Astron.Nachr./ANxxx(xxxx)x,xxx–xxx Simulating large-scale structure formation with magnetic fields KLAUS DOLAG Max-Planck-Institutfu¨rAstrophysik,P.O.Box1317,D-85741Garching,Germany 6 0 0 Received;accepted;publishedonline 2 n a J Abstract. Inthepast,differentworksbasedonnumericalsimulationshavebeenpresentedtoexplainmagneticfields(MFs) 0 inthelargescalestructureandwithingalaxyclusters.Inthisreview,Iwillsummarizethemainfindingsobtainedbydifferent 2 authorsand-evenifmanydetailsarestillunclear-Iwilltrytoconstructaconsistentpictureofourinterpretationoflarge- 1 scalemagneticfieldsbasedonnumericaleffort.Iwillalsosketchhowthisisrelatedtoourunderstandingofradioemission v andsummarizesomeargumentswhereourtheoreticalunderstandinghastobeimprovedtomatchtheobservations. 4 8 Keywords:cosmology:large-scalestructure–cosmology:theory–magnetohydrodynamics(MHD) 4 1 (cid:13)c0000WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 0 6 0 1. Introduction 2. PossibleoriginsofMFs withinthe LSS / h p InthefollowingIwilldescribethethreemainclassesofmod- - There are several different approaches to study the build- o up of MFs in the intergalactic medium. Many papers elsfortheoriginofcosmologicalMFwithintheLSS. tr consider MHD simulations of cloud-wind interaction (see In the first one, MFs are assumed to be produced ‘lo- s Gregorietal. 2000 and references therein) or are simulat- cally’atrelativelylowredshifts(z ∼2−3)bygalactic(e.g. a : ing the rise of relic radio bubbles (see Jones&DeYoung Vo¨lk&Atoyan2000)orAGNejecta(e.g.Furlanetto&Loeb v 2005,Reynoldsetal.2005andreferencesherein).Suchwork 2001). One of the main argumentsin favor of this model is i X is usually focused more on the relevance of the local MFs thatthehighmetallicityobservedintheICMsuggestsasig- r within these processes, whereas in this review I will con- nificantenrichmentdrivenbygalacticwindsorAGNsinthe a centrate more on the discussion of MHD simulationswhich past.WindsandjetsshouldcarryMFstogetherwiththepro- aim at understandingthe build-up of the cluster MF and its cessed matter. While it has been shown that windsfrom or- possibleorigin.Sofar,firmevidenceforthepresenceofex- dinary galaxies give rise to MFs which are far weaker than tendedMFshasbeenfoundonlyingalaxyclusters.Forrecent thoseobservedingalaxyclusters,MFsproducedbytheejecta reviews see Carilli&Taylor (2002) and Govoni&Feretti of starburst galaxiescan be as large as 0.1µG. Clearly, this (2004). Recently there are observational claims of a detec- classofmodelspredictsthatMFsaremainlyconcentratedin tion of substantial MFs also within the large scale structure galaxyclusters.Notethat,ifthemagneticpollutionhappens (LSS), see contribution by Kronberg.The origin of the MF early enough (around z ∼ 3), these fields will not only be in galaxy clusters is still under debate. The variety of pos- amplified by the adiabatic compression of the proto-cluster sible contributorsrangesfrom primordialfields, battery and region,butalsobyshearflows,turbulentmotions,andmerg- dynamofieldsoverallclassesofastrophysicalobjectswhich ingeventsduringtheformationofgalaxyclusters. contributewiththeirejecta.Thelaterpossibilityissupported Inthesecondclassofmodels,theMFseedsareassumed bytheobservationofthemetalenrichmentoftheintracluster to be produced at higher redshifts, before galaxy clusters medium(ICM),whichhastobeoriginatedasejectaofastro- formgravitationallyboundsystems.Althoughthestrengthof physicalobjects.Inaddition,the MFsproducedbyall these the seed field isexpectedto be considerablysmaller than in contributorswillbecompressedandamplifiedbytheprocess the previous scenario, the adiabatic compression of the gas ofstructureformation.Theexactamountofthisamplification andtheshearflowsdrivenbytheaccretionofstructurescan andthe resultingMFfilling factorwilldependonplaceand giverisetoaconsiderableamplificationoftheMFs.Several timeatwhichthecontributeristhoughttobemostefficient. mechanismshavebeenproposedtoexplaintheoriginofMF seedsathighredshift.Someofthemaresimilartothosedis- Correspondenceto:[email protected] cussed above, differing only in the time at which the mag- 3 LOCALAMPLIFICATIONOFMFS Fig.2.ThegasvelocityfieldinaslicethroughthecentralMpcof a cluster simulation after subtracting the global mean bulk veloc- Fig.1.ExampleofMF(y-component)withinanevolvingKHinsta- ityofthecluster.TheleftpanelshowsarunwiththeoriginalSPH viscosity,therightpanel foralow-viscosityscheme.Theunderly- bility(inlay)anditstimeevolution.TakenfromBirketal.(1999). ing color maps represent the ratio of turbulent kinetic energy and totalkineticenergycontent of particles,inferredaftersubstracting netic pollutionisassumedtotakeplace.Inthepresentclass thelocalmeanvelocity,asdescribedinDolagetal.(2005) of models the MF seeds are supposed to be expelled by an early population of dwarf starburst galaxies or by AGN at fields produced by the battery process to the MFs observed aredshiftbetween4and6(Kronberg,Lesch&Hopp1999), today.Attemptsto constructsuch modelsbased on combin- allowing them to magnetize a large fraction of the volume. ingnumericalandanalyticalcomputationshavenotbeenre- Alternative models invoke processes that took place in the portedtosuccessfulreproducetheobservedscalingrelations early universe. Indeed, the ubiquity of MFs in the universe ofMFsingalaxyclusterssofar. suggeststhattheymayhaveacosmologicalorigin.Ingeneral, all ‘high-z models’ predict MF seeds filling the entire vol- umeoftheuniverse.However,theassumedcoherencelength 3. Local amplificationofMFs of the field crucially depends on the details of the models. Whilescenariosbasedonphasetransitionsgiverisetocoher- AverybasicprocessofamplificationforMFsisrelatedtothe encelengthswhicharesosmallthatthecorrespondingfields Kelvin-Helmholtz (KH) instabilities driven by shear flows, haveprobablybeendissipated,MFsgeneratedatneutrinoor whicharecommonwithinthedynamicsofthestructurefor- photondecouplinghavemuchhigherchancestosurviveun- mation process. Birk,Wiechen&Otto (1999) performed a til the present time. Another (speculative) possibility is that detailed study of such an amplification within the environ- theseedfieldwasproducedduringinflation.Inthiscase,the ment of galactic outflows (see Fig. 1) in starburst galaxies coherence length can be as large as the Hubble radius. See where the KH timescale should be ≈ 4×105 years. Using Grasso&Rubinstein(2001)forarecentreview. aCartesianresistiveMHDcodetheyfoundthattheobtained The thirdscenarioassumes thatthe MFseeds were pro- amplificationfactorfortheMFmainlydependsontheinitial ducedbytheso-calledBiermannbatteryeffect(Kulsrudetal. ratioofmagnetictokineticenergyandonlymildlydepends 1997,Ryu,Kang&Biermann 1998). The idea here is that ontheassumedresistivity.Theyreachedtheconclusionthat mergershocksrelatedtothehierarchicalstructureformation such a processcouldindeed explainthe significantlyhigher processgiverisetosmallthermionicelectriccurrentswhich, MFobservedinthestarburstgalaxyhalocomparedtowhatis inturn,maygenerateMFs.Thebatteryprocesshastheattrac- expectedfromtheMFsobservedwithingalacticdisks.When tivefeatureofbeingindependentofunknownphysicsathigh appliedtoaclustercoreenvironment,theKHtimescaleturns redshift.Itsdrawbackisthat,duetothelargeconductivityof outtobe107 years,makingitaninterestingprocessforfur- the IGM, it can give rise to at most verytiny MFs, of order theramplifyingweakMFs. 10−21 G.Onethereforeneedstoinvokeasubsequentturbu- In recent high-resolution smoothed particle hydrody- lentdynamotoboostthefieldstrengthtotheobservedlevel. namic (SPH) simulations of galaxy clusters within a cos- Suchaturbulentamplification,however,cannotbesimulated mological environment, using a novel scheme to treat ar- numerically yet, making it quite difficult to predict how it tificial viscosity within the Gadget2 code (Springel 2005), wouldproceedinarealisticenvironment.Itisclearthatone Dolagetal. (2005) demonstrated how such shear flows, expects the level of turbulence to be strongly dependenton which are quite common in the process of cosmic structure the environment, and that it should mostly appear in high- formation,drivefluidinstabilitiesandincreasetheturbulence densityregionslikecollapsedobjects.Whileenergeticevents levelwithintheICMtoasignificantlevel(seeFig.2).Itwas such as mergersof galaxy clusters can be easily considered alsoshownthattheartificialviscosityusedinstandardSPH to drive the required levels of turbulence, this is harder to simulationsmightsignificantlysuppresssuchfluidinstabili- understandinrelativelyquietregionslikefilaments.Lacking ties. a theoreticalunderstandingof the turbulentamplification, it In earlier work, extensive MHD simulations of single is thereforenotstraightforwardto relate theveryweak seed merging events performed using the Eulerian code ZEUS 4 THEQUESTFORRADIORELICS 1.50 1.40 1.30 11..1200Spectral Index 1.00 0.90 0.80 0. 0 0.2 0.4 0.6 0.8 1.0 R (Mpc) Fig.4. Inthe leftpanel weshow thesimulatedA3667 X-ray sur- facebrightnessandradiodata.ContoursrepresenttheX-raysurface brightness.Thegrayscalerepresentsthesyntheticradioemissionat 1.4GHz.Theimageis3.15×3.85Mpc.Dashedanddottedlines refertothelocationoftheradiospectral index(α1.4)profilesdis- 4.9 playedintherightpanel.TakenfromRoettigeretal.(1999). AdetaileddiscussionoftheamplificationofMFinacluster environment,usingvarioussimulationsofdriventurbulence, can be found in Subramanian,Shukurov&Haugen (2005), whereitis shownthatreasonablestrengthandlengthscales forgalaxyclusterscanbeobtainedbyturbulentprocesses. Fig.3. The evolution of (logarithm of) gas density (left column), 4. The quest forradio relics gastemperature(centralcolumn),and(logarithmof)magneticpres- sure (right column) in two-dimensional slices taken through the By extending such merger simulations to reproduce clustercoreintheplaneofthemerger.Eachrowreferstodifferent the observed X-ray properties of A3667 and adding a epochs:t=0(i.e.thetimeofcorecoincidence),t=1.3,t=3.4, model for in situ re-acceleration of relativistic particles, andt=5.0Gyrs,fromtoptodown.Eachpanelis3.75×3.75Mpc. Roettiger,Burns&Stone (1999) were able to reproducethe TakenfromRoettigeretal.(1999). mainfeaturesoftheextendedperipheralradioemission(the so-called radio relics) observed in A3667. In their models they injected relativistic electrons with a power-law spec- (Stone&Norman1992a,b) demonstratedthe MFamplifica- trum,wherethepower-lawindexγ =3/(r−1)+1isrelated tioninsuchmergerevents(Roettiger,Stone&Burns1999). to the gas compressionrate r at the shock. They also relate Inparticulartheyfoundthatfirst,thefieldbecomesquitefil- theageoftheradioplasmata tothedistanced = κvsta,us- amentaryasaresultofstretchingandcompressioncausedby ingaweak-field/high-diffusionlimitκ=1.Havingeffective shocksandbulkflowsduringinfall,butonlyaminimalam- shock velocities vs ≈ 700−1000km/s and aging the syn- plificationoccurs.Second,field amplificationis morerapid, chrotronspectrumusingtheformalismbyMyers&Spangler particularlyinlocalizedregions,asthebulkflowisreplaced (1985)theyhavebeenabletoreproducetheobserveddistri- by turbulentmotions(e.g., eddies), see Fig 3. The total MF butionofspectralindexforaMFof≈ 0.6µGattheposition energy is found to increase by nearly a factor of three with oftheradiorelic,seeFig.4.Sincesuchconfigurationsseem respecttoanon-mergingcluster.Inlocalizedregions(associ- to be quite common in galaxy clusters, naturally the ques- atedwithhighvorticity),themagneticenergycanincreaseby tionarises,whynotallclustersshowsuchaperipheralradio afactorof20ormore.Apowerspectrumanalysisofthemag- emission.Onepossibleexplanationisthatsuchshockstruc- neticenergyshowedthattheamplificationislargelyconfined turesarerelativelyshortlivedcomparedtothemergerevent toscalescomparabletoorsmallerthantheclustercores:this itself. Also, it is necessary to have the presence of a large- indicatesthatthecoredimensionsdefinetheinjectionscale. scale MF. It could further be that only massive clusters can It is worth to notice that, due to the lack of resolution, the provideenoughMFandstrongenoughmergereventstotrig- previous results can be considered a lower limit on the to- gersuchaperipheralemission. talamplification.Furthermore,itisquitelikelythatagalaxy To overcome this problem, Enßlin&Bru¨ggen (2002) clusterundergoesmorethanonesuchaneventduringitsfor- proposedthatsuchradiorelicscouldbemadebypre-existing mationprocess,andthatalsotheaccretionofsmallerhaloes fossil radio plasma illuminated via shock waves initiated injects turbulent motions within the ICM: consequently the by merger events. In their work they evolved the electron MFamplificationwithingalaxyclusterswillbeevenhigher. spectrum for the tracer particles, representing the fossil ra- 5 SHOCKSINCOSMOLOGICALSIMULATIONS Fig.5. Evolution of the gas density (top) and MF energy density (bottom) for a shock interacting with fossil radio plasma. Taken fromEnßlin&Bru¨ggen(2002). Fig.6.Theprojected’potential’radioluminositiesfor1.13Gyrold radio plasma, where PB/Pgas = 0.01. For comparison the bolo- dioplasma,followingEnßlin&Gopal-Krishna(2001)which metric surface X-ray luminosity is given. The total bolometric X- takeintoaccountsynchrotron,inverseComptonandadiabatic rayluminosityoftheclusteris2×1044ergs−1 andtheemission- energy losses and gains. Their simulation, using the ZEUS weightedtemperatureis3keV.TakenfromHoeftetal.(2004). code,followstheevolutionofasphereoftracerparticleshit byashockfront(seeFig.5).Suchaconfigurationnicelyre- In such a scenario, the MF is strongly correlated with the produces the filamentary radio emission and toroidal struc- large-scale structure (see Fig. 7). This means that in such a tures,asobservedinmanycases.Thesesimulationsalsopre- case, the MF within the filamentary structure couldbe even dict the MFs to be mostly aligned with the direction of the slightly higher than its equipartitionvalue withoutviolating filaments,assuggestedbyobservationaldata. the (weak) upper limits of rotation measure of quasars, as This idea was investigatedin a more realistic modelling pointedoutbyRyuetal.(1998).Itisworthtopointoutthat by Hoeft,Bru¨ggen&Yepes (2004), using an SPH Gadget theargumentsfortheturbulentdynamoaction,whichcould (Springel,Yoshida&White 2001) simulation of a merging amplify the battery seed fields up to µG level, as presented galaxy cluster within a cosmological environment. Such a in Kulsrudetal. (1997), refer explicitly to regions about to simulation showed that the probability for a shock wave to collapseintogalaxies.Ithasstilltobeproventhatsuchargu- flare theradioplasmaishighlysuppressedin thecentralre- mentsholdwithinproto-clustersorevencosmologicalstruc- gions of galaxy clusters compared to the peripheral ones, tures,likesheetsandfilaments.Ingeneral,thetimeevolution where they found illuminated structures up to Mpc in size oftheMFaspredictedbythesesimulationssaturatesaround (see Fig. 6). Thereasonforthisis thatfirstatthe centerthe z ≈ 3(Kulsrudetal.1997)andleadstoarelativelyuniform radioplasmaagesmuchfasterduetoitshigherpressure(and MFstrengthonscalesoftensofMpcwithintheLSSaround the lossescomingintogetherwith the higherMF),andsec- galaxyclusters(seeFig.7).Notethatsofarthereisnocom- ond that the compression ratio of the shock wave is much parison of synthetic rotation measurements obtained by the higherinthelow-densityperipheralregions.Itisworthtono- MFs predicted by up-scaling the battery fields, with obser- ticethatanecessaryconditiontoformsuchrelicsisthatthe vationson scales of galaxy clusters. This might be partially initialstateofthefossilradioplasmaischaracterizedbyara- motivatedbythelackofresolutioninsimulatedclusters. tioofP /P whichisaslowas1percenttoallowshocks B gas to revive ≈ 1-Gyr old radio ghosts. It is also important to In addition these shocks act as place for acceleration of cosmic rays (CR) which then will be accreted into the mentionthatHoeftetal.(2004)findhighprobabilityofradio LSS, specially within galaxy clusters. Using the COSMOR emissionoutsideoftheshocks,relatedtodrainedgasflows, (Miniati 2001) code, Miniatietal. (2001) followed primary inducedbythemergerevents,whichtransportmaterialfrom ionsandelectrons(injectedandacceleratedbydiffusecosmic the outskirtstowards the higher density regions.Thereby in shocks) and secondaryelectronsand positrons(producedin somecasestheadiabaticcompressionseemstobeenoughto p-pinelasticcollisionsofCRionswiththermalICMnuclei) revivethefossilradioplasma. withinacosmologicalsimulation.Undertheassumptionthat theMFproducedbythebatteryeffectreflectsafairrepresen- 5. Shocks incosmologicalsimulations tationofthetruedistributionofrelativeMFstrengthswithin theLSS,theywereabletopredictthecentralradioemission Cosmologicalshocks,mainlytheaccretionshocksoncosmo- (radiohalos)-mainlyproducedbysecondaryCRs-aswellas logical objects like galaxy clusters and filaments, are much theperipheralradioemission(radiorelics)-mainlyproduced more frequentthan the ones producedby individualmerger by primary CRs - in a self-consistent treatment (see Fig. events. They also can produce MFs by the so-called Bier- 9):theresultingmorphology,polarizationandspectralindex mannbatteryeffect(Kulsrudetal.1997;Ryuetal.1998)on match the observed properties. However, one has to notice which a subsequent turbulent may operate (see section 2). thattheextrapolationofthesesimulations(ongroupscale)to 6 COSMOLOGICALMHDSIMULATIONS Fig.7. A two-dimensional cut through a cosmological box simu- lated by Miniatietal. (2001), and following the evolution of bat- Fig.8. Slice through the centre of the simulated box, hosting a teryfields.Shownis(thelogarithmof)theup-scaledMFstrengthin massivegalaxycluster.Thesimulation,madeusingtheAMRcode Gausstakenatz=0.TakenfromSigl,Miniati&Enssßlin(2004). FLASH,followstheevolutionofaweakmagneticseedfield.Shown isthelogarithmof theMFstrengthinGauss, asmeasured atz = theobserveddata(i.e.onmassiveclusterscale)mightnotbe 0.5.TakenfromBru¨ggenetal.(2005). straightforward(seeFig.13).Itisfurtherworthtonoticethat evenwithaprotoninjectionratioR of10−2(whichisde- e/p This result is now confirmed to hold over several orders of rivedfromobservations,seeTab.5inMiniatietal.2001),the magnitude in a collection of observational data existing in predictedluminositiesfortheprimaryemissionisstillsignif- the literature (see Fig 12). ExtendingGadget2to follow the icantlyhigherthanforthesecondaryone(seeFig.13),which full set of ideal MHD equations, Dolagetal. (2004, 2005) seemsnottobeconfirmedbytheobservations.Althoughthe performedseveralrealizationsofacosmologicalvolumecon- resultsforthesecondarymodelareinagreementwithprevi- firmingthepreviousfindingsevenatmuchhigherresolution. ousworkonmassivegalaxyclusters(Dolag&Enßlin2000), Recently,Bru¨ggenetal.(2005)performedasimulationofthe wenoticethatgenerallyinthesecondarymodelradiohaloes formationofasinglegalaxyclusterinacosmologicalframe- are predicted for every cluster, which is in contradiction to work,usingapassiveMHDsolverimplementedintoFLASH. theobservations(seeFig.13). Therebytheynicely confirmedallpreviousresultsbased on theSPHcodes,usingtheiradaptivemeshrefinement(AMR) 6. CosmologicalMHDsimulations simulationcode(seeFig.8). Another interesting quantity to look at is the slope α of Using GrapeMSPH (Dolag,Bartelmann&Lesch 1999) and theMFpowerspectrum(∝k−α,withkbeingthewavevec- assuming that a small initial magnetic seed field exists tor).WithingalaxyclustersαispredictedbytheSPHsimu- before structure formation (see section 2), the first self- lations(Dolagetal.2002,Rordorf,Grasso&Dolag2004)to consistent simulations which follow the MF amplifica- beslightlylower,butstillverycloseto11/3,whichistheex- tion during the formation of galaxy clusters with cos- pected value for a Kolmogorov-like spectrum (in 3D). The mological environment have been performed (Dolagetal. AMR simulation by Bru¨ggenetal. (2005) nearly perfectly 1999,Dolag,Bartelmann&Lesch 2002). These runs were matchestheKolmogorovslope.Fig.14showsacollectionof abletodemonstratethatthecontributiontotheamplification predictedandobservedslopesfortheMFspectrum.Notethat ofMFsbyshearflows(andbyitsinducedturbulence)issig- thiscanonlybeacrudecomparison,duetothelimitationsin nificant(seeFig.10).Thereforeforthefirsttimeaconsistent both observationsand simulations. But in generalthe range picture of the MF in galaxy clusters could be constructed: ofslopespredictedbythesimulationsseemstobeconsistent the amplification predicted by the simulations was capable withtheslopesinferredfromobservationsofrealclusters.It tolinkthepredictedstrengthoftheseedMFs(seesection2 isworth to noticethatthe numericalresultssuggestthatthe andreferencestherein)athighredshift(z ≈3andhigher)to spreadoftheslopesmightreflectthedynamicalstageofthe the today observedMF strength in galaxy clusters. Further- system,indicatedbythe inlay,showingthe two massaccre- morethesimulationspredictedthatthefinalstructureofthe tionhistories.Herethesmoothlyaccretingclustersshowthe MFingalaxyclusterreflectstheprocessofstructureforma- smallestslope(indicatingthelackoflarge-scalepower).On tion,andnomemoryontheinitialMFconfigurationsurvives: thecontrary,theclustershavingaquiteviolenthistory,with thisrelaxestheconstraintsonmodelsforseedMFs. Ingen- severalmajormergersindicatedbythesmallarrows,showa eral such modelspredicta MF profile similar to the density verysteepspectra.Twoofthemhappenedinthelast3Gyrs, profile. Thereby the predicted rotation measure (RM) pro- therebyinducinganexcessofpoweronlargescales. file agrees with the observed one (see Fig. 11). Dolagetal. Further support for strong MF amplification during the (2001)foundaquasilinearcorrelationbetweentwoobserv- processofstructureformationcomesfromtheapplicationof ables,namelytheX-raysurfacebrightnessandtheRMr.m.s.. the Zel’dovichapproximationto follow the MHD equations 7 CONCLUSIVEREMARKS Saturation Shear + Turbulence Fig.9. Synchrotron power at 1.4 GHz from secondary electrons + Major Merger (left panel) and primary electrons (right panel). Note that the val- Shear uesfortheluminositiesforprimaryelectronsshouldbescaledwith theelectrontoprotoninjectionratioR .TakenfromMiniatietal. e/p (2001). Fig.10.TheMFstrengthasafunctionofbaryonicoverdensity.The during the gravitationalcollapse (Bruni,Maartens&Tsagas long-dashedlineshowstheexpectationforapurelyadiabaticevo- 2003; King&Coles 2005). Such works showed super- lution,thesolidlinegivesthemeanfieldstrengthatagivenover- adiabatic amplificationdue to theanisotropyofthe collapse densitywithinacosmologicalsimulation(Dolagetal.2005).While oftheLSSwithinthecolddarkmatterparadigm. thelatterisclosetotheadiabaticvalueinunderdenseregions,there AnovelaspectofincludingMFpressureintoLSSsimu- isasignificantinductiveamplificationinclustersduetoshearflows lation-evenifinasimplifiedway-isinvestigatedinanon- andturbulence,subjecthowevertosaturationintheclustercores.At goingproject(seethecontributionbyGazzola),whichaims anygivendensity,alargefractionofparticlesremainsclosetothe atidentifyingthepointforwhichsuchnonthermalpressure adiabaticexpectation,asshownbythedottedline,whichgivesthe supportstartstosignificantlymodifythestructureformation. medianofthedistributionateachdensity. 7. Conclusiveremarks ingtheregionsfilledwithhighMFsshowninFigs.7and8. Itis clearthatthe highMF regionsfor the batteryfieldsare It seems that within the last years a probably con- predictedtobemuchmoreextended,leadingtoaflatprofile sistent picture of MFs arises from numerical works aroundthe formingstructure, whereas for the turbulentam- and observations. Supported by simulations of individual plifiedMFs the clusters showa muchmorepeakedMF dis- events/environmentslike shear flows, shock/bubble interac- tribution.Partofthisdifferenceoriginatesfromthephysical tionsor turbulence/mergingevents,a super-adiabaticampli- modelbehind,asthecosmologicalshocksaremuchstronger fication of MF is predicted. It is worth to notice that this outside the clusters than inside. Somewhat more unclear is common finding is obtained by using a variety of different whatthecontributionofthedifferentnumericalresolutionsof codes, based on different numerical schemes. Further sup- these simulationsto these discrepanciesis. Calibratingsuch portfor such super-adiabaticamplificationscomesfroman- simulationsusingtheMFmeasuredonlyinthehigh-density alytical estimates of anisotropic collapse making use of the regionsofgalaxyclustersmakesitcrucialtoperformamore Zel’dovichapproximation.When applied in fully consistent detailedcomparisonwithallavailableobservations.Notethat cosmological simulations, various observational aspects are extrapolating the predictions of the simulations into lower reproduced(see Figs. 11 and 12) and the resulting MF am- densityregions,wherenostrongobservationalconstraintsex- plificationreachesalevelsufficienttolinkmodelspredicting ist,willevenamplifythedifferencesinthepredictionsforthe seed MFs at high redshift with the MFs observed in galaxy MFstructurebetweenthedifferentsimulations. clusterstoday.Itisimportanttomentionthatallsimulations Moreover,onehastokeepinmindthatdependingonthe show that this effect increases when the resolution is im- ICMresistivitytheMFcouldbesufferingdecay,whichsofar proved, and therefore all the numbers have to be taken as isneglectedinallthesimulationsdiscussedbefore.Further- lowerlimitsofpossibleamplification. more a clear lack of the present simulations is that they do Note that on the other hand there are significant differ- notincludethecreationofMFbyallthefeedbackprocesses ences for the predictionsof the MF structures coming from happeningwithinLSS(likeradiobubblesinflatedbyAGNs, differentmodelsofseedMFs.Inparticulartherearemaindif- galactic winds, etc.): this might alter the MF prediction if ferences between the up-scaled, cosmological battery fields theircontributionturnsouttobesignificant.Alsoallthesim- (Miniatietal. 2001; Sigletal. 2004) and the MF predicted ulationsdonesofarneglectradiativelosses:ifincluded,this fromhigh-resolutionsimulationsofgalaxyclustersusingei- wouldleadtoasignificantincreaseofthedensityinthecen- ther AMR (Bru¨ggenetal. 2005) or SPH (Dolagetal. 1999, tral part of clusters and thereby to a further MF amplifica- 2002,2005).Inthelattercaseitispossibletofollowtheam- tion in these regions. Finally, there is an increasing number plification of seed fields within the turbulent ICM in more of argumentssuggesting that instabilities and turbulence on detail.Agoodvisualimpressioncanbeobtainedbycompar- very small scales can amplify the MFs in a relatively short 7 CONCLUSIVEREMARKS + 8 rad/m2 Fig.11.ComparisonofRMsfromthesimulationwithobservations Fig.12. Correlation of rotation measurements withX-ray surface for Abell clusters, as a function of distance to the closest cluster. brightness for different galaxy clusters. Thedatapoints areobser- Smoothlinesrepresentthemedianvaluesof|RM|producedbysim- vationscollectedfromtheliterature.Thecolorsrepresentthevirial ulatedclusterswithmassesabove5×1014M⊙and3×1014M⊙. clustertemperaturetakenfromliterature.Thisisanupdatedversion The broken line represents the median of combined data taken ofthecorrelationpresentedinDolagetal.(2001). from the independent samples presented in Kimetal. (1991) and Clarkeetal.(2001).Wealsoincludedata(diamonds) forthethree that there is also no indication from observations that clus- elongatedsourcesobservedinA119(Ferettietal.1999),andforthe tersshowingradioemissioncontainhigherMFsthantheones elongatedsourceobservedintheComacluster(Ferettietal.1995). withoutobservableextended,diffuseradioemission.Onthe contrary,the clusterA2142hasaMFstrengthsimilar tothe timescalereachingtheobservedµGlevel.Howeveritisstill Coma cluster (see Fig. 12), but the upper limit on its radio unclear how such very small scale fields can be ordered on emissionisatleasttwoordersofmagnitudebelowthevalue large(uptohundredsofkpc)scalesasobserved. expected from the correlation (see Fig. 13). Note that both clusters are merging systems characterized by the presence Concerning Radio haloes and relics the picture is only of two central cD galaxies. This indicates that there should partially consistent ( for a more detailed discussion of pri- befurtherprocessesinvolvedoradditionalconditionstoful- maryandsecondarymodelsseeBrunetti2004andreferences filltoproduceradioemission.Itisworthtonoticethatrecent therein).Radiorelicsseemtobemostlikelyrelatedtostrong models, based on turbulent acceleration, seem to overcome shocksproducedbymajormergingeventsandthereforepro- this problem (see Kuo,Hwang&Ip 2003; Brunetti&Blasi ducedbydirectre-accelerationofCRs,theso-calledprimary 2005;Cassano&Brunetti2005andreferencestherein).Note models. Although some of the observed features like mor- thatCassano&Brunetti(2005)predictedtheprobabilityfor phology, polarization and position with respect to the clus- agalaxyclustertoshowgiantradiohalotobeanincreasing ter centre can be resonablywell reproduced,there mightbe functionofclustermassandreproducedtheobservedfraction still some puzzles to solve. On one hand, direct accelera- of≈30%formassivegalaxyclusters. tion of CRs in shocks seems to overestimate the abundance and maybethe luminosityof radio relics; on the other hand There is a big challenge for the next generation of cos- simulations which illuminate fossil radio plasma can pro- mologicalMHD simulations. Simulations are quite close to duce reasonable relics only starting from a small range of havingtheresolutionnecessarytoproperlydescribetheMF parameter settings. A similar situation arises for modelling components down to the observed scales, but on the other the central radio emission of galaxy clusters by secondary handthismeanstoresolvegalaxiesinsidethesimulationsas models.Ononehand,thetotalluminosityseemstoberepro- well.Notethatfollowingthedynamicsofsuchstructuresfor duced using reasonable assumptions and also the steep ob- which the MF might dominate the evolution, is a real chal- servedcorrelationbetweenclustertemperature/massandra- lenge within LSS simulations. However, we expect that - if diopowerseemstobereproducedquitewell.Butsuchmod- succeeding in overcomingthese limitations - the dynamical els suffer from two drawbacks. The first one is that in the impactoftheMFonregionslikethecoolingflowsatthecen- framework of such models every massive cluster produces tresofgalaxyclusterswillbesignificantandwillcontribute a powerfulradio halo, butthis is notconfirmedby observa- tosolvetheseoutstandingpuzzles. tions (see Fig. 13). The other problems is that the detailed Acknowledgements. Thisworkhasbenefitdfromresearchfunding radiopropertiesarenotreproduced.Firstly,theprofileofra- fromtheEuropeanCommunity’ssixthFrameworkProgrammeun- dio emission in most cases is too steep, so that these mod- der the HPC-EUROPA project (RII3-CT-2003-506079) and under els cannotreproducethe size of the observedradio halos in RadioNet(R113-CT-2003-5058187).IwanttothanktheINAF-IRA almost all cases. Secondly,the observedspectralsteepening inBolognaandtheAstronomyDepartmentinTriestefortheirhospi- (e.g.Giacintuccietal.2005)alsocannotbereproduced.Note tality.ManythankstoS.BorganiandL.Moscardiniforstimulating REFERENCES REFERENCES Brueggen et al. 2005 * Coma Fig.13. Totalpowerofradiohalosobservedat1.4MHzvs.clus- Fig.14. Rough comparison of observed index (diamonds) of tertemperature.WeplotdatafromLiangetal.(2000),whichwere MF power spectrum (Vogt&Enßlin 2003; Murgiaetal. 2004) partiallyre-observedbyFeretti(2005,inpreparation)togetherwith and the predictions (stars) from simulations (Rordorfetal. 2004; data from Govonietal. (2001); Bacchietal. (2003); Venturietal. Dolagetal. 2005; Bru¨ggenetal. 2005). Note that some observa- (2003).Someadditionalupperlimitsarecollectedwiththehelpof tions reflect only a weak lower limit. Morever the displayed data F.Govoni.Weappliedasecondaryhadronicmodelasdescribedin spawndifferentenvironments,lengthscalesandtechniquesusedto Dolag&Enßlin(2000)tocalculatetheradioemissionfromthesim- constrainthespectral index. Furthermorethespectral indexcalcu- ulatedgalaxyclusters.Wealsoaddedthepredictionsfortheemis- latedfromthesimulationsmaysufferfromeffectscausedbyanon sion from primary (upper) and secondary (lower) electrons taken constantmeanMFstrengthintheclusterandvaryingnumericalres- fromMiniatietal.(2001).Notethatthevaluesfortheluminosities olution. for primaryelectrons should be scaledwiththe electron toproton injectionratioR . e/p Feretti L., Dallacasa D., Giovannini G., Tagliani A.: 1995, A&A302,680 Feretti L., Dallacasa D., Govoni F., Giovannini G., Taylor G.B., discussions and comments. Special thanks also to F. Govoni who KleinU.:1999,A&A344,472 helpedalotinpreparingmanyoftheobservation-relatedfigures. FurlanettoS.R.,LoebA.:2001,ApJ556,619 GiacintucciS.,VenturiT.,BrunettiG.,etal.:2005,A&A440,867 GovoniF.,EnßlinT.A.,FerettiL.,GiovanniniG.:2001,A&A369, References 441 GovoniF.,FerettiL.:2004,InternationalJournalofModernPhysics Bacchi M., FerettiL.,Giovannini G.,Govoni F.:2003, A&A400, D13,1549 465 GrassoD.,RubinsteinH.R.:2001,Phys.Rept.348,163 BirkG.T.,WiechenH.,OttoA.:1999,ApJ518,177 GregoriG.,MiniatiF.,RyuD.,JonesT.W.:2000,ApJ543,775 Bru¨ggenM.,RuszkowskiM.,SimionescuA.,HoeftM.,DallaVec- HoeftM.,Bru¨ggenM.,YepesG.:2004,MNRAS347,389 chiaC.:2005,ApJ631,L21 JonesT.W.,DeYoungD.S.:2005,ApJ624,586 BrunettiG.:2004,JournalofKoreanAstronomicalSociety37,493 KimK.-T.,KronbergP.P.,TribbleP.C.:1991,ApJ379,80 BrunettiG.,BlasiP.:2005MNRAS363,1173 KingE.J.,ColesP.:2005,astro-ph/0508370 BruniM.,MaartensR.,TsagasC.G.:2003,MNRAS338,785 KronbergP.P.,LeschH.,HoppU.:1999,ApJ511,56 CarilliC.L.,TaylorG.B.:2002,ARA&A40,319 KulsrudR.M.,CenR.,OstrikerJ.P.,RyuD.:1997,ApJ480,481 CassanoR.,BrunettiG.:2005,MNRAS357,1313 KuoP.-H.,HwangC.-Y.,IpW.-H.:2003,ApJ594,732 ClarkeT.E.,KronbergP.P.,Bo¨hringerH.:2001,ApJ547,L111 Liang H., Hunstead R.W., Birkinshaw M., Andreani P.: 2000, DolagK.,BartelmannM.,LeschH.:1999,A&A348,351 ApJ544,686 DolagK.,BartelmannM.,LeschH.:2002,A&A387,383 MiniatiF.:2001,ComputerPhysicsCommunications141,17 DolagK.,EnßlinT.A.:2000,A&A362,151 MiniatiF.,JonesT.W.,KangH.,RyuD.:2001,ApJ562,233 DolagK.,GrassoD.,SpringelV.,TkachevI.:2004,JournalofEx- MurgiaM.,GovoniF.,FerettiL.,GiovanniniG.,DallacasaD.,Fanti perimentalandTheoreticalPhysicsLetteres79,583 R.,TaylorG.B.,DolagK.:2004,A&A424,429 DolagK.,GrassoD.,SpringelV.,TkachevI.:2005,JournalofCos- MyersS.T.,SpanglerS.R.:1985,ApJ291,52 mologyandAstro-ParticlePhysics1,9 Reynolds C.S., McKernan B., Fabian A.C., Stone J.M., Vernaleo DolagK.,SchindlerS.,GovoniF.,FerettiL.:2001,A&A378,777 J.C.:2005,MNRAS357,242 Dolag K., Vazza F., Brunetti G., Tormen G.: 2005, MNRAS 364, RoettigerK.,BurnsJ.O.,StoneJ.M.:1999,ApJ518,603 753 RoettigerK.,StoneJ.M.,BurnsJ.O.:1999,ApJ518,594 EnßlinT.A.,Bru¨ggenM.:2002,MNRAS331,1011 Rordorf C., Grasso D., Dolag K.: 2004, Astroparticle Physics 22, Enßlin T.A., Gopal-Krishna: 2001, in: Laing R.A., Blundell K.M. 167 (eds.) Particles and Fields in Radio Galaxies, ASP Conf. Ser. RyuD.,KangH.,BiermannP.L.:1998,A&A335,19 250,p.454 SiglG.,MiniatiF.,EnssßlinT.A.:2004,PhysRevD 70,43007 REFERENCES REFERENCES SpringelV.:2005,MNRAS364,1105 SpringelV.,YoshidaN.,WhiteS.:2001,NewAstronomy6,79 StoneJ.M.,NormanM.L.:1992a,ApJS80,753 StoneJ.M.,NormanM.L.:1992b,ApJS80,791 Subramanian K., Shukurov A., Haugen N.E.L.:2005, MNRAS in press Vo¨lkH.J.,AtoyanA.M.:2000,ApJ541,88 Venturi T., Bardelli S., Dallacasa D., Brunetti G., Giacintucci S., HunsteadR.W.,MorgantiR.:2003,A&A402,913 VogtC.,EnßlinT.A.:2003,A&A412,373