheorbitalplane Asfarasmorphologicalcomparisonisconcerned,werefrain wereseenexactlyedge-on.Butevenunderthatparticularconfigu- from attempts to implement quantitative algorithms. Instead we ration,bothcoreswouldstillbediscernible.SinceA3376displays relyonvisualinspection,whichmaynotbethemostobjectiveap- neithernoticeableasymmetrynortwocores,thereisnoreasonto proach and conclusions drawn fromitought toberegarded care- gobeyondthescenarioofahead-oncollision. fully. Nevertheless, thisisanapproach not without itsmerits.As Itshouldbenotedthatb0referstoashiftinthedirectionofy- exemplifiedbytheage-testedpracticeofmorphologicalclassifica- axisintheinitialconditions,i.e.whentheclustersare4Mpcapart tionof galaxies,visual inspection tendstoyieldsurprisinglyreli- in the x-axis direction. The minimum separation b , which is min ableresults,whichareoftendifficulttoreproducealgorithmically. thedistancebetweentheclustercentresattheinstantofclosestap- The type of comparisons we carry out here fall within thiseffort proach,isconsiderablysmaller.Forthethreeoff-axismodelspre- of making approximate judgements of morphology by eye, tak- sentedinFig.2b,theapproximatedistancesatpericentricpassage ingintoaccount boththeoverallappearance andvarious detailed are respectively b = 100,200 and 250 kpc. Thissets a tight min aspects.Whilepixel-by-pixel subtraction(orsomevariationofit) constraint,sinceab assmallas100kpcwouldbesufficientto min couldprovidequantitativefigures,itcouldhardlybeexpectedtobe producenoticeableasymmetry. 6 R. E. G.Machado&G. B. Lima Neto Figure 2. Projected X-ray surface brightness for different models. Each row displays four variations ofone given parameter: (a) mass ratio; (b)impact parameter;(c)initialrelativevelocity;(d)relativegasconcentrations;(e)inclination. Simulationsofthemerginggalaxycluster Abell3376 7 Figure3.ComparisonbetweenobservationsofA3376(left)andmodel233 (right).TheupperrowdisplaystheXMM-NewtonX-raysurfacebrightness Figure4.Theupperpaneldisplaystheshockvelocityvs(dot-dashedline) inthe [0.5-8.0keV]band compared toasimulated image whose resolu- andthevelocityoftheupstreamgasu(dashedline),bothmeasuredinthe tionhasbeendeliberatelydegraded.Inthelowerrow,theleftpanelshows centre-of-mass restframe;alsoshownisthesoundspeed cs (solidline). theobservedtemperaturemaps.Inthesimulatedtemperaturemap,asemi ThelowerpanelshowstheresultingMachnumberasafunctionoftimefor transparentmaskhighlightstheregioninwhichthereisdata. thismodel(233).Theshadedregionsrepresentupperandlowerboundaries foreachquantity,computedfrommodelsv1000andv2000(andshiftedto matchthesametimeinterval). 4.2.3 Initialrelativevelocity GiventhemajorclustermassM ,thesubcluster’sfreefallvelocity A atd0 =4Mpcwouldbeapproximatelyv0 =1250km/s,ifitwere inclinations, the shape is excessively elongated at this time. For apointmasshavingbeenreleasedfrominfinityatrest. very high inclinations it is excessively round. Unfortunately the The models displayed in row (c) of Fig. 2 have initial rela- observations provide no information on the spatial orientation of tivevelocitiesv0 = 500,1000,1500and2000km/s.Becausethe thecluster.Hereagain,thebestconfigurationischosennot solely time-scales are not the same, they are compared at different in- from the X-ray morphology, although it is a good indicator. For stants,eachchosentobethatwhichbestresemblesA3376.Asfar example, at latertimean inclination of i = 60◦ provides amor- asthegasmorphologyisconcerned,thedifferentvelocitiesaffect phologythatisalsoacceptable.Howevertheprojectedseparation thesharpnessof thenoseof theshock. Modelsv1000 and v2000 ofthedarkmatterpeaksisverytimedependentandalsoverysen- weredismissednotonaccountoftheirX-raymorphologies,which sitivetoinclination(seeSection4.5).Bythetimethedarkmatter arenotinadequate.However,modelv2000givesrisetoexcessively peaksaresufficientlyseparated with i = 60◦,themorphology is hightemperaturesintheshockregion.Inmodelv1000,ontheother nolongeradequate.Thereforethei=40◦ projectionprovidesthe hand,ittakesalongtimeforthedarkmatterpeakstobesufficiently bestcompromise. separated(seeSection4.5)andbythattimethemorphologyhasde- teriorated.The1500km/smodelprovidesatolerablecompromise between morphology, temperature and dark matter peaks separa- 4.3 Comparisontoobservations tion.TheMachnumberscorrespondingtothesevelocitiesaredis- cussedinSection4.4. A comparison between observations of A3376 and model 233 is giveninFig.3.Despitethehigh-resolutionofthenumericalmodel itself,thesimulatedimagesaredeliberatelydegradedbyundersam- 4.2.4 Centralgasdensity pling the particles, by applying a gaussian smoothing and by the additionofnoise. Row(d)ofFig.2highlightstheeffectsofrelativecentralgasdensi- In the observed temperature map (see Section 3.2, there is ties,i.e.theeffectsoftheconcentrationofthesubcluster.Itshows data only within a relatively small region approximately 20 ar- models with n0,B/n0,A = 1,2,4 and 6. There isa cleardepen- cmin wide. To make the comparison more straightforward, a re- dence on the concentration of the subcluster. When the clusters gion of the same shape is overlaid on the simulated temperature havecomparableconcentrations,thesubclustergasishardlydistin- map,whilethesurroundingareaismadesemiopaque.Thisempha- guishablefromthemajorclustergas.Theoutcomeisasomewhat sisestheregioninwhichdataexists,andunderscoresthesimulated uniformemissionwithnoX-raypeak.Ifthesubclusterisconsider- temperaturefeatureswhicharenotobservationallyavailable.Apart ablydenser,itisabletocrossthemajorclustercoreandtoremain fromtherangeofvalues, theobserved temperaturemapdoesnot relativelycohesive asit emerges. Because inmodel n6 theX-ray exhibit remarkable features that could impose particularly strong peakisexcessivelyprominent,thepreferredmodelisthatinwhich constraints on the simulations parameters. We were able to rule thesubclustercentralgasis4timesdenserthemajorcluster’s. out collisions that heated the gas to above 10 keV, for example, andthiswasusedtoconstrainvelocitiesandconcentrations.Nev- ertheless,thesmallscaledetailsoftheobservedtemperaturemap 4.2.5 Inclination are not reproduced, probably due to the simplifying assumptions Row(e)ofFig.2showsmodel 233inthesameinstantprojected ofouradiabaticnumericalmodels,whichtakeintoaccountneither underfourdifferentinclinationsi=0◦,30◦,40◦and60◦.Forlow substructuresnorthevariousgalaxy-relatedphysicalprocessesthat 8 R. E. G.Machado&G. B. Lima Neto mightaffecttheintraclustergas,suchasfeedbackfromsupernovae andAGN. 4.4 Machnumber In a cluster merger simulation, the Mach number can be directly measured,asallvelocityinformationisavailable.Oneofthemost pronounced featuresisthetemperature dropafterthebow shock. Thesuccessive positionsof thisdiscontinuity areused todirectly computetheshock velocityv (inthecentre-of-massrestframe). s AsshownbySpringel&Farrar(2007)insimulationsof1E0657- 56,thegasaheadoftheshockisnotatrest.Insuchmergers,the upstreamgasisinfactfallingtowardstheincomingsubclusterwith aconsiderablevelocityu(inthecentre-of-massrestframe).There- fore,theeffectiverelativevelocitywithwhichtheshockfronten- countersthepre-shockgasisv u.Consequently,theMachnum- s − beroughttobecomputedas v u = s− (5) M cs wherec2 = γkT isthesoundspeedofthepre-shockgas.Boththe s µmp upstreamvelocityandthesoundspeedaremeasuredintheregion immediatelyaheadoftheshock. Formodel 233at t = 2.625Gyrtheshockfrontmovesfor- ward with v = 2114 km/s while the upstream gas falls back s at u = 468 km/s. The sound speed c = 666 km/s implies s − = 3.9 at this instant. Figure 4 shows how these quantities M evolveoveranintervalof0.4Gyr.Toprovideanindicationofthe typical ranges of these velocities, the shaded areas represent the boundaries given by models v1000 and v2000 (shifted to match their respective time-scales to that of model 233). The resulting Machnumbers, bounded bytheseextremecases,wouldbeinthe rangeofroughly =3 4. M − Once has been computed directly from the velocities, it M may be used to obtain the expected shock discontinuities from theRankine-Hugoniotconditions.Figure5displaysfivequantities measured along the collision axis: temperature; electron number density; pressure; entropy; and gas streaming velocity in the x- axisdirection.Asaproxyforentropy,theconventional definition S = k T n−2/3 isadopted. Alloftheseprofileshavebeenmea- e suredusingnottheprojectedimages,butusingtheparticleswithin acylinderofradius150kpcpassingthroughthenoseoftheshock. Theupperpanelsof Fig.5displaythesurfacebrightness and the temperaturebothprojectedunder i = 0◦ inclination.Thevertical dashedlinesatx=1148kpcmarkthepositionoftheshockfront, whichhasbeendeterminedasthepointwherethetemperaturedrop ismostintense.Theverticalsolidlinesatx=980kpcmarkthepo- sitionofthecontactdiscontinuity(thecoldfront),thepointwhere thedensitydropsthemost.Atthecontactdiscontinuityvelocityand thermalpressurearecontinuous. Thehorizontal linesindicatethe expecteddropsineachofthefivequantitiesattheshockposition, Figure5.Propertiesoftheshockformodel233att = 3.3Gyr.Thefirst ascomputedfromtheRankine-Hugoniotconditionsusingthemea- andsecondpanelsshowrespectivelytheX-raysurfacebrightnessmapand sured .Assumingγ =5/3throughout,therelationsbetweenthe M theemission-weightedtemperaturemap.Thethirdtoseventhpanelsdisplay pre-shock(subscript1)andpost-shock(subscript2)quantitiesare thefollowingquantities measuredalongthex-axis:temperature, electron (e.g.Landau&Lifshitz1959;Shu1992): numberdensity,pressure,entropy,andgasstreamingvelocity.Thelocation ofthecontactdiscontinuity ismarkedbysolidverticallines;thelocation T2 = 5M4+14M2−3 (6) olifnethsegbivoewtshheocvkaliusemsaorfkeedacbhyqduaasnhteidtyvebretfiocarellainneds.aTftheerdthaeshsehdohcko,rizwohnetrael T1 16 2 theexpecteddropswerecomputedfromtheRankine-Hugoniotconditions M n2 4 2 usingthemeasuredMachnumber. = M (7) n1 2+3 M Simulationsofthemerginggalaxycluster Abell3376 9 Figure6.Temperature anddensity measuredalong the x-axisformodel 233seeninprojection withinclination i = 40◦.Ifthetemperature drop ismeasuredfromtheinclinedmodel,theinferredMachnumberissmaller thantheactualvalue. P2 5 2 1 = M − (8) P1 4 S2 5 2 1 4 2 −5/3 = M − M (9) S1 (cid:18) 4 (cid:19)(cid:18) 2+3(cid:19) M 3 2 3 (vx,2−vx,1) = (vs−u) (cid:18) M4 −2 (cid:19) (10) M Thegoodmatchbetweentheexpecteddropsandthemeasured profilesindicatesthattheMachnumbercould,inprinciple,bein- ferredfromthesequantities.Foranobservedshock,thereishow- everthedifficultyintroducedbytheunknowninclination.Toillus- tratethisproblem,wetakethesamemodel233atthesameinstant in time and now project it under the inclination i = 40◦. If we nowtrytomeasurethetemperatureanddensityalongtheprojected collisionaxis,weobtaintheprofilesshowninFig.6.Theresultis thattheheightofthetemperaturepeakisloweredbecause, under projection, the thin region of very hot gas is seen as spread over Figure7.TheupperpanelshowstheDSSopticalimageinwhichthecircles a largerarea. Furthermore, thesharpness of the discontinuities is markpositionsofthegalaxiesattheclusterredshift.ThefirstBCG(right) attenuated.Now,insteadofusingtheknownMachnumbertocom- andthesecondBCG(left)arehighlighted.Inthelowerpanel,whitecoun- putethedrops,weconverselymeasurethetemperatureanddensity tourlines showthetotalprojected mass,overlaid ontheprojected X-ray surfacebrightness,formodel233att=2.625Gyrwithi=40◦. drops(horizontallinesinFig.6)attheshockposition.Theseratios wouldleadto = 2.9forthisshock. AMachnumberinferred M inthismannerforaclusterofunknowninclinationshouldthusbe ThelowerpanelofFig.7showswhitecontourlinesthatrep- regardedasalowerlimit. resentthetotalprojectedmassformodel233,overlaidontheX-ray surfacebrightness. Theseparationbetweenthedarkmatter peaks isapproximately800–850kpcatthebest-fittinginstant.Theupper 4.5 Darkmatterdistribution panelofFig.7showsanoptical‘true-colour’(IR-Red-Blue)DSS In A3376 the brightest cluster galaxy (first BCG) is located not image of A3376 in which the galaxies at the cluster redshift (se- atthepeak ofX-rayemission, butatadistanceof approximately lectedusingNED4) aremarked bycirclesand thetwoBCGsare 970h−1 kpc from it. The X-ray peak coincides with the second highlighted.Thedarkmatterseparationofmodel233matchesthe 70 BCG.Apossibleinterpretationofthispeculiarityisascenarioin observed BCG distance to within 12%. Again, an even better ∼ whichalessmassiveclustercomesfromthesouthwesthostingthe matchwouldbeachievedataslightlylatertime,butatthepriceof secondBCGandovertakesthemajorcluster’score,wherethefirst adeterioratinggasmorphology. BCGlies.Ourbestmodelaccountsforthisfeature,inthefollowing Ofcourse,apossiblemassmapofA3376exhibitingtwoma- sense.Astherearenogalaxiesinoursimulations,weassume the jor mass concentrations around the locations of the BCGswould BCGseparationmaybeidentifiedwiththedarkmatterpeakssepa- lendmorecredencetothisscenario.Mappingthedarkmatterdistri- ration.Intheabsenceofadditionalclues,itisreasonabletoassume butionbymeansofgravitationalweaklensingisparticularlychal- thatthemostmassivegalaxiesshouldinprinciplebelocatedatthe bottomsofthepotentialwell,i.e.atornearthecentroidsofthetwo darkmatterpeaks. 4 NASA/IPACExtragalacticDatabase,http://ned.ipac.caltech.edu/ 10 R. E.G. Machado&G. B. LimaNeto lenginginthecaseofA3376duetoitsproximity.Onceorifsuch multaneously met, namely: overall gas morphology, temperature, mapisavailable,itmighteithercorroboratethisscenario orover- virialmass, totalX-rayluminosity, and distancebetween thetwo throwit.Ifthedarkmatterseparationturnsouttobesimilartothe dark matter peaks. While the best model presented here may not BCGseparation,themassmapmightsetmorestringentconstraints necessarilyoptimiseeachofthesecriteriaindividually,itprovided onthesimulationparameters.If,ontheotherhand,amorecompli- themostadequatecompromise.Itisofcourseimpossibletoargue cateddarkmatterstructureisrevealed,thenalternativemodelswill fortheuniquenessofasolution,asalternativecombinationsofpa- havetobesoughtout. rameterscouldconceivablyprovidesimilaroutcomes.Thisimpos- An additional degree of freedom that has not been explored sibilitynotwithstanding,thephysicallymotivatedrangesofvalues indepthinthispaperistherelativeconcentrationofthedarkmat- exploredhereatleastallowustoreliablyruleoutcertaincombina- terhaloes.Forexample,ifthedarkmatteristoocentrallyconcen- tionsofparameters. trated,gastemperaturesneedtobeinexcessof10keVeveninthe Herewesummarisethefivemainparametersthat havebeen initialconditionstosatisfyhydrostaticequilibrium.Toobtainphys- constrainedandgiveapproximateestimatesofthebestranges:(a) icallyplausibletemperaturesof5keVinthemajorcluster,weem- Wefind that the best matches are obtained for mass ratios in the ployhaloscalelengthsr 500kpccomparabletothegasdensity interval1/6–1/8.Majormergersareexcludedduetotheirglobal h ∼ scalelengthsrg.Ifthedarkmatterconcentrationsaretoolow,the morphology,whileinminormergersofverysmallmassratio, the subcluster’sdarkmatterisabletoadvancefurtherthanitsgasand X-raypeakisnotsufficientlyintense.(b)Largeimpactparameters adissociationdevelops.Asofyet,thereisnoreasontobelievethat are straightforwardly ruled out as they lead to obvious asymme- thisisthecaseforA3376. Ifadarkmatter/gasoffsetisshownto triesthatarenotobserved inA3376. Anapproximate upperlimit exist,thenitwouldhavetobeaccommodatedbyexploringdiffer- tob0issetat150kpc,whichimpliesaseparationof<100kpcat entdarkmatterconcentrations.Amoresystematicanalysis ofthe pericentricpassage.(c)Thecollisionvelocityisconstrainednotby darkmatterdistributionanditsdependenceonmergerparameters themorphologyalone,butalsobythetemperaturesanddarkmat- isbeyondthescopeofthispaper. terpeakseparation.Forinitialvelocitiesof2000km/stheresulting temperaturesareexcessivelyhighintheshockregion,whereasfor 1000km/sthedesireddarkmatterpeakseparationtakestoolong tobereached.(d)Animportantparameteristherelativecentralgas 5 SUMMARYANDCONCLUSIONS concentration.Wefindthemostadequatemorphologyisobtained The peculiar cometary shape of A3376 is suggestive that it has whenthesubclusterisdenserthanthemajorclusterbyafactorof undergone a recent merging event. This is, to best of our knowl- about4inthecentre.Thisdeterminesessentiallytheprominenceof edge,theclosestgalaxyclusterdisplayingsuchmorphology. Fur- theX-raypeak,whichisexcessivelyoutstandingifthesubcluster thermore, the diffuse radio emission in the form of double Mpc- centraldensityistoohigh,ornearlyunnoticeableotherwise.(e)Fi- scale arcs in its periphery is understood to be caused by shock- nally,theinclination(theanglebetweenthecollisionaxisandthe acceleratedrelativisticelectrons(Bagchietal.2006). plane of the sky) plays an important role in the morphology and Using cosmological simulations, Pauletal. (2011) obtains a it is strongly time-dependent. Both the temperature and the total cluster whose shock wave structure resembles the radio relics of X-ray luminosity are greatly increased at central passage. By the A3376.Dedicatedhydrodynamicalsimulationsmeanttomodelone timethey reach adequate levels, the shape of the gas distribution specific merging cluster have been mostly focused on the Bul- is excessively elongated when viewed on the collision plane. We letClusteritself(e.g.Milosavljevic´etal.2007;Springel&Farrar findthat,projectedunderaninclinationangleofi=40◦,themor- 2007; Mastropietro&Burkert 2008). Recently vanWeerenetal. phologyisconsiderablylesselongatedandtheseparationbetween (2011) and Bru¨ggenetal. (2012) carried out simulations of the thetwodarkmatterpeaksiscomparabletotheBCGseparationto galaxyclustersCIZAJ2242.8+5301and1RXSJ0603.3+4214,re- within 12%. ∼ spectively, both of which also exhibit radio relics. In the case of Merging clusters generally exhibit complicated temperature A3376, the morphology is sufficiently uncomplicated that it may structures. The observed temperature map, in a region approxi- besatisfactorilymodelledastheencounterofonlytwoobjects,thus mately20arcminwide,showsameantemperatureof 3.5keV, ∼ renderingthereconstructionofitsdynamicalhistoryrelativelysim- but no discernible features that could be used to set strong con- pler. straintsonthesimulations.Weuseittoruleoutmodelsinwhich Thesimplenumericalmodelwesetupinordertoinvestigate theshockheatsthegasconsiderablyabovetheobservedrange.The the problem consists in the collision of two spherically symmet- outcomeofthesimulationssuggeststhattheregioninwhichthere ric galaxy clusters. Equilibrium initial conditions are prepared in isdataencompassesthecontactdiscontinuityatmost,butexcludes whichthegalaxyclustersarerepresentedbyagascomponent and the shock front itself, i.e. the shock-heated gas ahead of the sub- adarkmattercomponent. Thehydrodynamical simulationsthem- cluster’s X-ray peak. Furthermore, the small scale details of the selvesareadiabatic,andweassumethatradiativelossesareunim- observed temperaturemaparenot reproduced inoursimulations. portantduringthetimespanofthesimulations.Yetweusetheout- Iftheyaretheresultofinteractionsbetweengalaxiesandtheintr- putofthesimulationstogeneratemapsofprojectedX-raysurface aclustermedium,theycouldnothavebeenrecoveredbyoursim- brightnessandmapsofemission-weightedtemperature,inorderto plifiedsimulationswhichincludenosuchphysicalprocesses.The comparethemtoXMMdata. simplifyingassumptions ofthesesimulationsalsoexcludetheef- Startingfromaseparationof4Mpcandarelativeinitialve- fectsofadditionalsubstructure. locityof1500 km/s,theclustersmeetonahead-on collision and Clustermergersareexpectedtodrivesupersonicshockwaves the best-matching moment is reached approximately 0.5 Gyr af- of typical Mach numbers . 3 (Sarazin 2002) but stronger M tercentralpassage.Inordertoconstrainsomeofthecollisionpa- shocks may arise under some circumstances (e.g. Vazzaetal. rameters,wecoveredasmuchparameterspaceasallowedbythe 2011; Planelles&Quilis2012). FromSuzaku X-rayobservations computationally intensive nature of such effort. Ideally, in order ofA3376,Akamatsuetal.(2012)wereabletomeasureatempera- toreacha‘best model’ anumberof criteriawould havetobesi- turejumpinthewesternradiorelicleadingto = 2.91 0.91. M ±

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.