ebook img

Simulated Effects of Nutrient Enrichment by Canada Geese on Macrophytes and Algae in Ohio Lake PDF

2004·5.6 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Simulated Effects of Nutrient Enrichment by Canada Geese on Macrophytes and Algae in Ohio Lake

KIRTLANDIA The Cleveland Museum of Natural History March 2004 Number 54:33-42 SIMULATED EFFECTS OF NUTRIENT ENRICHMENT BY CANADA GEESE ON MACROPHYTES AND ALGAE IN OHIO LAKES PAMELABRUTSCHEKEIPER*andFERENCA.DESZALAY DepartmentofBiologicalSciences KentStateUniversity,Kent,Ohio44242-0001 ABSTRACT Wetestedthehypothesisthatphosphorusenrichmentinlakesbygoosedroppingscanenhance growthofalgaeandmacrophytesatgoosedensitiesatorabovethoseoccurringinnature.Seasonal changesinCanadagoosepopulationsweredeterminedonfivenortheasternOhiolakestoestimatethe amountofnutrientsaddedasgoosedroppings.Numbersofgeesewerehighestduringwintermigra- tion, but someresidentgeese remainedyear-round. In alaboratoryexperiment, effectsofvarious goosedensities(0-2.6x105geese/ha)weresimulatedbyaddingdifferentamountsofdroppingsweek- lyto 1-Lbottlescontaininglakewater,algaeandCeratophyllumdemersum.Afterfourweeks,dis- solvedtotalphosphorus concentrations inbottlesreceiving 1 dropping/week(-6000pg P/L) was higherthaninbottleswithothertreatments(16-75pgP/L).Phytoplanktonchlorophyllalevelsand periphytonbiomasswerehighestinthe 1 dropping/weektreatment. Ceratophyllumdemersumbio- massincreasedby4.5 g/plantinthe0.1 dropping/weektreatment,butplantssenescedin 1 drop- ping/weektreatment.Wecalculatedhowmuchphosphoruswasaddedingoosedroppingsandhow muchwastakenupbyCeratophyllumdemersumandperiphytonbiomassineachtreatment,andwe estimatedthatplantstookupmostoftheavailablephosphorusin0,0.0001,and0.001droppings/week treatments.However,therewasasurplusofphosphorusin0.01,0.1,and1droppings/weektreatments, whichsimulated2.6x10\2.6x 104,and2.6x 105geese/ha,respectively.Theseresultsindicatethat goosedroppingscanincreasemacrophytegrowthandpromoteaswitchfromclearlakesdominated bymacrophytestoturbidlakesdominatedbyalgae,butthiswillprobablyonlyoccuratgoosedensi- ties(26,000-260,000geese/ha)thatarenotlikelytooccurinlakesinOhio. Introduction achievingthisgoalcanbedifficult.Forexample,contamina- Lakesareimportantsourcesfordrinkingwaterandrecre- tionbytoxinsandalgalbloomsarecriticalissues inlakes ational activities such as swimming, boating, fishing, and usedfordrinkingwater,andhighratesofnutrientinputsin waterfowlhunting.Althoughtheneedtodevelopsustainable many areas make itdifficultto maintain macrophyte beds management strategies for multiple use areas is growing, usedasrefugiaforjuvenilefishinlakesusedforrecreation ^Correspondingauthor;presentaddress:TheClevelandMuseumofNaturalHistory,1WadeOvalDrive,Cleveland,Ohio44106-1767;email;[email protected] 34 BRUTSCHEKEIPERANDDESZALAY No.54 (Mossetal., 1980;BronmarkandWeisner, 1992). enrichmentbygoosedroppingscouldenhancegrowthof Interactions amongnutrientlevels andgrowthofalgae periphyton, phytoplankton, and Ceratophyllum demer- andmacrophytesarecomplex(Vollenwieder, 1968;Correll, sum,andweexaminedifthiswouldoccuratgoosedensi- 1998). Forexample,rootedmacrophytescanobtain nutri- tiesoccurringinnature. ents from sediments, but phytoplankton and non-rooted macrophytes competefordissolved nutrients in the water Methods column (Barko and James, 1998). Ceratophyllum demer- Studysitedescription sumL.isacommonnon-rootedmacrophytefoundthrough- All surveyed lakes (East and West Twin Lakes, Lake out temperate regions ofthe world (Sculthorpe, 1967, p. Hodgson,LakePippen,andLakeRockwell)arelocatedin 167), andabsorbs most ofits nutrients with foliaruptake northeasternOhio(PortageCo.).EastandWestTwinLakes (Denny, 1972). This species can reduce phytoplankton are4kmnorthofthecityofKent.ThewatershedoftheTwin abundancewithshading(Goulder, 1969)andbytherelease Lakes is mostly residential, and the shorelines are largely of allelopathic chemicals (Nakai et al., 1999). However, mowedlawns(Cookeetal., 1977).Bothlakesareusedfor highturbidityfromphytoplanktonorresuspensionofinor- recreational purposes, including swimming, fishing, and ganic sedimentsfrombioticfactors(e.g.,feedingcarp)or boating(Cookeetal., 1977). LakesHodgson,Pippen, and abiotic factors (e.g., wave action) will inhibitmacrophyte Rockwell are surrounded by deciduous and coniferous growthandpromotedominancebyphytoplankton(Spence, woodlandwithscatteredresidentialhomes.LakeHodgsonis 1982;Nagidetal.,2001;Wetzel,2001,p.626). about5kmeastofKentandisadrinkingwaterreservoirfor Recently, expanding populations of Canada geese thecityofRavenna.LakesPippenandRockwellareabout4 (Branta canadensis L.) have become an important man- kmnortheastofKent.Botharedrinkingwaterreservoirsfor agement concern in Ohio’s lakes. Tens ofthousands of thecityofAkron. Morphologicalandhydrologicaldataof Canada geese pass through northern Ohio (Ohio thestudylakesarelistedinTable 1. DepartmentofNaturalResources,2002)astheytravelto andfromtheirwintering grounds inthe southernUnited Goosepopulationsurvey States and breeding grounds in Canada. Since the late SeasonalchangesinCanadagoosenumbersonEastand 1960swhenCanadagoosepopulationswereattheirlow- WestTwinLakes, LakeHodgson, LakePippen, andLake estlevels,populationshavesteadilyincreasedthroughout Rockwellweredeterminedbycountingthenumberofgeese NorthAmerica(Ankney,1996;NationalAudubonSociety, using each lake once every 2-4 weeks from February to 2002). Historically, mostCanadageeseonly occurred in October 1999. Surveys wereconducted withbinoculars at Ohioduringthemigratoryperiod(Bookhoutetal., 1989). eachsurveysite(20-30minutespersite)between12:00and Todayhowever,manygeesespendtheentireyearinOhio, 17:00.Allgeesethatwereswimmingonthelake,andgraz- andthesearecalled“resident”geese. ing, sleeping, or loafing near the edges ofthe lake were Waterfowlcancontributesubstantialamountsofnitro- counted.Fewgeesewereobservedflyingduringthesurvey, genandphosphorustolakesandwetlandswiththeirdrop- andthereforeindividualgeesewereprobablynotcountedon pings(Mannyetal.,1975;BazelyandJefferies, 1985;Gere morethanonelakeduringasurvey. andAndrikovics, 1992;Marionetal., 1994;Mannyetal., 1994; Mitchell and Wass, 1995; Moore et al., 1998). Nutrientadditionexperiment Canada geese graze on aquatic and terrestrial vegetation In2001,alaboratoryexperimentwasusedtodetermine andareoftenfoundinurbanareas.Geesereleaseanaver- thegrowthresponseofC.demersumandalgaeacrossawide ageof28droppingsperday(Mannyetal.,1975),anddrop- rangeofgoosedensities.EastTwinLakewaschosenasthe pings are a source ofnitrogen and phosphorus in lentic model lakebecause extensive limnological andecological habitats(Mannyetal.,1994;Mooreetal.,1998;Kitchellet work has been conducted there in the past (Cooke et al., al., 1999). Therefore, large populations ofCanada geese 1977; Fleischmann, 1999; Lombardo, 2002). On 17 June have the potential to contribute significant amounts of 2001, C. demersumplantsandfreshgoosedroppingswere nutrients to lakes (Conover and Chasko, 1985; Ankney, collectedatEastTwinLake.Droppingswerestoredfrozen 1996). However, the limnological impact of increasing untilusedintheexperiment.Plantsthatwereapproximately populationsofgeeseinlakesinOhioisnotclear. 15-20cminlengthwerechosenfortheexperiment,andall In this study, five lakes in northeast Ohio were sur- macroinvertebrateswereremoved.Plantswereblottedwith veyed to determine seasonal changes in populations of apapertowelfor10secondsandtheirinitialwetweightwas Canadageese,andgoosedensitieswereusedtoestimate measured. Wide-mouthNalgene, bottles (1-L) werefilled theamountofnutrientshypotheticallyaddedbygeeseto withfiltered(212pmmesh)EastTwinLakewater,andone oneoftheselakes (EastTwinLake). Laboratoryexperi- plantwasrandomlyassignedtoeachbottle.Periphytonden- ments were used to test the hypothesis that phosphorus sitywassampledbysuspendingoneglassmicroscopeslide 2004 NUTRIENTENRICHMENTBYGEESE 35 Table1.Physicalcharacteristicsofthefivelakessurveyedin1999. East West LakeHodgson2 LakePippin1 LakeRockwell1 TwinLake' TwinLake1 Latitude 41°12TSf 41°12'N 41°08'N 41°11'N 41°11'N Longitude 81°20'W 81°21'W srn'w 81°19'W 81°20'W Watershedarea(ha) 334.5(bothTwinLakes) 376.5 410 53,612.8 Altitudeabovesealevel(m) 318 319 330 321 321 Lakesurfacearea(ha) 26.9 34.0 77.5 49.0 250.9 Maximumdepth(m) 12.0 11.5 20.7 23.7 9.1 Meandepth(m) 5.0 4.3 7.8 11.9 3.1 Volume(m!) 13.5x105 15.0x10s n/a 2.7x106 7.6x10s Waterrenewaltime(years) 0.54 1.49 n/a 1.0 0.05 1Cooke,1977 2Olive,1961 5K.Coy,AkronCityWaterSupply,personalcommunication on the side ofthe containerwith dental floss. Periphyton ofEastTwinLakeis26.9ha,ourtreatmentswereequivalent wereallowedtocolonizetheslidesduringatwo-weekcon- toapproximately:0;26;2.6x 102;2.6x 103;2.6x 104;and ditioningperiod.Anymacroinvertebratesthatwereobserved 2.6x105geese/ha(Table2). inthebottlesduringthisperiodwereremoved. Aslurryofgoosedroppingswasmadefresheachdayitwas Physical characteristics ofsome goose droppings were neededbymixing10randomlyselectingdroppingswith1Lof determined. Droppings were thawed and wet weight was distilledwater.Dilutionsofslurrythatcorrespondedtodiffer- measured.Dryweightwasmeasuredafterdryingthedrop- entgoosedroppingtreatmentswereaddedonceweekly;con- pingsat105°Cfor24hours.Moisturecontentofdroppings trolsreceivedanequalvolumeofdistilledwatereachweek. wascalculatedbysubtractingdryweightfromwetweight. Eachtreatmentwasreplicatedfivetimes(30bottlestotal),and Ashfree dry weight (AFDW) was determined afterdrop- theexperimentranforfourweeks.Allbottleswereheldinan pingswereignitedinamufflefurnaceat550°Cfor60min- environmentalchamberat 15°Cwitha 14hlight/10hdark utes.OrganiccontentwasdeterminedbysubtractingAFDW cycle, and fight levels were 22-28 microeinsteins/m2/sec at fromdryweight.Totalphosphoruscontent(TP)ofindivid- 400-700nm.Distilledwaterwasaddedtoeachbottleevery ual droppings was estimated by multiplying dropping dry 4—7daystocompensateforlossesfromevaporation. weightby1.5percentasdescribedinMannyetal.(1994). Attheendofthetwo-weekconditioningperiodandatthe Afterthetwo-weekconditioningperiod,sixgoosedrop- endofthefourweekexperiment,wesampledthewatercol- pingtreatmentswereestablished: 1)control:nogoosedrop- umnbyslowlypipetting20mlofwaterfromeachbottlewith- pings added; 2) 0.0001 droppings added/week; 3) 0.001 outdisturbingany soliddebris (e.g. undissolveddroppings, droppings added/week; 4) 0.01 droppings added/week; 5) senescentplants)inthecontainer.WatercolumnTPwasmeas- 0.1 droppingsadded/week;and6) 1 droppingadded/week. uredusingstandardmethods(Clescerietal., 1998,p.6-139). Wecalculatedthenumberofdroppings (X)thatwouldbe Phosphoruscontentofsoliddebriswasnotmeasured.Atthe depositeddailytoEastTwinLake(volume= 13.5x10sL) endoftheexperiment,periphytonbiomassonthemicroscope togettheequivalentconcentrationforeachtreatmentas: slideswasmeasured,andphytoplanktonresponsewasdeter- minedbymeasuringchlorophyllaconcentrationsinthewater X=[(no.ofdroppingsperL)* 13.5x108]/7 columnusingstandardmethods(Clescerietal., 1998,p. 10- 18). Final wetweight ofeach C. demersum was measured Mannyetal.(1975)estimatedthatoneCanadagoosereleas- afterblottingtheplantfor10secondsonapapertowel.Mean esanaverageof28droppingsperday,andwecalculatedthe changeinC.demersumbiomasswasdeterminedbysubtract- numberofgeese(Y)thatwouldproducethenumberofdrop- inginitialwetweightfromfinalwetweight. pingsdepositeddailytoEastTwinLakeforeachtreatmentas: PhosphorusuptakebyC. demersumandperiphytonwas estimatedtodeterminewhethertheirgrowthwaslimitedby Y=X/28 the amount ofphosphorus available in the different treat- ments.Available phosphorus was calculatedby addingTP These calculations show thatourtreatments simulatedthe measuredinthewatercolumnattheendoftheconditioning expected amount of droppings added to East Twin by periodtoTPaddedindroppingsoverthefourweekexperi- approximately:0;69;690;69,000;690,000;and6,900,000 ment.Periphytonbiomassineachcontainerwasestimatedby geese,respectively.Furthermore,giventhatthesurfacearea calculatingtheamountofperiphytonexpectedtooccuronthe 1 36 BRUTSCHEKEIPERANDDESZALAY No.54 Table2.EffectsofgeeseatEastTwinLakesimulatedinthenutrientadditionexperiment. Simulatedconditions3 Treatment1 TPadded(jig)2 Geese Geese/nv’ Geese/ha TP/lake(kg) 0 0 0 0 0 0 0.0001 11.04 6.9x102 5.2x10-4 26 14.9 0.001 1.104x102 6.9x103 5.2x10-' 2.6x102 1.49x102 0.01 1.104x105 6.9x104 5.2x10-2 2.6x103 1.49x103 0.1 1.104x104 6.9x105 5.2x10-‘ 2.6x101 1.49x104 1 1.104x10s 6.9x106 5.2 2.6x10s 1.49x10s 1Numberofdroppingsaddedperweekto1-Lbottles 2AmountofTPaddedasdroppingsoverthefour-weekexperiment 3Numberofgeese(Geese),numberofgeeseperm'ofwater(Geese/m1),numberofgeeseperha(Geese/ha),andTPaddedoverfourweeks(TP/lake)atEastTwinLake simulatedbyeachtreatment inside ofthe 1-Lbottle (surface area: 0.055 nr) given the levelsduringApril-Octoberwhenresidentgeeseremained meanperiphytondensitymeasuredonmicroscopeslidesat inthearea(Figure 1).Goosepopulationswereanorderof endoftheexperimentforeachtreatment.Publisheduptake magnitude higher during the migration period (mean rates(McCormicketal„2001)forperiphyton(1000pgTP/g geese/1ake = 136) than during the rest ofthe year (mean periphytondryweight/day)wereusedtoestimatephosphorus geese/lake=11).TheTwinLakesandLakeRockwellhad uptake by periphyton over the four week experiment. thehighestgoosepopulationsinFebruary-March(400-500 Lombardo(2002,p. 125-134)reportedthatuptakeratesfor geese),butnumbersinalllakeswere<70geeseinthesum- C. demersum ranged from 1.7-3.2 pg TP/g plant wet mer and fall. Physical characteristics and estimatedphos- weight/day.BecauseC.demersumbiomassincreasedduring phorus contentofgoose droppings collected atEastTwin thefourweekexperiment,expectedphosphorusuptakewas LakearepresentedinTable3. estimatedforinitialandfinalC.demersumbiomasswithboth low(1.7pgTP/gplantwetweight/day)andhigh(3.2pgTP/g Nutrientadditionexperiment plantwetweight/day)uptakerates.Therangeoftotalphos- InitialTotalPhosphorus(TP)inthewatercolumnwasnot phorusuptakeinthebottleswascalculatedbyaddingperi- significantly different among treatments (P > 0.05) and phytonuptaketotheminimumC. demersumuptake(initial rangedfrom43-80pgP/L(Table4).FinalTPwasnotdif- biomass; lowuptakerate) andthemaximumC. demersum ferentamongtreatments(F=90.11,P<0.001)exceptthat uptake(finalbiomass;highuptakerate).Wecalculatedthis levelsinthe1dropping/weektreatment(5984pgP/L)were usingtheaverageinitialandfinalbiomassoveralltreatments. significantlyhigherthanallothertreatmentswhichranged Wecouldnotestimatephosphorusuptakebyphytoplankton from16-75pgP/L(Table4). becausewedidnotdirectlymeasuretheirbiomass,therefore Initial C. demersum biomass ranged from 3-5 g/plant ourestimateduptakeratesaresomewhatconservative. (Figure2)andwasnotsignificantlydifferentamongtreat- ments(P>0.05).Ceratophyllumdemersumgrewwellinall Statisticalanalyses treatments,exceptmanyplantssenescedinthehighesttreat- Datawere analyzedusing SigmaStatVersion 2.0 (SPSS ment(1dropping/week)bytheendoftheexperiment.There Inc.Headquarters,Chicago,Illinois)withanalphaerrorsetat wereno significantdifferencesin final C. demersumbio- 0.05forallanalyses.Datawerefirsttestedfornormalityand massamongtreatments (P>0.05). However, therewasa equalvarianceandwerelog (x+1)transformedwhenneces- generalpatternthatbiomassincreasedslightlyfrom0to0. 10 sary.Datacollectedattheendoftheconditioningperiodand droppings/weektreatmentsandthen sharplydeclinedat 1 attheendoftheexperimentwereanalyzedseparately.Total dropping/week,asplantsdiedoff(Figure2).ChangeofC. phosphorus,chlorophylla, C. demersumbiomass,andperi- demersum biomass was different among treatments (F = phytonbiomassmeanswerecomparedamonggoosedropping 5.885,P<0.002). Duringthefourweekexperiment,bio- treatmentswithone-wayANOVAsfollowedbyTukey’spost- massofC. demersumdecreased 1.4g/plantinthe 1 drop- hoctestwhensignificantdifferencesweredetected. ping/weektreatment, which was differentthan in the 0.1 dropping/week treatment where biomass increased 4.5 Results g/plant.ChangesinC.demersumbiomasswerenotsignifi- Canadagoosepopulations cantlydifferentamonganyothertreatments. Goosepopulationsonmostlakeswerehighestduringthe Periphytonbiomasswashigherinthe 1 dropping/week migrationperiodinFebruary-Marchanddeclinedtolower treatmentthanallothertreatments (F -4.898,P<0.005) 1 2004 NUTRIENTENRICHMENTBYGEESE 37 Figure1.CanadagoosepopulationsonfivenortheastOhiolakesin 1999. (Figure 2), and chlorophyll a levels were higher in the 1 addition of nutrients in their droppings. Ceratophyllum dropping/week treatment than the 0.0001 dropping/week demersumandalgaegrewslowlyincontroltreatmentsthat treatment(F= 11.716,P<0.001)(Figure2).Thewaterin had little availablephosphorus. There was aninsignificant thecontroltreatmentbottleswasalmostclear.Waterinthe1 trendofhighergrowthwithincreasingphosphorusaddedin dropping/weektreatmentbottleswasturbidwithadarkyel- droppings.ThehighestC.demersumandalgaegrowthwere lowish-browncolor,andthesurfacewascoveredwithdebris foundinthe0.01 and 1 dropping/weektreatments,respec- fromdroppingsanddeadC.demersum.Waterinthe0-0. tively.Thesetreatmentsalsohadthemostsurplusphospho- dropping/week treatment bottles was light yellow with rus. Muchofthephosphorusnottakenupbyplantgrowth almostnofloatingdebris. remained in the bottles as debris from undissolved drop- Table5reportstheamountofphosphorusthatweestimat- pings,especiallyinthe 1 dropping/weektreatmentbottles. edwasavailableinthebottles,andtheamountofphosphorus Therefore,additionalphosphoruswouldbecomeavailableif takenupbyC.demersumplantsandperiphytonineachtreat- thismaterialdecomposed.Thesedatasuggestthatgrowthof ment.Estimatedtotalphosphorusuptakebyperiphytonand C.demersumandperiphytonatthe0-0.001droppings/week C. demersumwasaboveavailableTPinthe0,0.0001,and treatmentswerelimitedbyavailablephosphoruslevels,but 0.001droppings/weektreatments,buttherewasasurplusof morephosphoruswasaddedathighertreatmentlevelsthan TPinthe0.01,0.1,and1droppings/weektreatments. couldbetakenupbyC.demersumandalgae. Shallowlakestendtobeeitherturbidwithabundantphyto- Discussion planktonorclearwithabundantmacrophytes(Schefferetal., Thisresearchdemonstratesthatgeesecanaffectperiphy- 1993).Habitatsthatareextremelyeutrophic(> 1000pgP/L) ton, phytoplankton, and macrophytes in lakes through the suchaswastewatertreatmentplantsaregenerallydominatedby 1 38 BRUTSCHEKEIPERANDDESZALAY No.54 Table3.Mean(±onestandarderror)physicalcharacter- isticsofonegoosedropping. N1 Mean±SE Wetweight(g) 72 11.9±0.9 Dryweight(g) 72 1.8±0.1 Ashfreedryweight(g) 24 1.07±0.1 Percentmoisturecontent 72 84.5±1.8 Organiccontent(g) 24 0.70±0.08 Pcontent(g)2 72 0.0276±0.002 1Indicatesthenumberofdroppingsusedtodeterminethemeasurement 2EstimatedfromdatapresentedinMannyetal.(1994) Table4.Mean(±onestandarderror)totalphosphorus (TP)concentrations(pgP/L)measuredinthewatercol- umnof1-Lbottlesofnutrientadditionexperiment.Each treatmentwasreplicatedfivetimes. Treatment1 InitialTP2 FinalTP’ Mean±SE Mean±SE (N=5) (N=5) 0 47.21±6.52 16.11±1.78a 0.0001 56.50±7.40 42.11±9.35a 0.001 70.43±15.01 34.51±9.26a 0.01 43.34±5.39 38.83±8.30a 0.1 50.31±4.24 74.78±12.38a 79.72±12.75 5983.90±295.85b 1Treatmentsarethenumberofdroppingsaddedperweek. 2TPattheendoftheconditioningperiod 3TPattheendoftheexperiment.Valueswithdifferentlettersaresignificant lydifferent. 350 phytoplanktoncomprisedmostlyofcyanobacteria(Jeppesenet al., 1994).Becausephytoplanktongettheirnutrientsfromthe 300 watercolumn,algalbiomassislowunderlownutrientcondi- 250 tions(Moelleretal., 1988).Therefore,oligotrophiclakeswith lownutrientlevels (< 10pg P/L) areusually dominatedby =CO 200 macrophytesthatobtainnutrientsfromsediments(Schefferet -QOC. al., 1993).Lakescanexistineitherstateatintermediatenutri- o 150 entlevels(Ballsetal., 1989;BekliogluandMoss, 1996),but O Irvineetal.(1989)suggestedthatoncephytoplanktonaredom- 100 inant,macrophytescanbepermanentlysuppressedduetolight 50 attenuation. In the nutrient addition experiment, algae were mostabundantatconcentrationsof-6000pgP/L(i.e.,thefinal TPin1dropping/weektreatment),butthehighestgrowthofC. demersumoccurredat75pgP/L(i.e.,thefinalTPin0.1drop- Treatment ping/week treatment). Therefore, the switch from a macro- phytetoanalgaedominatedsystemoccurredbetweenthe0. Figure2.AmountsofC.demersum,periphyton,andchloro- andthe 1.0dropping/weektreatments,whichcorrespondsto phyllainthenutrientadditionexperiment.Treatmentindicates densitiesof26,000-260,000geese/ha. thenumberofdroppingsaddedperweek.A,mean(±onestan- SeveralfactorsmayhavecausedthedramaticdeclineofC. darderror)wetweight(g)ofC.demersumatendofcondition- demersum atthe 1 dropping/weektreatment. Forexample, ingperiod(initial)andatendofexperiment(final).B,final decreased light on C. demersum leaves caused by phyto- mean(±onestandarderror)periphytonbiomass(g/m2)collect- planktonorperiphytonandelevatedconcentrationsoftoxic edonmicroscopeslides.C,finalmean(±onestandarderror) chlorophyllaconcentration(pgChia!L)inthewatercolumn. 2004 NUTRIENTENRICHMENTBYGEESE 39 Table5.Estimatedphosphorus(pg)availableandtakenupbyC.demersumandperiphytoninthefour-weeknutrientaddi- tionexperiment. Treatment' TPavailable3 C.demersum1 Periphyton4 Totaluptake5 Initial Final low high low high minimum maximum 0 47.21 198.40 373.45 307.71 579.23 18.47 216.87 597.70 0.0001 67.54 207.54 390.66 312.29 587.84 22.28 229.82 610.12 0.001 180.00 200.40 377.22 281.68 530.22 19.35 219.75 549.57 0.01 1147.00 212.01 399.08 330.03 621.23 14.37 226.38 635.59 0.1 11,090.00 195.45 367.90 408.77 769.44 21.11 216.56 790.55 1 110,480.00 197.35 371.48 129.73 244.19 65.09 262.44 309.29 1Numberofdroppingsaddedperweek 3Totalavailabledissolvedphosphorus(pg/L)=meanTPinwatercolumn+TPindroppingsaddedto5replicatesofeachtreatmentduringthe4weekexperiment 3C.demersumuptakeestimatedusinginitialandfinalmeanplantbiomassandlow(1.7pgTP/gplantwetweight/day)andhigh(3.2pgTP/gplantwetweight/day)uptake ratesreportedbyLombardo(2002,p.125) 4Periphytonuptakerates(1000pgTP/gperiphytondryweight/day)reportedinMcCormicketal.(2001) 5CombineduptakebyC.demersumandperiphyton.MinimumuptakeestimatedforinitialC.demersumbiomassandthelowuptakerate.Maximumuptakeestimatedfor finalC.demersumbiomassandthehighuptakerate. compoundsfromblue-greenalgaeordecompositionofdrop- we surveyed. Although the highest treatment (1 pings could have negatively affected C. demersum plants. dropping/week) caused asharp increase in phytoplankton, Anotherpotentialmechanismisthatfloatinganddeposited goosedensities (260,000geese/ha) simulatedbythistreat- debris from droppings directly shaded the C. demersum mentareunlikelytooccurinOhio.Forexample,peaknum- plants. Shadingby inorganic sedimentshas been shownto bersofgeeseobservedinnorthernOhioin2001 wereonly decrease growth of submerged macrophytes and increase 55.000 geese (Ohio Department of Natural Resources, algalgrowth(Houghetal.,1989).Moreover,highnumbersof 2002).Furthermore,thenumberofgeesecorrespondingto waterfowlcanremovealargepercentofvegetationinlakes 260.000geese/hacouldnotphysicallyfitonthesurfaceofa andwetlands(GirouxandBedard, 1987;Woolhead, 1994), lakeatonetime.Therefore,thegoosedensitiessimulatedat whichwouldotherwiseshadeoutphytoplanktoninthewater the0.1 and 1.0droppings/weektreatmentarenotlikelyto column.Furtherresearchcouldexamineifgoosegrazing,in occurinlakesinOhio.However,itisimportanttonotethat conjunctionwiththeadditionofnutrientsanddebrisintheir others(e.g.,Kitchelletal., 1999)havereportedthatnutrient droppings,canactasasuiteofco-occurringfactorsthatpro- additionsfromhighnumbersofwaterfowlcancausealgal moteconditionsleadingtoturbidalgae-dominatedlakes. bloomsinsomenaturalaquatichabitats.Theeffectsofnutri- ent addition by geese will interact with other abiotic and Managementimplications bioticfactorssuchasnutrientenrichmentfromothersources, Numbersofgeeseobservedatthefivelakeswesurveyed bioticstresses,orco-occurringchangesinpH,temperature, (Figure1)werebelowthosewehaveshowntopromotealgal orlightlevels.Forexample,lakeswhereherbivoresreduce bloomsorsuppressmacrophytegrowth.Forexample,peak macrophytebeds mayhave algalbloomsatlowernutrient numbersofmigratorygeeseobservedatEastandWestTwin addition levels than lakes with abundant macrophytes. Lakeswouldhavehypotheticallyaddedonly-400gP/day. Furthermore,inputsofgoosedroppingstolakesmaynotbe IfalloftheirdroppingsweredepositedinEastTwinLake,it constantovertimeorwithinalake.Forexample,if690geese wouldraisephosphorusconcentrationsinthelakebyonly overwinteredforthreemonthsonafrozenareawithinEast 2.3x 10"9pgP/L.EastTwinLakewatercolumnconcentra- Twin Lake, about 45 kg ofphosphorus could accumulate tionsmeasuredinthisstudywere43-79pgP/L,andcon- fromgoosedroppings.Thisamountofphosphorusmayhave centrationsreportedbyCookeetal. (1977)were76-94pg alocalimpactonalgaeandplantsaftericemeltinspring. P/L.Therefore,inputsfrompeaknumbersofgeeseobserved Moreresearchisneededtofully understandhownutri- ontheselakeswouldhavenegligibleeffectsonlakenutrient ents from geese affect macrophytes and algae in lakes. levels. Numbers of geese were slightly higher at Lake Microcosmexperiments, like our nutrient addition experi- Rockwell.However,thislakeismuchlargerthantheTwin ment,donotalwayspredictbioticresponsesinnaturalhabi- Lakes, and therefore, expected impacts of the additional tatsbecausetheremaybescale-dependenteffectsoftreat- nutrientswouldbeminimal. ments(Petersenetal., 1999),andbecausescientistscannot Ourexperimentsdemonstratethatlowtomoderategoose testforinteractions among all potential variables (Cooper populations probably do not addenough nutrients to pro- andBarmuta, 1993). Forexample,otherfactorshavebeen moteaswitchfrommacrophytetoalgaldominanceinlakes showntoaffectwhetherlakesswitchbetweenmacrophyte 40 BRUTSCHEKEIPERANDDESZALAY No.54 andphytoplanktondominatedequilibriaincluding: 1)inver- Clesceri,L.S.,A.E.Greenberg,andA.D.Eaton(eds.). 1998. tebrate herbivory ofepiphytes and phytoplankton (Timms Standard Methods for the Examination of Water and andMoss, 1984;BronmarkandWeisner, 1992);2)fishpre- WBaalsttiemwoartee.r,115T6wpe.ntieth edition. United Book Press, dation of herbivorous zooplankton (Grimm, 1989); 3) Conover, M. R., and G. G. Chasko. 1985. Nuisance Canada macrophyte production ofalleopathic chemicals that sup- gooseproblemsintheeasternUnitedStates.WildlifeSociety pressphytoplankton(Wium-Andersonetal„ 1987); and4) Bulletin,13:228-233. turbidity caused by wave action (Schiemer and Prosser, Cooke,G.D„D.W.Waller,M.R.McComas,andR.T.Heath. 1976;Nagidetal.,2001).However,thedesignofournutri- 1977. Limnological and geochemical characteristics ofthe entadditionexperimenteliminatedallofthesevariables,and TwinLakeswatershed,Ohio,p.242-270.—InL.SeybandK. treatmenteffectsmayhavebeendifferentunderothercondi- Randolph(eds.),NorthAmericanProject AStudyofU.S. Water Bodies. EPA-600/3-78-033. USEPA, Environmental tions(e.g.,inmacrophytebedswithhighspeciesdiversityor ResearchLaboratory,Corvallis. atdifferentmacrophytedensities).Moreover,ourexperiment oshnolryttpeestreidodth(ei.re.e,s4ponwseeekosf).plLanotnsg-atnedramlgiamepaocvtesraofrenluattriiveelnyt Coopm(eeodnrsi,.t)S.o.rFiDrn„ge,sahpnw.dat3Le9.r9A—B.4iB4oam1ro.mnIuinttaoD.r.i1nM9g.93aR.nodFsieeBnlebdneterhxgipcearnMidamceVrn.otisHn.vineRrbetiseoh-- additionmaybedifferent. Futureresearchshouldexamine brates.Routledge,Chapman,andHall,NewYork. interactions of nutrient addition by geese, algal grazers, Correll,D.L.1998.Theroleofphosphorusintheeutrophication predatoryfish,andwindactionundernaturalconditions. of receiving waters: a review. Journal of Environmental Quality,27:261-266. Acknowledgments Denny, P. 1972. Sitesofnutrientabsorptioninaquaticmacro- WethankA. Collier,J. Keiper,E. King, andJ. Morrisfor phytes.JournalofEcology,60:819-829. assistanceinthefieldandthelaboratory.K.Coy,Watershed Fleischman,D. 1999.Longtermchangesinthemicrocrustacean Superintendent,AkronCityWaterSupply,providedlimno- community structure of the Twin Lakes (Ohio) following logicaldataforLakesRockwellandPippen.G.D.Cooke,D. nutrientdiversionandanalumtreatment.Unpublishedmas- Bazely,andB.A.Mannyprovidedvaluablesuggestionson ter’sthesis,KentStateUniversity.98p. earlierversionsofthismanuscript.Thisprojectwassupport- Gere, G., and S. Andrikovics. 1992. Effects ofwaterfowl on edbytheOhioDivisionofWildlifewithfundsdonatedtothe waterquality.Hydrobiologia,243/244:445-448. WildlifeDiversityandEndangeredSpeciesProgram. Giroux, J. R. and J. Bedard. 1987. The effects ofgrazing by greatersnowgeeseonthevegetationoftidalmarshesintheSt. References Lawrenceestuary.JournalofAppliedEcology,24:773-788. Ankgneeeys,e.CJ.ouDr.nal19o9f6.WilAdnlifeembMaarnraagsesmmeenntt,o6f0:r2i1ch7e-s2:23t.oo many Goula2d0fe:rr3e,0s0hR-w.3a0t1e99r6.9m.aIcnrtoeprhacyttieonasnbdepthwyeteonpltahnekrtaotnesionfapproonddu.ctOiioknoso,f Ballpcslh,aenmHti„sstBrw.yi,tMhaoqsuesau,ttiraconpphdliacKna.ttiaIornnvd:inpehI..yt1eo9xp8pl9e.arniTkmhteoenntlabolsisomdoeafssissgunib,nmeewxrapgteeerd-r Grivmemge,taMt.ionP:. 1t9o8ol9s.iNnortthheermnanpiakgeem(eEnsotxolfucfiiussheLr.i)esanadndaqwuaatteicr iments carried out in ponds in the Norfolk Broadland. qualityinshallowwaters.HydrobiologicalBulletin,23:59-66. FreshwaterBiology,22:71-87. Hough,R.A.,M. D.Fomwall,B.J.Negele,R.L.Thompson, Barkico,maJc.rWo.p,hayntdesW.onF.nuJtarmieesnt.d1y9n9a8m.iEcfsfescetdsiomfenstuabtmioenrgaenddarqeusauts-- laankdesD:.pAr.inPcuitpta.l1f9a8c9t.orPslainnttchoemdmeucnliinteyodfyrnoaomtiecdsmiancarocphahiynteosf pension,p. 197-217.InE.Jeppesen,M.Sondergaard,andK. witheutrophication.Hydrobiologia,173:199-218. Christoffersen (eds.). The Structuring Role of Submerged Irvine,K.,B.Moss,andH.Balls. 1989.Thelossofsubmerged MacrophytesinLakes.Springer,NewYork. plantswitheutrophication.II.Relationshipsbetweenfishand Bazely,D.R.,andR.L.Jefferies. 1985.Goosefaeces:asource zooplanktoninasetofexperimentalponds,andconclusions. ofnitrogenforplantgrowthinagrazedsaltmarsh.Journalof FreshwaterBiology,22:89-108. AppliedEcology,22:693-703. Jeppesen,E.,M. Sondergaard,E. Kanstrup,B.Petersen,R. B. Beklioglu,M.,andB.Moss. 1996.Existenceofamacrophyte- Eriksen,M.Hammershoj,E.Mortensen,J.P.Jensen,andA. dominatedclearwaterstateoveraverywiderangeofnutri- Have. 1994. Doestheimpactofnutrientsonthebiological entconcentrations in a small shallow lake. Hydrobiologia, structureandfunctionofbrackishandfreshwaterlakesdiffer? 337:93-106. Hydrobiologia,275/276:15-30. Bookhout,T.A., K. E. Bednarik, andR.W. Kroll. 1989.The Kitchell,J.F.,D.E.Schindler,B.R.Herwig,D.M.Post,andM. Great Lakes marshes, p. 131-156. In L. M. Smith, R. L. H.Olson. 1999.Nutrientcyclingatthelandscapescale:the Pederson,andR. M. Kaminski(eds.),HabitatManagement roleofdielforagingmigrationsbygeeseattheBosquedel forMigrating andWinteringWaterfowl in NorthAmerica. ApacheNationalWildlifeRefuge,NewMexico.Limnology TexasTechUniversityPress,Lubbock. andOceanography,44:828-836. Bronmark,C.,andS.E.B.Weisner.1992.Indirecteffectsoffish Lombardo,P.2002.Effectsoffreshwatergastropodsonepiphy- community structure on submerged vegetation in shallow, ton,macrophytes, andwatertransparencyundermeso-and eutrophic lakes: an alternative mechanism. Hydrobiologia, eutrophic conditions. Unpublished Ph.D. dissertation, Kent 243/244:293-301. StateUniversity.326p. 2004 NUTRIENTENRICHMENTBYGEESE 41 Manny, B.A., R. G.Wetzel,andW. C.Johnson. 1975.Annual Ohio Department ofNatural Resources. 2002. Bi-weekly aerial contributionofcarbon,nitrogen,andphosphorusbymigrant waterfowlsurvey. [Online.]Availableonhttp://www.dnr.state. Canada geese to a hardwater lake. Verhandlungen oh.us/wildlife/hunting/waterfowl/survey.htm11August2002. InternationalVereinLimnologie,19:949-95. Olive, J. H., 1961. A limnological survey ofHodgson Lake, Manny,B.A.,W.C.Johnson,andR.G.Wetzel. 1994.Nutrient PortageCounty,Ohio.Unpublishedmastersthesis,KentState additions by waterfowl to lakes and reservoirs: predicting University.64p. t2h7e9i/r2e8f0fe:c1t2s1o-n13p2r.oductivityandwaterquality.Hydrobiologia, Petersen,J.E.,J.C.Cornwell,andW.M.Kemp. 1999.Implicit scaling in the design ofexperimental aquatic ecosystems. Marion,L.,RClergeau,L.Brient,andG.Bertru.1994.Theimpor- Oikos,85:3-18. tLaankceeGorfaanvdi-aLni-ecuo,ntFrriabnuctee.dHnyidtrroobgienol(oNg)iaa,n2d7p9h/o2s8p0h:o1r3u3s-1(4P7).to ScheJfefpepre,seMn.„ 1S9.93H..AHlotseprenra,tivMe-Le.quiMleiibjreira,iBn.sMhoaslsl,owanladkeEs.. McCormick, P. V., M. B. O’Dell, R. B. E. Shuford III, J. G. TrendsinEcologyandEvolution, 1993:275-279. Belaxanpcdek.ruiAsmq,eunaattnaidlcWBp.ohtoCas.npyhK,oer7nu1ns:e1de1yn9.r-i12c30h90m.1e.ntPeriniphaytsoubntrroepsipcoanlsewsett-o Schi2se:um2be8mr9e,-r3gF0.e,7d.anmdacMr.opPhryostseesr.in19N7e6u.siDeidsltreirbsuetei.onAqaunadtibcioBmoatsasnyo,f MitccthauelsldlLe,aptSo.hsaiFtm„i)oaninndofaRp.slhTa.anltWlanouswtsr.Niee1n9wt9s5Zb.eyaFblolaoandcdkclsoawnksae.unmsHpy(tdCiryoognbniuaonsldoagtfriacaei,-- SculStt.hoMrapret,inC’.sDP.re1s9s6,7N.eTwheYoBriko.lo6g1y0opf.AquaticVascularPlants. 306:189-197. Spence, D. H. N. 1982. The zonation ofplants in freshwater Moeller, R. E., J. M. Burkholder, and R. G. Wetzel. 1988. lakes.AdvancesinEcologicalResearch,12:37-125. Significanceofsedimentaryphosphorustoarootedsubmersed Timms,R.M.,andB.Moss.1984.Preventionofgrowthofpoten- macrophyte(Najasflexilis(Willd.)Rostk.andSchmidt)andits tiallydensephytoplanktonpopulationsbyzooplanktongraz- algalepiphytes.AquaticBotany,32:261-281. ing,inthepresenceofzooplanktivorousfish,inashallowwet- Moore,M.V.,P.Zakova,K.A.Shaeffer,andR.P.Burton. 1998. landecosystem.LimnologyandOceanography,29:472-486. PotentialeffectsofCanadageeseandclimatechangeonphos- Vollenwieder,R.A. 1968.Scientificfundamentalsoftheeutroph- phorus inputs to suburban lakes ofthe northeastern U.S.A. icationoflakesandflowingwaters,withparticularreferenceto JournalofLakeandReservoirManagement,14:52-59. nitrogen and phosphorus as factors in eutrophication. Paris Mosasn,dB.p,hyRt.oWpeltazneklt,onancdhaGn.gHe.sLbaeutfwf.ee1n98109.6A9nnaunadl1p9r7o4duicntiGvuiltyl RDeepvoerlto,pmeOnrtg.anDiAzSa/tCiSoIn/68f.o2r7.E6c1opn.omic Cooperation and Lake,Michigan.FreshwaterBiology.10:113-121. Wetzel, R. G. 2001. Limnology: Lake and RiverEcosystems, Nagid,E.J.,D.E.Canfield,andM.V.Hoyer.2001.Wind-induced Thirdedition.AcademicPress,SanDiego. 1006p. ilnocwre(a1s.e5sminmteraonphdicepsttha)teFlcohrariadcatelarkies.tiHcysdorfobaiollaorggeia(,2745k5m:927),-s1ha1l0.- WiuAmn-tAhnodnei.rse1n9,87.S.,AlSg.alJprggreonwstehn,inCh.ibCithorrisstoipnheSrisuemn,earnedctUu.m Nakai,S.,Y.Inoue,M.Hosomi,andA.Murakami.1999.Growth Huds.ArchivefurHydrobiologie, 111:317-320. inhibition of blue-green algae by allelopathic effects of Woolhead, J. 1994. Birds in the trophic web ofLake Esrom, macrophytes.WaterScienceandTechnology,39:47-53. Denmark.Hydrobiologia,279/280:29-38. NationalAudubonSociety.2002.TheChristmasbirdcounthistor- ical results. [Online.] Available on http://www.audubon.org/ bird/cbc.27July2002.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.