ebook img

Simulation, Collision Avoidance and Angular Momentum Tracking PDF

171 Pages·2014·3.57 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Simulation, Collision Avoidance and Angular Momentum Tracking

FakultätfürMaschinenwesen LehrstuhlfürAngewandteMechanik Efficient Algorithms for Biped Robots Simulation,CollisionAvoidanceandAngularMomentumTracking Dipl.-Ing.Univ.MarkusSchwienbacher VollständigerAbdruckdervonderFakultätfürMaschinenwesender TechnischenUniversitätMünchenzurErlangungdesakademischenGradeseines Doktors-Ingenieurs(Dr.-Ing.) genehmigtenDissertation. Vorsitzender:Univ.-Prof.dr.ir.DanielRixen PrüferderDissertation: 1. Univ.-Prof.Dr.-Ing.habil.HeinzUlbrich(i.R.) 2. Univ.-Prof.Dr.-Ing.CarloL.Bottasso DieDissertationwurdeam24.10.2013beiderTechnischenUniversitätMünchen eingereichtunddurchdieFakultätfürMaschinenwesenam22.5.2014angenommen. iii Abstract This PhD thesis covers efficient algorithms for biped robots. A multibody simulation extends the (n)-algorithm in order to cope with small kinematic loops inherent O in the modeling of mechatronic systems. Self-collision avoidance is based on the efficient computation of distances between segments of the robot. Angular momentum is typically not considered in the control of biped robots. A method for collision avoidance and angular momentum tracking is presented which improves fast walking. Simulations and experiments are shown with the biped robot Lola. Keywords: Humanoid, Biped, Walking, Efficient Algorithms, Multibody Simulation, Self-Collision Avoidance, Angular Momentum Tracking Zusammenfassung Thema der Arbeit sind effiziente Algorithmen für zweibeinige Roboter. Eine Mehr- körpersimulation erweitert das (n)-Verfahren zur Behandlung kleiner kinematischer O Schleifen, die bei der Modellierung mechatronischer Systeme auftreten. Ein Verfah- ren zur Vermeidung von Selbstkollisionen basiert auf der effizienten Berechnung der Distanzen zwischen Robotersegmenten. Es wird ein Verfahren vorgestellt, das die Kollisionsvermeidung mit einer Drallregelung integriert und so insbesondere schnelle Laufbewegungen verbessert. Simulationen und Experimente mit dem zweibeinigen Roboter Lola werden gezeigt. Stichworte: Humanoide, Zweibeiner, effiziente Algorithmen, Mehrkörpersimulation, Kollisionsvermeidung, Drallregelung v Acknowledgments This thesis summarizes a large part of my research carried out at the Institute of Applied Mechanics, Technische Universität München. Many people have supported me during the past six years and made this work possible. First, I would like to thank my supervisor Professor Heinz Ulbrich for giving me the opportunity to work on this research topic and providing such an excellent research environment. The given freedom combined with his guidance and support made this work possible. I would also like to acknowledge Professor Carlo Bottasso and Professor Daniel Rixen for serving on my thesis defense committee. After becoming the new head of the institute, Professor Rixen gave me the opportunity to finish my research for which I am thankful. I am deeply grateful for having had the chance to work with a number of very talented and highly motivated people. I am especially thankful to the research group working on the robot Lola. While still being a student I learned a lot on mechanical designfromDr.SebastianLohmeier,whowasresponsibleforLola’smechatronicsystem architecture. Helaterencouragedmetojointheteamasaresearcherandwecontinued discussing mechanical designs. I would like to thank Dr. Thomas Buschmann, who was responsible for the simulation and control of Lola. I learned so much about program design and walking control from him. His knowledge in robotics and guidance during his time as a group leader was invaluable. I warmly thank Valerio Favot, who worked onthedecentralizedcontrollersandcommunicationsystem. Hisskillsasanelectronics wizard were greatly appreciated. Throughout the project we enjoyed good times but also endured some hardship. I would like to thank the other robotics team members Alexander Ewald, Robert Wittmann, Arne Hildebrand, Jörg Baur and Christoph Schütz for the inspiring discussions on robotics research topics. Quality hardware is crucial for experimental work. I would like to thank the insti- tute’s electrical and mechanical workshops. I owe special thanks to Georg “Schorsch” Mayr. His long experience with electronics on research projects enabled both smooth experimental work with Lola and further developments on Lola. I would like to thank Wilhelm Miller, Walter Wöß, Simon Gerer, Philip Schneider and Tobias Schmidt for their terrific work in manufacturing parts for Lola. I am grateful to PD Dr. Thomas Thümmel for managing project resources and his support throughout this thesis. I would also like to thank my ex-colleagues Dr. Thomas Buschmann, Dr. Sebas- tian Lohmeier and Robert Wittmann for proofreading this thesis and giving helpful comments. Finally, I would like to thank my family, my girlfriend Karina and my good friend Dr. Reinhard Tschiesner for their continuous support and encouragement. Munich, July 2014 Markus Schwienbacher Contents 1 Introduction 1 1.1 ProblemStatement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 BackgroundandRelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 OverviewofthisThesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 An (n)-formalismfortheSimulationofMBSwithSmallKinematicLoops 9 O 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.1 BasicDynamicsEquation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.2 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 RigidBodyKinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 RigidBodyDynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4 RelativeKinematicsofRigidMultibodySystems . . . . . . . . . . . . . . . . . . . . 17 2.4.1 TopologyofMultibodySystems . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4.2 MotionConstraintsandMinimalCoordinates . . . . . . . . . . . . . . . . . 19 2.4.3 RecursiveKinematicsCalculation . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4.4 RecursiveKinematicsusingSpatialVectorNotation. . . . . . . . . . . . . . 21 2.5 DynamicsofRigidMultibodySystems . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.6 Sub-Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.7 DetailedDerivationofthe (n)-AlgorithmwithSub-Systems . . . . . . . . . . . . 28 O 2.8 ResultingFormalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.9 AutomaticSub-SystemGeneration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.10 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.10.1 Run-TimeComparisonsfortheDillExample . . . . . . . . . . . . . . . . . . 42 2.10.2 Run-TimeComparisonfortheLolaModel . . . . . . . . . . . . . . . . . . . 45 2.11 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.12 ChapterSummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3 Kinematics 55 3.1 HarmonicDriveGears . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.2 KneeJointDriveKinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.3 AnkleJointDriveKinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.4 CameraVergenceKinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.5 KinematicsCalibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.6 ChapterSummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4 InverseKinematics 69 4.1 ProblemStatement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.2 PositionBasedInverseKinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 vii viii Contents 4.3 DifferentialInverseKinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.3.1 ResolvedMotionRateControlandRedundancyResolution . . . . . . . . . 72 4.3.2 JacobianTranspose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.3.3 ResolvedAccelerationRateControl . . . . . . . . . . . . . . . . . . . . . . . 76 4.3.4 HierarchicalApproaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.4 SingularitiesandManipulability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.5 TaskDescriptionofLola . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.6 ChapterSummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5 Self-CollisionAvoidance 81 5.1 BackgroundandRelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.2 Self-CollisionAvoidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.3 ChapterSummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6 Real-TimeDistanceComputationusingSwept-Sphere-Volumes 89 6.1 BackgroundandRelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.2 FormalAspectsofDistanceComputation . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.3 SSVPrimitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6.3.1 Point-Swept-SphereVolume . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.3.2 Line-Swept-SphereVolume. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.3.3 Triangle-Swept-SphereVolume . . . . . . . . . . . . . . . . . . . . . . . . . . 94 6.4 DistanceCalculationbetweenSSVPrimitives . . . . . . . . . . . . . . . . . . . . . . 94 6.4.1 PointtoPointDistanceComputation . . . . . . . . . . . . . . . . . . . . . . . 96 6.4.2 PointtoLine-SegmentDistanceComputation . . . . . . . . . . . . . . . . . 97 6.4.3 PointtoTriangleDistanceComputation . . . . . . . . . . . . . . . . . . . . . 98 6.4.4 Line-SegmenttoLine-SegmentDistanceComputation . . . . . . . . . . . . 99 6.4.5 Line-SegmenttoTriangleDistanceComputation . . . . . . . . . . . . . . .105 6.4.6 TriangletoTriangleDistanceComputation . . . . . . . . . . . . . . . . . . .110 6.4.7 GeneralFrameworkofMinimizationUsingInequalityConstraints. . . . .110 6.5 ImplementationDetailsandRun-TimePerformance . . . . . . . . . . . . . . . . . .113 6.6 ModelingoftheRobotSegments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114 6.6.1 CompoundsofSSVsasRobotSegments . . . . . . . . . . . . . . . . . . . . .114 6.6.2 AVersatileModelingTool . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114 6.7 IntegrationofBoundingBoxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117 6.8 SystemOverview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118 6.9 ChapterSummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121 7 UseofAngularMomentuminWalkingControl 123 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123 7.2 AngularMomentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123 7.3 AngularMomentumCompensationviaNull-SpaceMotion . . . . . . . . . . . . . .124 7.3.1 ReferenceMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124 7.3.2 ProposedMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125 7.3.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126 7.3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126 Contents ix 7.4 AngularMomentumTrajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127 7.5 AngularMomentumMinimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129 7.6 ChapterSummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131 8 ConclusionandOutlook 133 8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133 8.2 RecommendationsforFutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . .135 A MathematicalToolbox 137 A.1 NotationandOperators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137 A.2 CoordinateTransformations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138 A.3 PartialDerivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139 B Pseudo-CodeforDistanceCalculationAlgorithms 141 B.1 Line-SegmenttoLine-Segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141 C InverseKinematics:OrientationErrorinTaskSpace 145 ListofAbbreviations 149 Bibliography 151

Description:
Simulations and experiments are shown with the biped robot Lola. design from Dr. Sebastian Lohmeier, who was responsible for Lola's mechatronic
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.