ebook img

Simulating Blood Flow in an Anatomical Arterial Network PDF

187 Pages·2015·9.66 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Simulating Blood Flow in an Anatomical Arterial Network

http://researchspace.auckland.ac.nz ResearchSpace@Auckland Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: • Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person. • Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate. • You will obtain the author's permission before publishing any material from their thesis. To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback General copyright and disclaimer In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form and Deposit Licence. Simulating Blood Flow in an Anatomical Arterial Network Soroush Safaei Supervised by: Dr Vinod Suresh Dr Chris Bradley A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in Bioengineering Auckland Bioengineering Institute University of Auckland May 2015 Abstract The overall aim of this thesis is to develop a computational model of the human arte- rial system to predict blood pressure and flow rates throughout the body. The model used an anatomical vascular network derived from the Visible Human Project and im- plemented in OpenCMISS, an open-source mathematical modelling environment that enables the application of finite-element analysis and other techniques to a variety of complex bioengineering problems. This arterial model coupled a one-dimensional arterial tree model with a lumped pa- rameter description of the peripheral circulation is capable of simulating global hemody- namics and arterial wave propagation simultaneously and can provide the downstream boundaryconditionsforthree-dimensionalsimulationsattheparticulararteriallocation using one-dimensional models of the entire arterial system and zero-dimensional models at the distal ends. The model provided better predictions of published experimental measurements compared to existing one-dimensional models. The model was used to simulate pressure and flow waveforms in pathological conditions toinvestigatepotentialusesinsurgicalplanningandtheuseofinexpensiveflowandpres- suremeasurementsfordiagnosis. Thisincludestheuseofthemodeltoexplorethepossi- bility of non-invasive disease diagnosis and comparison of different surgical options. The flow model was then coupled with an advection-diffusion equation to simulate the transport of solutes (drugs, hormones) through the vasculature. For the first time, by coupling with lumped parameter descriptions of metabolism and excretion in target organs, the extended model provides a physiologically based pharmacokinetic model that will be useful in drug development and regulatory toxicology to predict the kinetics and metabolism of substances in the body. The coupled framework has the ability to modelpharmacokineticresponsetotheadministrationofdrugsinamorephysiologically realistic manner compared to the traditionally used compartmental models. iii An important contribution to the state of knowledge is the free availability of the code- base. Source code and anatomical data are not available for any of the existing models which makes it impossible to independently validate published results and to modify or extend the model for different applications. By providing this capability the thesis provides a useful computational resource to the bioengineering community. Acknowledgements I am incredibly grateful for the guidance, support, and encouragement that I have re- ceived throughout the course of my doctoral research. I am indebted to my two supervisors Dr Vinod Suresh and Dr Chris Bradley for their guidance,encouragementandchallenge. Chrishasbeenaconstantsourceofenthusiasm, energy and advice. He has been a great help, particularly in the completion of this work reading drafts in great detail, quickly and efficiently. Vinod has constantly supported, guided and helped me from my day one in Auckland. He has been a great help with his attention to detail, his oversight, his diligence, and his thoughtful insights at critical moments. Thank you Vinod for your sage advice, despite the many demands on your time and for cheerfully keeping an eye on my progress. Prof Peter Hunter, I consider a role model and an inspiration. His patience, human values, technical brilliance, and visionary ideas have made the Auckland Bioengineering Instituteacooperativeanddynamicplacetowork. ThankyouPeterfortheopportunity to work with you and complete this project. As a part of the Auckland Bioengineering Institute and OpenCMISS group, I have enjoyed and appreciated working with many colleagues through the course of this work. I would like to thank the Maurice Wilkins Centre for providing funding for the project, to enable this research to take place. Finally, my family have unconditionally loved me, encouraged me, and taken an enor- mous interest in both the pain and triumphs of this work. I would like to express my deep gratitude to my family and friends for their support, which constantly reminded me of the high aspiration of the pursuit of knowledge. v Contents Abstract iii Acknowledgements v List of Figures xiii List of Tables xv List of Abbreviations xvii List of Symbols xvii 1 Motivation and Objectives 1 1.1 Thesis Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Thesis Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Introduction 7 2.1 Blood flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Historical overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.1 0D lumped parameter models . . . . . . . . . . . . . . . . . . . . . 15 2.2.2 1D distributed models . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.3 3D distributed models . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.4 Multi-scale models . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 Review of recent 1D circulation models. . . . . . . . . . . . . . . . . . . . 21 2.3.1 Tube law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.2 Solution methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4 1D modelling of specific vascular beds . . . . . . . . . . . . . . . . . . . . 23 2.4.1 Cerebral circulation . . . . . . . . . . . . . . . . . . . . . . . . . . 24 vii viii Contents 2.4.2 Stenoses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4.3 Aneurysms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.4.4 Veins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.5 Validation of 1D models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.6 Clinical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.6.1 Parameter studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.6.2 Surgical planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.6.3 PBPK modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.7 OpenCMISS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.7.1 Data structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.7.2 Multi-physics modelling . . . . . . . . . . . . . . . . . . . . . . . . 36 2.7.3 Integration with CellML . . . . . . . . . . . . . . . . . . . . . . . . 37 2.7.4 Open-source libraries . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.7.5 Parallel processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3 Model Development and Implementation 39 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2.1 General equations for blood flow . . . . . . . . . . . . . . . . . . . 40 3.2.2 1D system formulation . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.2.3 Wall equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2.4 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.2.5 Non-dimensionalisation . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2.6 Characteristic system . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2.7 Steady state solution . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.2.8 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.2.9 Branching conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.2.10 Peripheral circulation . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.2.11 0D-1D coupling method . . . . . . . . . . . . . . . . . . . . . . . . 55 3.2.12 Numerical scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.3.1 Network geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.3.2 Platform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.3.3 OpenCMISS implementation . . . . . . . . . . . . . . . . . . . . . 61 3.3.4 Solvers and solver equations . . . . . . . . . . . . . . . . . . . . . . 64 3.3.5 CellML implementation . . . . . . . . . . . . . . . . . . . . . . . . 65 3.3.6 CellML and OpenCMISS coupling . . . . . . . . . . . . . . . . . . 66 Contents ix 3.4 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.4.1 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.4.2 Single vessel results . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.4.3 Simple bifurcation results . . . . . . . . . . . . . . . . . . . . . . . 70 3.4.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.5 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4 Model Validation and Applications 79 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.2 Case 1: Physiological conditions. . . . . . . . . . . . . . . . . . . . . . . . 82 4.2.1 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.2.2 Comparison between rest and exercise conditions . . . . . . . . . . 86 4.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.3 Case 2: Abdominal aortic aneurysm . . . . . . . . . . . . . . . . . . . . . 91 4.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.3.2 Comparison between normal and diseased conditions . . . . . . . . 92 4.3.3 Parameter study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.4 Case 3: Aortic coarctation . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.4.2 Comparison between rest and exercise conditions . . . . . . . . . . 99 4.4.3 Comparison between pre-surgical and post-surgical conditions . . . 99 4.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.5 Case 4: Renovascular hypertension . . . . . . . . . . . . . . . . . . . . . . 102 4.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.5.2 Comparison between rest and exercise conditions . . . . . . . . . . 103 4.5.3 Stenoses in both renal arteries . . . . . . . . . . . . . . . . . . . . 103 4.5.4 Peripheral vasoconstriction . . . . . . . . . . . . . . . . . . . . . . 109 4.5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5 Pharmacokinetic Modelling 113 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.1.1 PBPK modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5.2.1 Advection-diffusion equation . . . . . . . . . . . . . . . . . . . . . 114

Description:
plemented in OpenCMISS, an open-source mathematical modelling enables the application of finite-element analysis and other techniques to a coupling with lumped parameter descriptions of metabolism and excretion in project is developing model coding standards, open-source software and.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.