Sotirios A. Tsaftaris Ali Gooya Alejandro F. Frangi Jerry L. Prince (Eds.) Simulation 8 6 and Synthesis 9 9 S C in Medical Imaging N L First International Workshop, SASHIMI 2016 Held in Conjunction with MICCAI 2016 Athens, Greece, October 21, 2016, Proceedings 123 Lecture Notes in Computer Science 9968 Commenced Publication in 1973 Founding and Former Series Editors: Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen Editorial Board David Hutchison Lancaster University, Lancaster, UK Takeo Kanade Carnegie Mellon University, Pittsburgh, PA, USA Josef Kittler University of Surrey, Guildford, UK Jon M. Kleinberg Cornell University, Ithaca, NY, USA Friedemann Mattern ETH Zurich, Zurich, Switzerland John C. Mitchell Stanford University, Stanford, CA, USA Moni Naor Weizmann Institute of Science, Rehovot, Israel C. Pandu Rangan Indian Institute of Technology, Madras, India Bernhard Steffen TU Dortmund University, Dortmund, Germany Demetri Terzopoulos University of California, Los Angeles, CA, USA Doug Tygar University of California, Berkeley, CA, USA Gerhard Weikum Max Planck Institute for Informatics, Saarbrücken, Germany More information about this series at http://www.springer.com/series/7412 Sotirios A. Tsaftaris Ali Gooya (cid:129) Alejandro F. Frangi Jerry L. Prince (Eds.) (cid:129) Simulation and Synthesis in Medical Imaging First International Workshop, SASHIMI 2016 Held in Conjunction with MICCAI 2016 Athens, Greece, October 21, 2016 Proceedings 123 Editors Sotirios A.Tsaftaris Alejandro F.Frangi University of Edinburgh University of Sheffield Edinburgh Sheffield UK UK Ali Gooya Jerry L. Prince University of Sheffield TheJohns Hopkins University Sheffield Baltimore, MD UK USA ISSN 0302-9743 ISSN 1611-3349 (electronic) Lecture Notesin Computer Science ISBN 978-3-319-46629-3 ISBN978-3-319-46630-9 (eBook) DOI 10.1007/978-3-319-46630-9 LibraryofCongressControlNumber:2016952515 LNCSSublibrary:SL6–ImageProcessing,ComputerVision,PatternRecognition,andGraphics ©SpringerInternationalPublishingAG2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthe material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynow knownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbookare believedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsortheeditors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface TheMICCAIcommunityneedsdatawithknowngroundtruthtodevelop,evaluate,and validate image analysis and reconstruction algorithms. Since synthetic data are ideally suitedforthispurpose,overtheyears,afullrangeofmodelsunderpinningimagesim- ulation and synthesis have been developed: (a) simplified mathematical models to test segmentation and registration algorithms; (b) detailed mechanistic models (top–down), whichincorporatepriorsonthegeometryandphysicsofimageacquisitionandformation processes; and (c) complex spatiotemporal computational models of anatomical vari- ability, organ physiology, or disease progression. Recently, cross-fertilization between image computing and machine learning gave rise to data-driven, phenomenological models(bottom–up)thatstemfromlearningdirectlydataassociationsacrossmodalities, resolutions,etc.Withthis,notonlytheapplicationscopehasbeenexpandedbutalsothe underlyingmodelassumptionshavebeenrefinedtoincreasinglevelsofrealism. The goal of the Simulation and Synthesis in Medical Imaging (SASHIMI) Work- shop aims to put all those interested in these problems in the same room, for the purposeofinvigoratingresearchandstimulatingnewideasonhowtobestproceedand bringthesetwoworldstogether.Theobjectiveswereto:(a)hearfrominvitedspeakers intheareasoftransferlearningandmechanisticmodelsandcross-fertilizeacrossfields; (b) bring together experts of synthesis (via phenomenological machine learning) and simulation(viaexplicitmechanisticmodels)toraisethestateoftheart;and(c)identify challenges and opportunities for further research. We also wanted to identify how we can best evaluate synthetic data and if we could collect benchmark data that can help the development offuture algorithms. Thefirstworkshopon“SimulationandSynthesisinMedicalImaging—SASHIMI 2016”1 was held in conjunction with the 19th International Conference on Medical ImageComputingandComputer-AssistedIntervention—MICCAI2016asasatellite eventinAthens,Greece,onOctober21,2016.Submissionsweresolicitedviaacallfor papersthatwascirculatedbytheMICCAIorganizers,throughknownmailinglists(e.g., ImageWorld,MIUA)butalsobydirectlye-mailingseveralcolleaguesandexpertsinthe area. Each submission underwent a double-blind review by at least two members oftheProgramCommitteeconsistingofresearcherswhoactivelycontributeinthearea. At the conclusion of the review process, 17 papers were accepted. Overall, the contri- butionsspanthefollowingbroadcategoriesinalignmentwiththeinitialcallforpapers: fundamental methods for image-based biophysical modeling and image synthesis, biophysical and data-driven models of disease progression or organ development, biophysicalanddata-drivenmodelsoforganmotionanddeformation,biophysicaland data-drivenmodelsofimageformationandacquisition,segmentation/registrationacross orwithinmodalitiestoaidthelearningofmodelparameters,cross-modality(PET/MR, PET/CT, CT/MR, etc.) image synthesis, simulation and synthesis from large-scale 1 http://www.cistib.org/sashimi/. VI Preface image databases, automated techniques for quality assessmentof simulations and syn- thetic images, and several applications of image synthesis and simulation in medical imagingsuchasimageregistrationandsegmentation,imagedenoisingandinformation fusion,imagereconstructionfromsparsedataorsparseviews,andreal-timesimulation ofbiophysicalproperties.Theacceptedpapersweredividedintotwogeneraltopicsof “Simulation and Its Applications in Computational Medical Imaging” and “Synthesis andItsApplicationsinComputationalMedicalImaging”andpresentedduringtwooral and one poster sessions, overall coveringeight andnine papers,respectively. Finally, we would like to thank everyone who contributed to this first workshop: SerkanCimen andIlkayOksuz, membersoftheOrganizingCommitteefortheir assis- tance;theauthorsfortheircontributions,themembersoftheProgramCommitteefortheir review work, promotion of the workshop, and general support; the invited speaker for sharinghisexpertiseandknowledge;andtheMICCAIsocietyforthegeneralsupport. August 2016 Sotirios A. Tsaftaris Ali Gooya Alejandro F. Frangi Jerry L. Prince Organization Workshop Chairs Sotirios A. Tsaftaris University of Edinburgh, UK Ali Gooya University of Sheffield, UK Alejandro F. Frangi University of Sheffield, UK Jerry L. Prince Johns Hopkins University, USA Organizing Committee Serkan Çimen University of Sheffield, UK Ilkay Oksuz Yale University and IMT Lucca, Italy E-mail to contact the organizers: [email protected] Program Committee Leandro Beltrachini University of Sheffield, UK Serkan Çimen University of Sheffield, UK M. Jorge Cardoso University College London, UK Marleen de Brujine Erasmus University Medical Center, The Netherlands Mathieu De Craene Philips Research, France Herve Delingette Inria Sophia Antipolis, France Ivana Drobnjak University College London, UK Yong Fan University of Pennsylvania, USA Alejandro F. Frangi University of Sheffield, UK Orcun Goksel ETH Zurich, Switzerland Ali Gooya University of Sheffield, UK Daniel Herzka Johns Hopkins University, USA Andrada Ianus University College London, UK Ender Konukoglu Martinos Center for Biomedical Imaging, USA Niels Kuster IT’IS Foundation ETH Zurich, Switzerland Hervé Liebgott CREATIS, France David Liu Siemens Medical Solutions, USA Bryn Lloyd IT’IS Foundation ETH Zurich, Switzerland Frederik Maes University of Leuven, Belgium Nassir Navab TU Munich, Germany Esra Neufeld IT’IS Foundation and ZMT Zurich MedTech AG, Switzerland Hien V. Nguyen Siemens Corporate Research, USA Ilkay Oksuz Yale University and IMT Lucca, Italy VIII Organization Xenios Papademetris Yale University, USA Dzung L. Pham National Institutes of Health, USA Adityo Prakosa Johns Hopkins University, USA Jerry L. Prince Johns Hopkins University, USA Mauricio Reyes Institute for Surgical Technology and Biomechanics, Switzerland Olaf Ronneberger Google DeepMind, UK Snehashis Roy National Institutes of Health, USA Daniel Rueckert Imperial College, UK Maxime Sermesant Inria Sophia Antipolis, France Ling Shao Northumbria University, UK Dinggang Shen University of North Carolina, USA Sotirios Tsaftaris University of Edinburgh, UK Devrim Unay Izmir University of Economics, Turkey François Varray CREATIS, France Alistair Young The University of Auckland, New Zealand Gary Zhang University College London, UK Kevin Zhou Siemens Corporate Research, USA Contents Simulation and Its Applications in Computational Medical Imaging Software Framework for Realistic MRI Simulations Using the Polyhedral Fourier Transform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Shuo Han and Daniel A. Herzka Covering Population Variability: Morphing of Computation Anatomical Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Bryn Lloyd, Emilio Cherubini, Silvia Farcito, Esra Neufeld, Christian Baumgartner, and Niels Kuster Image-Based PSF Estimation for Ultrasound Training Simulation . . . . . . . . . 23 Oliver Mattausch and Orcun Goksel Microstructure Imaging Sequence Simulation Toolbox. . . . . . . . . . . . . . . . . 34 Andrada Ianuş, Daniel C. Alexander, and Ivana Drobnjak From Image-Based Modeling to the Modeling of Imaging with the Virtual Population. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Esra Neufeld, Bryn Lloyd, and Niels Kuster Numerical Simulation of Ultrasonic Backscattering During Fracture Healing Using Numerical Models Based on Scanning Acoustic Microscopy Images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Vassiliki T. Potsika, Konstantinos N. Grivas, Theodoros Gortsas, VasiliosC.Protopappas,DemosthenesPolyzos,andDimitriosI.Fotiadis GBM Modeling with Proliferation and Migration Phenotypes: A Proposal of Initialization for Real Cases. . . . . . . . . . . . . . . . . . . . . . . . . 65 Juan Ortiz-Pla, Elies Fuster-Garcia, Javier Juan-Albarracin, and Juan Miguel Garcia-Gomez PURE: Panoramic Ultrasound Reconstruction by Seamless Stitching of Volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Barbara Flach, Maxim Makhinya, and Orcun Goksel Synthesis and Its Applications in Computational Medical Imaging Pseudo-healthy Image Synthesis for White Matter Lesion Segmentation. . . . . 87 Christopher Bowles, Chen Qin, Christian Ledig, Ricardo Guerrero, Roger Gunn, Alexander Hammers, Eleni Sakka, David Alexander Dickie, Maria Valdés Hernández, Natalie Royle, Joanna Wardlaw, Hanneke Rhodius-Meester, Betty Tijms, Afina W. Lemstra, Wiesje van der Flier, Frederik Barkhof, Philip Scheltens, and Daniel Rueckert