AIAA 2010-4626 40th Fluid Dynamics Conference and Exhibit 28 June - 1 July 2010, Chicago, Illinois Simulation of Transitional Flow over Airfoils using the Spectral Difference Method PatriceCastonguay∗, ChunleiLiang †, AntonyJameson‡ DepartmentofAeronauticsandAstronautics,StanfordUniversity,Stanford,CA,94305 ThisworkaddressesthesimulationoftransitionalflowoverairfoilsunderlowReynoldsnumberconditions (Rec ≤60000). TheflowsolutionsareobtainedbymeansofanImplicitLargeEddySimulation(ILES)using anewlydevelopedunstructured,parallelsolverthatemploysthehigh-orderspectraldifference(SD)method forspatialdiscretization. ThecalculationsareperformedontheSD7003airfoilsectionatanangleofattack of 4◦ at Reynolds number of 10000 and 60000. The SD7003 airfoil was selected due to the availability of experimental and computational results. The use of the SD method without an added subgrid-scale model appearstobecapableofaccuratelypredictingthelaminarseparation,transitionandreattachmentlocations. To the authors’s knowledge, the present studyis the first attempt to analyze transitional flow usingthe SD method. Nomenclature Cp Timeandspanwiseaveragecoefficientofpressure,(p −p¯)/(1ρ U2 ) ∞ 2 ∞ ∞ C Timeandspanwiseaverageskinfrictioncoefficient,2 µ ∂u f Re∂n C Specificheatconstantatconstantpressure p F ,G ,H Inviscidfluxvectors I I I F ,G ,H Viscousfluxvectors V V V J Jacobianmatrixofcoordinatetransformation M Machnumber N OrderofaccuracyofSpectralDifferencescheme Pr Prandtlnumber(0.72forair) Q Statevector R Gasconstant Re FreestreamReynoldsnumber,ρ U C/µ ∞ ∞ ∞ T Non-dimensionaltemperature U Freestreamvelocity ∞ c Chordlength k Coefficientofthermalconductivity p Non-dimensionalstaticpressure q Componentofheatfluxvector i t Non-dimensionaltime u,v,w Non-dimensionalCartesianvelocitycompoenntsinx,y,zdirections u′v′ Reynoldsshearstress x,y,z Non-dimensionalCartesiancoordinates α Angleofattack δ Kroneckerdeltafunction γ Specificheatratio(1.4forair) ∗Ph.D.Candidate,DepartmentofAeronauticsandAstronautics,StanfordUniversity,AIAAStudentMember †PostdoctoralScholar,DepartmentofAeronauticsandAstronautics,StanfordUniversity,AIAAMember ‡ThomasV.JonesProfessorofEngineering,DepartmentofAeronauticsandAstronautics,StanfordUniversity,AIAAMember 1of17 Copyright © 2010 by P. Castonguay and A. Jameson. Published bAy mtheer AicmanerIincastnit uIntsetiotuftAe eorf oAnearuotnicasutaicnsd aAnsdt rAosntarountiacustics, Inc., with permission. ρ Non-dimensionaldensity σ Viscousstresstensor µ Non-dimensionaldynamicviscosity ξ,η,ζ ReferenceelementCartesiancoordinates I. Introduction AccuratesimulationoflowReynoldsnumberflowsoverairfoilsandwingsisofcrucialimportanceforthedesign of model airplanes and micro air vehicles (MAV). Due to their size and speed, the Reynolds numbers over these vehicles are typically of the order of 104 to 105. Accurate performance prediction in this Reynolds number range is difficult due to the tendencyof the laminar flow to separate and transition overthe wing. At moderate angles of attack, even the mildest pressure gradientcauses the laminar flow to separate overthe airfoil. After separation, the flow structures become increasingly irregularand eventually, transition from laminar to turbulentflow occurs. The turbulentmixingbringshigh-momentumfluidfromthefreestreamtothenear-wallregion,whichcausestheflowto reattach,thusformingalaminarseparationbubble(LSB).Figure1showsthemainfeaturesofaLSB1. Figure1.Generalfeaturesofthemainflowfieldinatransitionallaminarseparationbubble(LSB)1 Asthe Reynoldsnumberor angleof attack is increased, the transitionlocation movesfurtherupstream, thereby diminishing the size of the laminar separation bubble. At some critical Reynolds number, the transition location coincideswiththeseparationlocationandthebubbledoesnotform. Oneofthemostpopularapproachtonumericallysimulatetransitionalflowoverairfoilsistocouplea Reynolds Averaged Navier-Stokes (RANS) solver with a turbulence transition model. The flow is assumed to be laminar up tothetransitionlocationpredictedbythemodel,thusallowingalaminarseparationbubbletoform. Downstreamof the transition location, the turbulencemodelis switched on and causesthe flow to reattach. This approachrequires anefficientandaccuratetransitionmodelinordertoobtainphysicallymeaningfullresults. Oneofthemostpopular transition modelis the eN method, which is based on linear stability analysisand boundarylayer theory. With this approach,theOrr-Sommerfeldequationissolvedinordertopredictthelocalgrowthratesofunstablewaves.Recently, researchers2–4havecoupledaRANSsolverwiththeeN transitionmodelandhavebeenabletoaccuratelycapturethe time-meanLSBuptostall. However,resultsobtainedwiththeRANS-eN approachareverydependentonthecritical N-factorusedinthetransitionalmodelandthechoiceofturbulencemodel. Furthermore,thisapproachislimitedby 2of17 AmericanInstituteofAeronauticsandAstronautics itsassumptionsoftwo-dimensionalparallelsteadyvelocityprofilesandthinboundarylayers. Recentstudies5–7 haveinvestigatedtheapplicationofhigh-orderspatialdiscretizationschemeswithoutanadded subgrid-scale(SGS)modelforcompressiblelarge-eddysimulations.Intheseso-calledImplicitLES(ILES)schemes, dissipation from a filter or from the numerical flux serves to incorporate the additional dissipation associated with theunder-resolvededdies. Forexample,VisbalandRizetta5 useda6th orderfinitedifferenceschemecoupledwith a high-order low-pass filter to simulate an isotropic decaying turbulent flow. Results were in very good agreement with those obtainedfrom a DNS calculation by Spyropoulosand Blaisdell8. ILES approacheshave also been used by Urangaet al.6 and Galbraith and Visbal7 to simulate transitionalflow overthe SD7003and have producedvery goodresults. TheILESapproachisveryattractivebecauseitallowstheuseofasingleframeworkformixedlaminar, transitionaland turbulentthree-dimensionalflows. Furthermore,it doesnotrequireany parametersto be tunedand isnotlimitedtoflowswithtwo-dimensionalparallelsteadyvelocityprofiles. Thepresentworkaimsatinvestigating the feasibility of an ILES approach that uses the high-orderSD method for spatial discretization and an artificially dissipativenumericalflux. TheSDmethodisanewlydevelopedefficienthigh-orderschemebasedonthedifferentialformofthegoverning equations.ThefoundationfortheSDschemewasfirstputforwardbyKoprivaandKolias9in1996underthenameof “staggeredgridChebyshevmultidomain”methods. However,severalyearslaterin2006Liu,WangandVinokular10 presentedamoregeneralformulationforbothtriangularandquadrilateralelements,whichtheytermedtheSDmethod (anamewhichhasbeenretainedtothepresent).Wangetal.11extendeditto2DEulerequationsontriangulargridsand Sunetal.12furtherdevelopeditforthethree-dimensionalNavier-Stokesequationsonhexahedralunstructuredmeshes. TheSDmethodcombineselementsfromfinite-volumeandfinite-differencetechniques,andisparticularlyattractive becauseitis conservative,hasa simpleformulationandprovidesgeometricflexibility. Similar to the discontinuous Galerkin method13, the SD scheme achieves high-orderaccuracy by locally approximatingthe solutions as a high- degreepolynomialinsideeachcell. In this work, computations are performed on the SD7003 airfoil at different Reynolds numbers. The SD7003 airfoilwasselectedduetotheexistenceofexperimentalandcomputationaldataavailableforcomparison.Resultsare comparedtoexperimentaldataobtainedbyRadespiel2inawatertunnelattheTechnicalUniversityofBraunschweig (TU-BS)andbyOletal.14 inawaterchannelattheAirForceResearchLabsHorizontalFree-SurfaceWaterTunnel (HFWT).Thefreestreamturbulenceintensitieswere0.08%and0.1%respectively.Furthermore,resultsarecompared to the computationaldata obtained by Galbraith and Visbal7 and Uranga et al.6, who both used an ILES approach coupledwithahigh-orderspatialdiscretization.GalbraithandVisbaluseda6thorderaccuratecompactschemebased onthepentadiagonalsystemofLele15, with a10th orderlow-passfilter. Thehigh-orderlow-passfilterwasusedto stabilizethehighorderschemeandincorporatetheadditionaldissipationassociatedwiththeunder-resolvededdies. Urangaetal.6utilizedahigh-orderDiscontinuousGalerkinsolver13. This paper starts by briefly presenting the unfiltered Navier-Stokes equations solved in this work, followed by a brief introduction of the spectral difference method. Then, the computational methodology used is summarized. Finally, results are presented for flow over the SD7003 airfoil at various Reynolds number. Comparisons with ex- perimentalandcomputationalresultsaremadeinordertoassessthefeasibilityofthecurrentapproachtoaccurately predicttheperformanceofairfoilsandwingsinthetransitionalflowregime. II. Governing Equations The computations presented in this work are performed by the newly developed flow solver SD3D, a high- order accurate, unstructured, parallel solver for the Navier-Stokes equations. The SD3D code solves the unsteady, three-dimensional,compressible,unfilteredNavier-Stokesequationsusingthespectraldifferencemethod. Thethree- dimensionalunfilteredNavier-Stokesequationscanbeexpressedasfollows: ∂Q ∂F ∂G ∂H ∂F ∂G ∂H + I + I + I = V + V + V (1) ∂t ∂x ∂y ∂z ∂x ∂y ∂z wherethestatevectorQ,inviscidfluxvectorsF ,G andH ,alongwiththeviscousfluxvectorsF ,G andH are I I I V V V describedrespectivelyby ρ ρu ρv ρw ρu ρu2+p ρuv ρuw Q= ρv F = ρuv ,G = ρv2+p ,H = ρuw (2) ρw I ρuw I ρvw I ρw2+p ρe ρeu+p ρev+p ρew+p 3of17 AmericanInstituteofAeronauticsandAstronautics 0 0 0 σxx σyx σzx F = σ ,G = σ ,H = σ . (3) V xy V yy V zy σxz σyz σzz uiσi1−qx uiσi2−qy uiσi3−qz Inthesedefinitions,ρisthedensity,u isthevelocitycomponentinthex directionandeisthetotalenergyperunit i i mass. Thepressureisdeterminedfromtheequationofstate, 1 p=(γ−1)ρ e− (u2+v2+w2) . (4) (cid:18) 2 (cid:19) ForaNewtonianfluid,theviscousstressesare ∂u ∂u 2 ∂u σ =µ i + j − µδ k (5) ij ij (cid:18)∂x ∂x (cid:19) 3 ∂x j i k andtheheatfluxesare ∂T q =−k . (6) i ∂x i Thecoefficientofthermalconductivityandthetemperaturearecomputedas C µ p k = p , T = (7) Pr Rρ wherePr isthePrandtlnumber,C isthespecificheatatconstantpressureandRisthegasconstant. Forthecases p consideredinthispaper,γ =1.4andPr=0.72. ItshouldbenotedthattheSD3DcodesolvestheunfilteredNavier-Stokesequationspresentedabovewithoutchange inlaminar,transitional,orturbulentflow. Noadditionalsub-gridstressandheatfluxtermsareadded;theunresolved smalleddiesareaccountedforbymeansofnumericaldissipation. III. 3DSpectral Difference Scheme on Hexahedral Grids In the presentwork, the Navier-Stokesequationsare solved using the high-orderspectral differencemethodfor spatialdiscretization.TheformulationoftheequationsonhexahedralgridsissimilartotheformulationofLiuetal.12, whichwillbesummarizedbelowforcompleteness. ConsidertheunsteadycompressibleNavier-Stokesequationsin conservativeformwrittenas ∂Q ∂F ∂G ∂H + + + =0 (8) ∂t ∂x ∂y ∂z whereF = F −F , G = G −G andH = H −H . Toachieveanefficientimplementation,allelementsin I V I V I V thephysicaldomain(x,y,z)aretransformedtoastandardcubicelement,0 ≤ ξ ≤ 1,0 ≤ η ≤ 1,0 ≤ ζ ≤ 1. The transformationcanbewrittenas x K xi y= Mi(ξ,η,ζ)yi (9) z Xi=1 zi whereKisthenumberofpointsusedtodefinethephysicalelements,(x ,y ,z )aretheCartesiancoordinatesatthose i i i points,andM (ξ,η,ζ)aretheshapefunctions. Thegoverningequationsinthephysicaldomainarethentransferred i intothecomputationaldomain,andtheytaketheform ∂Q˜ ∂F˜ ∂G˜ ∂H˜ + + + =0 (10) ∂t ∂ξ ∂η ∂ζ whereQ˜ =|J|Qand F˜ ξ ξ ξ F x y z G˜=|J|ηx ηy ηzG (11) H˜ ζx ζy ζz H 4of17 AmericanInstituteofAeronauticsandAstronautics TheJacobianmatrixJ isgivenby x x x ∂(x,y,z) ξ η ζ J = =yξ yη yζ. (12) ∂(ξ,η,ζ) z z z ξ η ζ Inthestandardelement,twosetsofpointsaredefined,namelythesolutionpointsandthefluxpoints,asillustratedin Figure2fora2Delement. Inordertoconstructadegree(N −1)polynomialineachcoordinatedirection,solutionat Figure2.Positionofsolution(circles)andflux(squares)pointsonthestandard2Delementfor3rdorderSD N pointsarerequired.Thesolutionpointsin1DarechosentobetheChebyshevpointsdefinedby 1 2s−1 X = 1−cos π ,s=1,2,...,N. (13) s 2(cid:20) (cid:18) 2N (cid:19)(cid:21) The flux points were selected to be the Legendre-Gauss quadrature points plus the two end points 0 and 1. The Legendre-Gaussquadraturepointsaretherootsoftheequation 2n−1 n−1 Pn(ξ)= (2ξ−1)Pn−1(ξ)− Pn−2(ξ)=0 (14) n n wherePn(ξ) is the Legendrepolynomialof ordern, P−1(ξ) = 0 and P0(ξ) = 1. In a recentwork, Jameson16 utilizedafluxreconstruction17formulationtoprovethattheSDmethodisstableinanormofSobolevtype,provided thattheinteriorfluxcollocationpointsareplacedattheLegendre-Gaussquadraturepoints. UsingthesolutionsatN solutionpoints,adegree(N −1)polynomialcanbebuiltusingthefollowingLagrangebasisdefinedas N X −X h (X)= s . (15) i (cid:18)X −X (cid:19) s=Y1,s6=i i s Similarly,usingthefluxesat(N +1)fluxpoints,adegreeN polynomialcanbebuiltforthefluxusingtheLagrange basis N X −X s+1/2 l (X)= (16) i+1/2 s=Y0,s6=i(cid:18)Xi+1/2−Xs+1/2(cid:19) Thereconstructedsolutionfortheconservedvariablesinthestandardelementisthetensorproductofthethreeone- dimensionalpolynomials, N N N Q˜ Q(ξ,η,ζ)= i,j h (ξ)h (η)h (ζ) (17) i j k |J | Xk=1Xj=1Xi=1 i,j Similarly,thereconstructedfluxpolynomialstakethefollowingform: N N N F˜(ξ,η,ζ)= F˜ ·l (ξ)·h (η)·h (ζ) (18) i+1/2,j,k i+1/2 j k Xk=1Xj=1Xi=0 5of17 AmericanInstituteofAeronauticsandAstronautics N N N G˜(ξ,η,ζ)= G˜ ·h (ξ)·l (η)·h (ζ) (19) i,j+1/2,k i j+1/2 k kX=1Xj=0Xi=1 N N N H˜(ξ,η,ζ)= H˜ ·h (ξ)·h (η)·l (ζ) (20) i,j,k+1/2 i j k+1/2 kX=0Xj=1Xi=1 Thereconstructedfluxesareonlyelement-wisecontinuous,butdiscontinuousacrosscellinterfaces. Fortheinviscid flux,aRiemannsolverisemployedtocomputeacommonfluxatcellinterfacestoensureconservationandstability. Inthecurrentimplementation,theRusanovsolver18 wasused. TheRusanovschemecomputesthecommonnormal flux,F∗,using n 1 F∗ = F (Q+)+F (Q−)−α(Q+−Q−) (21) n 2 n n (cid:2) (cid:3) whereQ+ andQ− representsthesolutiononbothsidesofthesharededgefluxpoint,andα∝|u |+c,whereu is n n thevelocitynormaltotheedgeandcisthelocalspeedofsound. Theviscousfluxisafunctionofboththeconserved variables and their gradients, therefore, the solution gradients have to be calculated at the flux points. The average approachdescribedinreference12isusedtocomputetheviscousfluxes. IV. Computational Methodology The computational mesh used for all test cases is a C-grid generated using the flo103 built-in mesh generator, whichisextrudedinthespanwisedirection. Itcontains128x24x16cellsintheξ,η,ζ directions,foratotalof49152 cells. Tensorproductsofone-dimensionalsecondandthirdorderpolynomialswereused, to obtainthirdandfourth orderaccuratesolutionsinspacerespectively. ThenumberofsolutionpointspercellisN3,whereN istheorderof accuracyoftheschemeandtherefore,thethirdandfourthorderaccuratecomputationshaverespectively1.3million and3.1milliondegrees-of-freedom. Thewingspantochordratioissetto0.2,thesamevalueusedbyGalbraithand Visbal7. In their work, the effect of changingthe span to chord ratio was studied and it was concludedthat a span tochordratioof0.2wouldensurethattheflowisnotartificiallyconstrained,whichwouldpreventthree-dimensional flowstructurestodevelop.Thefarfieldboundaryislocated30chordsawayupstreamanddownstream,and10chords awayaboveandbelow,toreduceitsinfluenceonthesolutionnearthe airfoil. TheincomingMachnumberissetto 0.1. Periodicboundaryconditionsareusedalongthespanwisedirectionandano-slip,adiabaticwallconditionwas usedonthesurfaceoftheairfoil. (a) (b) Figure3.C-gridwith49152hexahedralelementsgeneratedwithflo103 In this work, a low-storage three stage, third order TVD Runga-Kutta scheme19 was used as the time-stepping scheme. ParallelexecutionusingMPIisachievedbypartitioningtheunstructuredmeshusingthegraphpartitioning softwareMETIS.AnexampleofthepartitioningobtainedforthemeshusedisshowninFigure4. 6of17 AmericanInstituteofAeronauticsandAstronautics Figure4. PartitionsobtainedfromgraphpartitioningsoftwareMETIS V. Results Third and fourth order accurate solutions were obtained using the SD3D solver for the flow over the SD7003 airfoilatanangleofattackof4◦ andReynoldsnumbersof10000and60000. In ordertoreducethecomputational costassociatedwithinitialtransientsfromanauniforminitialsolution,two-dimensionalsolutionswereusedforthe initialconditiononthethree-dimensionalmesh.Allmeanvalueswerecalculatedbyaveragingthespanwiseaveraged timeaccuratesolutionoveranon-dimensionaltimeintervalof40.Anon-dimensionaltimestepof5e−5wasusedand solutionwasrecordedatevery20stepsforthecomputationofthestatisticalquantities. Furthermore,toeliminatethe effectofinitialtransients,thetimeaveragingprocesswasinitiatedonlyafterconvergenceoftheaveragedquantities. A. EffectofSpatialDimensions 1. ReynoldsNumber=10000,α=4◦ In orderto investigatethe necessity of three-dimensionalcomputationsat thisReynoldsnumber,a two-dimensional solution was obtained by using a computational domain with one cell in the spanwise direction. Figures 5 and 6 show the distribution of the mean coefficient of pressure, Cp, and the mean coefficient of friction, C , along the f airfoilforthe2Dand3Dcomputations. Theorderofaccuracyofthescheme,N,wassetto3. Bothfiguresindicate goodagreementbetweenthe two-dimensionalandthree-dimensionalcalculationssuggestingthattheflow is mostly two-dimensional, at least over the airfoil. The two-dimensionality of the flow is also seen in figures 7(a) and 7(b) whichshowscontoursofReynoldsstressforthe2Dand3Dsimulationsrespectively,andfigures8(a)and8(b)which presentscontourofspanwisevorticity. Iso-surfacesoftheQ-criterionwereusedonthe3Dresultsinordertoidentify three-dimensionalflowstructures.TheuseoftheQ-criterion,initiallyproposedbyDubeifandDelcayre20,providesa meanofvisualizingvortexcoresandidentifyturbulentstructures.Itcanbecalculatedfrom 1 Q= (Ω Ω −S S ) (22) ij ij ij ij 2 whereΩ andS aretheanti-symmetricandsymmetricpartofthevelocitygradienttensor. ij ij 1 ∂u ∂u 1 ∂u ∂u Ω = i − j andS = i + j (23) ij ij 2(cid:18)∂x ∂x (cid:19) 2(cid:18)∂x ∂x (cid:19) j i j i TheQ-criterionmeasuresthebalancebetweenrateofvorticityΩ2 =Ω Ω andtherateofstrainS2 =S S .Hence, ij ij ij ij regionsofpositiveQ-criterioncorrespondstoregionsoftheflowdominatedbyvorticity,asinthecoreofavortexfor example. Figure9showsiso-surfacesoftheQ-criterionovertheSD7003airfoilatRe = 10000,α= 4◦. Thefigure showsnospanwisevariationoverthesurfaceoftheairfoilandconfirmsthattheshearlayerdoesnottransitionover theairfoil 2. ReynoldsNumber=60000,α=4◦ At a Reynoldsnumberof 60000,a two-dimensionalsolutionwas also obtainedto evaluate the necessity of a three- dimensionalcomputation.Acomparisonbetweenthetwo-dimensionalandthree-dimensionalmeansurfacepressures 7of17 AmericanInstituteofAeronauticsandAstronautics andmeanskinfrictioncoefficientsarepresentedinfigures10and11,forafourthorderaccuratesolutioninspace.Fig- ures12(a)and12(b)showcontoursoftheReynoldsstressforbothcases. TheCpplotofthetwo-dimensionalsolution agreesreasonablywellwith thethree-dimensionalsolution. However,the coefficientof frictiondistributionandthe Reynoldsstresscontoursaresignificantlydifferent. Amongotherdiscrepancies,theReynoldsstressreachesamuch higher value for the two-dimensional solution. Futhermore, the skin friction coefficient from the two-dimensional solution doesnotrise to the same levelof the three-dimensionalsolution downstreamof the reattachmentpoint. In orderto furtherillustrate thedifferencesbetweenthe two solutions, instantaneouscontoursofvorticityontheplane z/c = 0.1areshowninfigures13(a)and13(b)forthe2Dand3Dsimulations,respectively. Inthetwo-dimensional solution,theshearlayerrollsupintoacoherentvortexthatmaintainsitsshapeasittravelsdownstream.Inthethree- dimensionalsolutionhowever,thecoherentvortexbreaksdownduetotransitiontoturbulentflow. Figure14shows iso-surfacesoftheQ-criterionovertheSD7003airfoilatRe = 60000,α= 4◦ forthethree-dimensionalsimulation. Three-dimensionalvorticalstructuresareeasilyidentified,clearlyindicatingthethree-dimensionalnatureoftheflow atthisReynoldsnumber. B. ComparisonwithPreviouslyPublishedComputationalandExperimentalResults Inthissection,resultsobtainedwiththeSD3Dsolverarecomparedtopreviouslypublishednumericalandexperimen- talresults.ComputationaldataobtainedbyUrangaetal.6andGalbraithandVisbal7areusedforcomparison.Uranga etal. used a DiscontinuousGalerkinschemewith a fourthorderaccuratespatialdiscretizationona gridcontaining 52,800tetrahedralelements, fora totalof1milliondegreesoffreedom. GalbraithandVisbalusedan oversetmesh containing5.7millionspoints,with69%ofthepointslocatedonthesuctionsideoftheairfoil. Thespatialdiscretiza- tionschemeusedintheirworkisa6th ordercompactfinitedifferenceschemewithahighlydiscrimating10th order filter,thatwaschosentofilteroutonlytheunder-solvedhighwavenumbers.Thepresentnumericalsolutionswillalso becomparedtohigh-resolutionvelocityandReynoldsstressexperimentalmeasurementsobtainedbyRadespiel2and Oletal.14fortheflowovertheSD7003airfoilatRe=60000. 1. ReynoldsNumber=10000,α=4◦ Surface pressure and skin friction coefficients obtained with the spectral difference method with a third and fourth orderaccurateschemearecomparedtoresultsobtainedbyUrangaetal. andGalbraithandVisbalinfigures15and 16. Itcanbeseen thatallmethodsproducenearlyidenticalresults, exceptforsmalldiscrepanciesinthe coefficient offrictionnearthetrailingedgeoftheairfoil. Giventhetwo-dimensionalnatureoftheflowatthisReynoldsnumber, theseresultsareexpected. AtthisReynoldsnumber,thethirdorderaccuratesolutionseemstoprovidethenecessary mesh resolution to capture all features of the flow since the third and fourth order accurate SD schemes produce nearly identical results. Spanwise vorticity and Reynolds stress obtained with N = 4 are compared to the results obtainedbyGalbraithandVisbalinfigures17and18.Again,resultsareingoodagreement.Asshownbycontoursof Reynoldsstress, theflowremainslaminarovertheairfoil. Turbulenttransitionlocationisdeterminedinaccordance withRadespiel2andissaidtooccurwhentheReynoldsshearstressreachesavalueof0.1%andexhibitsaclearvisible rise. Table1showsasummaryoftheresultsobtainedforthecaseRe=10000,α = 4◦. Overall,resultsobtainedwith theSD3Dcodeagreequitewellwiththeothercomputationalexperiments. DataSet Separation Transition Reattachment Mean Mean x /C x /C x /C C C sep tr r L D GalbraithandVisbal7(ILES) 0.36 - 0.98 0.36 0.047 Urangaetal6(ILES) 0.34 - - 0.38 0.0504 PresentILES 0.362 - 0.995 0.372 0.0492 Table1.MeasuredandComputedpropertiesofflowoverSD7003atRe=10000,α=4◦ 2. ReynoldsNumber=60000,α=4◦ At a Reynolds number of 60000, transition takes place across a laminar separation bubble (LSB) over the airfoil. Thirdandfourthorderaccuratesolutionswereobtainedusingthespectraldifferencemethodandresultsarecompared withpreviouslypublishednumericalandexperimentalresults. Averagepressurecoefficientandskinfrictionfriction 8of17 AmericanInstituteofAeronauticsandAstronautics coefficient distributions on the airfoil are compared with numerical results obtained by Uranga6 and Galbraith and Visbal7 in figures 19 and 20. Increasing the order of accuracy of the SD scheme yields Cp and C distributions f thatapproachthoseobtainedbyGalbraithandVisbal7 whouseda6thorderaccurateschemeonamuchfinermesh. AlthoughthepressureandskinfrictiongradientsinthetransitionregionarenotassharpasthoseobtainedbyGalbraith andVisbal,theyoccuratthesamelocationandgoodoverallagreementisfound. Pressureandskinfrictiongradients obtainedwiththeSD3DcodeinthetransitionregionaresteeperthantheoneobtainedbyUrangaetal6. Thisismost likelyduetothe finergridresolutionusedwiththe SD3D code. ComputedcontoursofReynoldsstressesobtained from the TU-BS and HFWT experimentalmeasurementsand the numericalsimulation by Galbraith and Visbal are showninfigure21.ThoseresultsarecomparedwiththirdandfourthorderaccuratesolutionsobtainedwiththeSD3D solverin figure22. Similarly, figures23and24 compareaveragespanwise vorticitycontours. ComputedReynolds stressesobtainedwithN=3andN=4agreewellwithcomputationalresultsfromGalbraithandVisbalandexperimental resultsintermsofshape,magnitudeandextent.Similarly,generalshapeandextentofthecomputedshearlayershown withcontoursofspanwisevorticityinfigure24differslittlefromnumericalandexperimentsmeasurements. Table2 comparesseparation,transitionandreattachmentat4◦ angleofattackmeasuredfromthetwoexperimentalfacilities alongwithsimulationsbyYuanetal.4,Lianetal.3,Uranga,GalbraithandVisbal,andthepresentILEScomputation. The separation and reattachmentlocationswere recordedby lookingat the streamlines of the mean velocityprofile showninfigure25. Again,turbulenttransitionisassumedtooccurwhentheReynoldsstressreachesavalueof0.1% and exhibits a clear visible rise. In the RANS-eN calculations by Yuan et al. and Lian et al., a critical N-factor of 8 was used, based on the empiricalrelationship between freestream turbulence intensity and critical N-factor by Mack21. Results obtainedwith the spectraldifferencemethod by meansof a ILES are in excellentagreementwith computationalresultsofGalbraithandVisbal7.ThetransitionandreattachmentlocationpredictedbythecurrentILES alsoagreewellwiththeTU-BSmeasurements.Thus,eventhoughthegridresoltionisclearlytoocoarsetocaptureall scalesoftheflow,andthedissipationfromthenumericalschemeisunabletodiscriminatebetweenresolvedandunder- resolvedscales,theproposedmethodappearstoaccuratelypredictthelaminarseparationandsubsequenttransitionto turbulentflow. DataSet Freestream Separation Transition Reattachment Turbulence x x /c x /c sep tr r TU-BS2 0.08% 0.30 0.53 0.64 HFWT14 0.1% 0.18 0.47 0.58 YuanSGS-LES4 0.1%,N=8 0.21 0.49 0.60 YuanRANS-eN4 0.1%,N=8 0.21 0.49 0.58 LianRANS-eN4 0.1%,N=8 0.21 0.48 - Visbal(ILES)7 0 0.23 0.55 0.65 Uranga(ILES)6 0 0.23 0.51 0.60 PresentILES,N=3 0 0.23 0.52 0.65 PresentILES,N=4 0 0.23 0.52 0.65 Table2.MeasuredandComputedpropertiesofflowoverSD7003atRe=60000,α=4◦ VI. Conclusion Thispaperpresentscomputationalresultsforthepredictionoftheformationofalaminarseparationbubble(LSB) and its subsequent burst to turbulentflow on the SD7003 airfoil. Solutions were obtained by means of an Implicit LargeEddySimulation(ILES)withanewlydevelopped,parallelNavier-Stokessolverthatusesthespectraldifference methodforspatialdiscretization.Withafairlycoarsegrid,computedseparation,transitionandreattachmentlocations were in good agreementwith previouslypublished experimentaland computationalresults. The use of the spectral differencemethodwhichprovideslow numericaldispersioncombinedwithan artificiallydissipativenumericalflux seemstopermittheaccuratesimulationoftransitionalflowovertheSD7003airfoilattheReynoldsnumberandangle of attack considered. As pointedby Visbal and Rizetta5, the artificial dissipation fromthe numericalflux is unable to discriminatebetweenresolvedandunder-resolvedscalesbutdespitethis, the currentILESschemeachievedvery goodresultsforthetestcasesconsidered. Futureworkisrequiredtoevaluatethefeasibilityofthecurrentapproach forotherwelldocumentedtestcasessuchasanisotropicdecayingturbulentfloworaturbulentchannelflow. 9of17 AmericanInstituteofAeronauticsandAstronautics Acknowledgments TheauthorswouldliketoacknowledgethesupportforthisworkprovidedbytheStanfordGraduateFellowships program, the NaturalScience and EngineeringResearch Council(NSERC) of Canada and the FondsQue´be´cois de la RecherchesurlaNatureetlesTechnologies(FQRNT).Thisresearchwasalso supportedbytheNationalScience FoundationthroughtheTeraGridresourcesprovidedbytheTexasAdvancedComputingCenter. References 1Horton,H.,LaminarSeparationBubblesinTwoandThreeDimensionalIncompressibleFlow,Ph.D.thesis,UniversityofLondon,1968. 2R.Radespiel, J.W.andScholz,U.,“NumericalandExperimentalFlowAnalysisofMovingAirfoilswithLaminarSeparationBubbles,” Aiaapaper2006-501,2006. 3Lian,Y.andShyy,W.,“Laminar-TurbulentTransitionofaLowReynoldsNumberRigidorFlexibleAirfoil,”Aiaapaper2006-3051,2006. 4W.Yuan,M.Khalid,J.W.U.S.andRadespiel,R.,“AnInvestigationofLow-Reynolds-numberFlowspastAirfoils,”Aiaapaper2005-4607, 2005. 5Visbal,M.andd.P.Rizetta,“Large-EddySimulationonCurvilinearGridsUsingCompactDifferencencingandFilteringSchemes,”Journal ofFluidsEngineering,Vol.124,2002,pp.836–847. 6A.Uranga,P.Persson,M.D.andPeraire,J.,“ImplicitLargeEddySimulationofTransitionalFlowsOverAirfoilsandWings,”Tech.rep., 16. 7Galbraith, M. andVisbal, M., “Implicit Large EddySimulation ofLow Reynolds NumberFlow Pastthe SD7003 Airfoil,” Aiaa paper 2008-225,46thAerospaceScienceMeetingandExhibit,Reno,Nv,2008. 8Spyropoulos, E.andBlaisdell, G.,“EvaluationoftheDynamicModelforSimulationsofCompressibleDecayingIsotropicTurbulence,” AIAAJournal,Vol.34,No.5,1996,pp.990–998. 9Kopriva,D.A.andKolias,J.H.,“AConservativeStaggered-GridChebyshevMultidomainMethodforCompressibleFlows,”Journalof ComputationalPhysics,Vol.125,1996,pp.244–261. 10Liu,Y.,Vinokur,M.,andWang,Z.J.,“SpectraldifferencemethodforunstructuredgridsI:Basicformulation,”JournalofComputational Physics,Vol.216,2006,pp.780–801. 11Wang,Z.,Liu,Y.,May,G.,andJameson,A.,“SpectralDifferenceMethodforUnstructuredGridsII:ExtensiontotheEulerEquations,” JournalofScientificComputing,Vol.32,2007,pp.45–71. 12Y.Sun,Z.andLiu,Y.,“High-OrderMultidomainSpectralDifferenceMethodfortheNavier-StokesEquationsonUnstructuredHexahedral Grids,”CommunicationsinComputationalPhysics,Vol.2,No.2,2007,pp.310–333. 13F.BassiandRebay, S.,“High-orderaccurate discontinuous finiteelementsolutionofthe2Deulerequations,” JournalofComputational Physics,Vol.138,1997,pp.251–285. 14M.V.Ol,B.R.McAuliffe,E.S.H.U.andKahler,C.,“ComparisonofLaminarSeparationbubbleMeasurementsonaLow-ReynoldsNumber AirfoilinThreeFacilities,”Aiaapaper2005-5149,2005. 15Lele,S.,“CompactFiniteDifferenceSchemeswithSpectral-LikeResolution,”JournalofComputationalPhysics,Vol.103,1992,pp.16–42. 16Jameson,A.,“Aproofofthestabilityofthespectraldifferencemethodforallordersofaccuracy,”J.Sci.Comput.,2010. 17Huynh,H.,“AFluxReconstructionApproachtoHigh-OrderSchemesIncludingtheDiscontinuousGalerkinMethods,”Aiaapaper2007- 4079,2007. 18Rusanov, V.V., “Calculation ofinteraction ofnon-steady shockwaves with obstacles,” Journal ofComputational MathPhysics USSR, Vol.1,1961,pp.261–279. 19Gottlieb,S.andShu,C.,“TotalvariationdiminishingRunga-Kuttaschemes,”MathematicsofComputation,Vol.67,No.221,1998,pp.73– 85. 20Dubeif,Y.andDelcayre,F.,“OnCoherent-vortexIdentificationinTurbulence,”JournalofTurbulence,Vol.1,No.11,2000,pp.1–22. 21Mack,L.,“TransitionandLaminarInstability,”Jetpropulsionlaboratorypublication77-15,Pasadena,CA,1977. 10of17 AmericanInstituteofAeronauticsandAstronautics
Description: