ebook img

Simulation and Evaluation of an Articulated Forklift Truck PDF

82 Pages·2014·4.04 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Simulation and Evaluation of an Articulated Forklift Truck

Simulation and Evaluation of an Articulated Forklift Truck Emil Johansson Department of Fluid and Mechatronic Systems Master Thesis Department of Management and Engineering LIU-IEI-TEK-A--14/01885—SE ii Simulation and Evaluation of an Articulated Forklift Truck Master Thesis in Fluid Power Department of Management and Engineering Division of Fluid and Mechatronic Systems Linköping University by Emil Johansson LIU-IEI-TEK-A--14/01885—SE Supervisors: Mikael Axin IEI, Linköping University Johan Vestman Toyota Material Handling, Mjölby Examiner: Liselott Ericson IEI, Linköping University Linköping, Juni, 2014 Linköping University Electronic Press iii Upphovsrätt Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare – från publiceringsdatum under förutsättning att inga extraordinära omständigheter uppstår. Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för undervisning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av dokumentet kräver upphovsmannens medgivande. För att garantera äktheten, säkerheten och tillgängligheten finns lösningar av teknisk och administrativ art. Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning som god sed kräver vid användning av dokumentet på ovan beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan form eller i sådant sammanhang som är kränkande för upphovsmannens litterära eller konstnärliga anseende eller egenart. För ytterligare information om Linköping University Electronic Press se förlagets hemsida http://www.ep.liu.se/ Copyright The publishers will keep this document online on the Internet – or its possible replacement – from the date of publication barring exceptional circumstances. The online availability of the document implies permanent permission for anyone to read, to download, or to print out single copies for his/hers own use and to use it unchanged for non- commercial research and educational purpose. Subsequent transfers of copyright cannot revoke this permission. All other uses of the document are conditional upon the consent of the copyright owner. The publisher has taken technical and administrative measures to assure authenticity, security and accessibility. According to intellectual property law the author has the right to be mentioned when his/her work is accessed as described above and to be protected against infringement. For additional information about the Linköping University Electronic Press and its procedures for publication and for assurance of document integrity, please refer to its www home page: http://www.ep.liu.se/ © Emil Johansson iv Abstract Today’s demand on forklift trucks performance and efficiency is high. The productivity is important but also the experience while handling the forklift. The handling has to be simple and genuine to make the driver feel confident and safe. To achieve high performance steering in articulated trucks, a hydraulic power system is often used. Simulation software are a powerful tool in development processes. The program gives the industry a possibility to develop, analyze and evaluate constructions and models more efficient. The purpose of this master thesis is to identify and increase the knowledge about the main challenges in the hydraulic steering system in an articulated forklift. The hydraulic system has been modelled in the simulation software Hopsan and validated against data from measurements performed on the forklift. The different challenges have been identified based on tests and the simulation results. For a deeper understanding of the system a literature study, mainly about the key components, has been done during the master thesis. A number of suggestions for improvement have been developed with focus on increasing the steering performance. The concepts and ideas have been evaluated and tested in the simulation model. The project resulted in a validated simulation model of the articulation and a number of suggested improvements on the hydraulic steering system. v Acknowledgments There are many people that I would like to thank. First of all, I would like to thank the Hydraulic department on Toyota Material Handling for their time and effort. It has been a great time and a lot of new experiences. A special thanks to my supervisor Johan Vestman on Toyota for his dedication. Johan can always spare a moment for discussions and he has been a great support. There are many people who have been helpful on Toyota. To mention a few of them I would like to thank Lena Löök, Christian Kjellander and Johan Karlsson. Christian and Johan have been a vital support during the measurements and have always spared time for questions concerning signal and control. Thank you also Christoffer Zeipel-Stjerna and Jan Malecki for proof reading and feedback on the report. At Linköping University, I would like to thank my supervisor Mikael Axin for his guidance throw the thesis. I would also like to thank Peter Nordin and Robert Braun for their persistent support with the simulation in Hopsan. My thank goes also to my examination Liselott Ericson. Last but not least I would like to thank my beloved girlfriend, Lovisa, and my family for their support and everlasting love. Linköping, May, 2014 Emil Johansson vi Contents 1 Introduction ..................................................................................................................................... 1 1.1 Background .............................................................................................................................. 1 1.2 System Description .................................................................................................................. 2 1.2.1 Mechanics ........................................................................................................................ 2 1.2.2 Hydraulics ........................................................................................................................ 2 1.3 Method .................................................................................................................................... 3 1.4 Objectives ................................................................................................................................ 4 1.5 Delimitations ........................................................................................................................... 4 1.6 Outline ..................................................................................................................................... 4 2 Theory .............................................................................................................................................. 6 2.1 Valve and Cylinder ................................................................................................................... 6 2.2 Ideal Constant Flow Valve ....................................................................................................... 7 2.3 Flow Force ............................................................................................................................... 8 2.4 Constant Flow Valve .............................................................................................................. 10 2.5 Accumulator .......................................................................................................................... 10 2.6 Stick-slip phenomenon .......................................................................................................... 12 3 Models ........................................................................................................................................... 13 3.1 Simulation Model .................................................................................................................. 13 3.1.1 Simulated Mechanic Model ........................................................................................... 15 3.1.2 Simulink and Hopsan ..................................................................................................... 16 3.2 Mechanical Model ................................................................................................................. 16 4 Measurements .............................................................................................................................. 19 4.1 Equipment ............................................................................................................................. 19 4.2 Results ................................................................................................................................... 20 4.2.1 Test 1 ............................................................................................................................. 20 4.2.2 Test 7 ............................................................................................................................. 22 4.2.3 Pump speed ................................................................................................................... 24 5 Validation of Model ....................................................................................................................... 25 5.1 Valve and signals ................................................................................................................... 25 5.1.1 Validation Model for the Valve ..................................................................................... 25 5.1.2 Dynamic Validation of the Valve ................................................................................... 27 5.1.3 Leakage in the Valve ...................................................................................................... 27 5.2 Flow Forces ............................................................................................................................ 28 5.3 Mechanics .............................................................................................................................. 29 6 Simulation Result ........................................................................................................................... 31 6.1 Free Maneuvering ................................................................................................................. 31 6.2 Wire Guidance ....................................................................................................................... 33 6.3 Analysis of Results ................................................................................................................. 35 7 Opportunities for Improvement .................................................................................................... 36 7.1 Introduction ........................................................................................................................... 36 7.1.1 Robust Wire Guidance ................................................................................................... 36 7.1.2 Interference ................................................................................................................... 37 7.2 Analysis .................................................................................................................................. 38 7.2.1 Cylinder Placement ........................................................................................................ 38 7.2.2 Valve Characteristics ..................................................................................................... 39 7.2.3 Double Valves ................................................................................................................ 41 7.2.4 Valve and Accumulator ................................................................................................. 46 7.2.5 Interference ................................................................................................................... 48 vii 7.3 Suggestions for Improvement ............................................................................................... 50 7.3.1 Cylinder Placement ........................................................................................................ 50 7.3.2 Valve Characteristic ....................................................................................................... 50 7.3.3 Double Valves ................................................................................................................ 50 7.3.4 Valve Size ....................................................................................................................... 50 8 Discussion ...................................................................................................................................... 51 8.1 Simulation Model .................................................................................................................. 51 8.2 Suggestions for Improvement ............................................................................................... 51 9 Conclusions .................................................................................................................................... 53 10 Future Work .................................................................................................................................. 54 Bibliography ........................................................................................................................................... 55 Appendix ................................................................................................................................................ 56 viii List of Figures Figure 1: Illustration over change of aisle during wire guidance ............................................................................ 1 Figure 2: The hydraulic schematic ........................................................................................................................... 3 Figure 3: A 4/3 directional valve and a hydraulic cylinder. ..................................................................................... 6 Figure 4: A pressure compensating valve together with a restrictor, thus a constant flow valve. ......................... 7 Figure 5: Characteristics of a constant flow valve [2]. ............................................................................................ 8 Figure 6: Vena Contracta in a sharp edged restrictor and static pressure graph [2]. ............................................. 9 Figure 7: Flow force acting on a valve as a function of the opening distance x [2]. ................................................ 9 Figure 8: Static flow forces acting on a spool [5]. ................................................................................................. 10 Figure 9: Accumulator in hydraulic system. .......................................................................................................... 11 Figure 10: Simulation model in the Hopsan interface. Signals are marked with dotted blue lines and the blue component is signal related. ................................................................................................................................. 13 Figure 11: Pump Logic block in the Hopsan model. Input to the Pump Logic block is the accumulator pressure and output is the pump signal............................................................................................................................... 14 Figure 12: Plot over the functionality of Pump Logic block. Pump start to charge the accumulator at 130 bars and stop the refill at 230 bars. .............................................................................................................................. 15 Figure 13: The mechanical approximation for the simulation model in Hopsan................................................... 15 Figure 14: Simulink interface with the compiled Hopsan model (blue box). Input values are specified in Matlab and the outputs are delivered as a matrix. ........................................................................................................... 16 Figure 15: A sketch over the articulation geometry showing the cylinder position with the radius for cylinder motion ( ) and the fixed length ( ). ....................................................................................................................... 17 Figure 16: Motion model for the right hand side cylinder of the articulation. ...................................................... 17 Figure 17: Left picture: The sensors are mounted on test point connections on the hydraulic block. Right picture: Hydac HMG 3000, used for collecting pressure data. ........................................................................................... 19 Figure 18: Left picture: A tachometer, Testo 470, used for pump motor speed measurements. Right picture: CAN-logger, Vector GL 1000 mounted in the forklift for logging CAN signals. ..................................................... 20 Figure 19: Pivot angle and cylinder pressure from test 1 ...................................................................................... 21 Figure 20: Pivot angle, accumulator and pump pressure from test 1. .................................................................. 21 Figure 21: The steering signal, PWM, and the resulting pressure, test 1. ............................................................. 22 Figure 22: Pivot angle and cylinder pressure from test 7. The test was performed during wire guidance. .......... 22 Figure 23: Pivot angle, accumulator and pump pressure from test 7. Pump pressure is increased during second 9 to second 12 because of raising the forks. ............................................................................................................ 23 Figure 24: The steering signal, PWM, and the resulting pressure from test 7. Observe the different time scale. 23 Figure 25: Signal input to simulation model. ........................................................................................................ 25 Figure 26: Validation model for the directional valve in simulation program Hopsan. ........................................ 26 Figure 27: Graf from validation model for the directional valve. Flow as a result from a specific current. Blue line is data from the supplier and the red line is the results from simulation. ............................................................. 26 Figure 28: The blue solid line is the control signal to the valve for a small correction of pivot angle during wire guidance. The dotted lines are the position change of the spool in the directional valve for Low pass filter and Rate limiter ............................................................................................................................................................ 27 Figure 29: Pressure in piston 1 and 2 during wire guidance, test 6. ...................................................................... 28 Figure 30: The flow forces effect on the pressure level in the cylinders. ............................................................... 29 Figure 31: Position feedback for the mechanical model. ...................................................................................... 30 Figure 32: Accumulator pressure during free maneuvering compared with data from Test 4. ............................ 31 Figure 33: The right hand cylinder position during free maneuvering. ................................................................. 32 Figure 34: Pressure from the right hand piston during free maneuvering. ........................................................... 32 Figure 35: Pressure from the left hand piston during free maneuvering. ............................................................. 33 ix Figure 36: Accumulator pressure during wire guidance compared to measurements from Test 6. ..................... 33 Figure 37: The right hand cylinder length during wire guidance........................................................................... 34 Figure 38: Pressure in the right piston during wire guidance. ............................................................................... 34 Figure 39: The left cylinder pressure during wire guidance................................................................................... 35 Figure 40: Showing the tractor antennas’ position on the forklift [1]. .................................................................. 36 Figure 41: Pivot angle and cylinder pressure from Test 7, wire guidance without load. Zigzag tendencies can be observed during the wire guidance. ...................................................................................................................... 37 Figure 42: The flow change as a result of the broadening of the cylinder placement. ......................................... 39 Figure 43: Representative valve characteristic from supplier data. ...................................................................... 40 Figure 44: The desirable valve characteristic with estimated working regions. ................................................... 41 Figure 45: Simulation model with double valves and one pressure compensator. ............................................... 42 Figure 46: Two different strategies of controlling double valves to the articulation. ........................................... 43 Figure 47: Simulation results with ramped input signal. ....................................................................................... 43 Figure 48: The delivered flow from valve 1 and 2 during Test 4, free maneuvering. ............................................ 44 Figure 49: A comparison of the simulated and measured piston length during Test 4. ........................................ 44 Figure 50: The delivered flow from valve 1 and 2 during Test 6, wire guidance. .................................................. 45 Figure 51: The comparison of piston length during Test 6. ................................................................................... 45 Figure 52: Measured pivot angle and valve current during maximum steering speed, Test 11. .......................... 46 Figure 53: Graf over the utilization of the directional valve. ................................................................................. 47 Figure 54: Description of the force acting on the lifting cylinder. ......................................................................... 48 Figure 55: Pump, accumulator and piston pressure during wire guidance. Some instability in the piston pressure can be seen during the raised pump pressure. ...................................................................................................... 49 x

Description:
v. Abstract. Today's demand on forklift trucks performance and efficiency is high. challenges in the hydraulic steering system in an articulated forklift.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.