ebook img

Simulated annealing in convex bodies and an O (n ) volume algorithm PDF

26 Pages·2006·0.32 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Simulated annealing in convex bodies and an O (n ) volume algorithm

JournalofComputerandSystemSciences72(2006)392–417 www.elsevier.com/locate/jcss Simulated annealing in convex bodies and an O∗(n4) volume algorithm László Lovásza, SantoshVempalab,∗,1 aMicrosoftResearch,OneMicrosoftWay,Redmond,WA98052,USA bDepartmentofMathematics,MIT,Cambridge,MA02139,USA Received21April2004;receivedinrevisedform27July2005 Availableonline9November2005 Abstract We present a new algorithm for computing the volume of a convex body in Rn. The main ingredients of the algorithm are (i) a “morphing” technique that can be viewed as a variant of simulated annealing and (ii) a new roundingalgorithmtoputaconvexbodyinnear-isotropicposition.ThecomplexityisO∗(n4),improvingonthe previousbestalgorithmbyafactorofn. ©2005ElsevierInc.Allrightsreserved. Keywords:Convexbodies;Volumecomputation;Randomwalks;Simulatedannealing;Logconcavefunctions 1. Introduction Efficientvolumecomputationinhighdimensionisanimportantquestionboththeoreticallyandprac- tically.ThefirstpolynomialtimerandomizedalgorithmtocomputethevolumeofaconvexbodyinRn wasgivenbyDyeretal.intheirpathbreakingpaper[6].Theconvexbodyisspecifiedeitherbyasepa- rationoracleorbyamembershiporacleandapointinthebody[8].Thisresultisquitesurprising,given that no deterministic polynomial-time algorithm can approximate the volume to within a factor that is exponentialinn[7,2].Averyhighpowerofthedimensionn(about23)occurredinthecomplexitybound of the algorithm, but subsequent improvements [14–17,1,5,11] brought the exponent down to 5. In this ∗ Correspondingauthor. E-mailaddresses:[email protected](L.Lovász),[email protected](S.Vempala). 1SupportedbyNSFCareerawardCCR-9875024andaSloanfoundationfellowship. 0022-0000/$-seefrontmatter©2005ElsevierInc.Allrightsreserved. doi:10.1016/j.jcss.2005.08.004 L.Lovász,S.Vempala/JournalofComputerandSystemSciences72(2006)392–417 393 paper,wefurtherimprovetherunningtimetoO∗(n4)(wheretheasteriskindicatesthatthedependence onerrorparametersandonlogarithmicfactorsinnisnotshown). The main ingredient of our algorithm is a method that can be viewed as a variation of simulated annealing. Introduced by Kirkpatrick et al. [12], simulated annealing is a general-purpose randomized search method for optimization. It does a random walk in the space of possible solutions, gradually adjustingaparametercalled“temperature”.Athightemperature,therandomwalkconvergesfasttothe uniformdistributionoverthewholespace;asthetemperaturedrops,thestationarydistributionbecomes moreandmorebiasedtowardstheoptimalsolutions.Simulatedannealingoftenworkswellinpractice, butitisnotoriouslydifficulttoobtainanytheoreticalguaranteesforitsperformance. To explain the connection between volume computation and simulated annealing, let us review the common structure of previous volume algorithms.All these algorithms reduce volume computation to samplingfromaconvexbody,usingthe“Multi-phaseMonte-Carlo”technique.Oneconstructsasequence ofconvexbodiesK ⊆ K ⊆ ··· ⊆ K = K,whereK isabodywhosevolumeiseasilycomputed,and 0 1 m 0 oneestimatestheratiosvol(Ki−1)/vol(Ki)(i = 1,... ,m)bygeneratingsufficientlymanyindependent uniformly distributed random points in Ki and counting the fraction of them that fall in Ki−1. The generation of random points in K is done by some version of the Markov chain method (lattice walk, i ballwalk,hit-and-run),whosedetailscanbeignoredforthemoment. Ofcourse,onewouldliketochoosethenumberofphases,m,tobesmall.Anysavinginthenumberof phasesentersasitssquareintherunningtime:notonlythroughthereducednumberofiterationsbutalso throughthefactthatwecanallowlargererrorsineachphase,whichmeansasmallernumberofsample pointsareneeded. However, reducing the number of phases is constrained by the fact that in order to get a sufficiently goodestimatefortheratiovol(Ki−1)/vol(Ki),oneneedsaboutmvol(Ki)/vol(Ki−1)randompoints.It followsthattheratiosvol(Ki)/vol(Ki−1)mustnotbetoolarge;sincethevolumeratiobetweenvol(K) andvol(K )isn(cid:1)(n) intheworstcaseforanyconceivablechoiceofK ,itfollowsthatmhastobe(cid:1)(n) 0 0 just to keep the ratios vol(Ki)/vol(Ki−1) polynomial size. It turns out that the best choice is to keep theseratiosbounded;thiscanbeachievede.g.ifK0 = B istheunitballandKi = K ∩(2i/nB)f√ori = 1,2,... ,m = (cid:2)(nlogn). (After appropriate preprocessing, one can assume that B ⊆ K ⊆ O( n)B; we will discuss such “roundings” in more detail.) Reducing m any further (i.e., o(n)) appears to be a fundamentalhurdle. Ontheotherhand,volumecomputationisaspecialcaseofintegration.SincethepaperofApplegate and Kannan [1], the flexibility obtained by extending the problem to the integration of special kinds of functions (mostly logconcave) has been exploited in several papers. Mostly integration was used to dampen boundary effects; we use it in a different way. Instead of a sequence of bodies, we construct a sequence of functions f0(cid:1)f1(cid:1)···(cid:1)fm that “co(cid:1)nnect” a(cid:1)function f0 whose integral is easy to find to the characteristic function fm of K. The ratios ( fi−1)/( fi) can be estimated by sampling from the distribution whose density function is proportional to fi and averaging the function fi−1/fi over the sample points. (This method was briefly described in [16], but it was considered as a generalization of thevolumecomputationalgorithmratherthanatoolforimprovement.) If the functions f are characteristic functions of the convex bodies K , then this is just the standard i i algorithm.Thecrucialgaincomesfromthefactthatthenumberofsamplepointsneededineachphaseis smallerifthefi aresmooth.Weaddanewcoordinatex0 andusefunctionsoftheformf(x) = e−x0/T, where x0 is the first coordinate of √x (we will come back√to the preprocessing of K that is needed). For ∗ ∗ thischoice,wewillonlyneedO ( n)phases,andO ( n)samplepointsineachphase.Thus,weget 394 L.Lovász,S.Vempala/JournalofComputerandSystemSciences72(2006)392–417 samples from a density proportional to e−x0/T with monotonically increasing values ofT (in simulated annealing,T,the“temperature”,isdecreased). Ontwopointsthisnewapproachbringsinnewdifficulties.Thefirstisrelatedtothefactthatwehaveto samplefromdistributionsthatarenotuniformoverK.Variousmethodsforsamplingconvexbodieshave beenextendedtologconcavedistributions,andindeedourdensityfunctionsarelogconcave;buttheydo not satisfy any smoothness conditions, and so we have to use recent results [18,19] that give sampling algorithmswithO∗(n3)steps(oraclecalls)persamplepoint,withoutanysmoothnessassumption. Theotherdifficultyisthatthesesamplingalgorithmsneeda“warmstart”,i.e.,theycannotbestarted fromafixedpointbutfromarandompointthatisalreadyalmostuniformlydistributed,inthesensethat the ratio of the target density and the starting density is bounded at every point. In the standard version ofthevolumealgorithm,thiscouldbeguaranteedbyusingthesamplepointsgeneratedinthepreceding phase as starting points for the new phase. In our case this cannot be done, since the ratio of densities is not bounded. Instead, we use the hit-and-run random walk which has a much milder dependence on starting density. In [19], it was shown that the complexity of sampling by this walk depends only the logarithmoftheL normofthestartingdensity;i.e.,itsufficesthatthisnormispolynomiallybounded. 2 Themainresultofthepapercanbestatedpreciselyasfollows. Theorem1.1. ThevolumeofaconvexbodyK,givenbyamembershiporacle,andaparameterRsuch thatB ⊆ K ⊆ RB,canbeapproximatedtowithinarelativeerrorofε withprobability1−(cid:1)using (cid:2) (cid:3) n4 n n O log9 +n4log8 logR = O∗(n4) ε2 ε(cid:1) (cid:1) oraclecalls. Theoracleneededisaweakmembershiporacle[8].ThenumberofarithmeticoperationsisO∗(n6),on numberswithapolylogarithmicnumberofdigits.Asinallpreviousalgorithms,itisafactorofO∗(n2) morethantheoraclecomplexity.Inthenextsection,wedescribethevolumealgorithm.Fortheanalysis (Section 2.4 gives an outline), we will need some tools about logconcavity and√probability (Section 3). Inthedescriptionofthevolumealgorithm,wewillassumethatB ⊆ K ⊆ O∗( n)B.InSection5,we showhowtoachievethisbyanalgorithmthat“rounds”agivenconvexbody. 2. Thevolumealgorithm Inthissection,wedescribethemainvolumealgorithm.Wewillassumethattheconv√exbodyofinterest, K ⊆ Rn, contains the unit ball B and is contained in the ball DB, where D = O( nln(1/ε)). If this is not true for the given K, it can be achieved by a pre-processing step (finding and applying a suitable affinetransformation)whichisdescribedinSection5.Toavoidsometrivialdifficulties,weassumethat n(cid:2)16. ThemainpartofthealgorithmconsistsofamodificationofK,calledthe“pencil"construction,described in Section 2.2, followed by a multi-phase Monte-Carlo estimation.The algorithm uses a subroutine for convexbodysamplingasablackbox,describednext. L.Lovász,S.Vempala/JournalofComputerandSystemSciences72(2006)392–417 395 2.1. Sampling Inouralgorithm,weuseasablackboxasamplingalgorithm(orsamplerforshort),whichsamplesfrom adistributionsupportedonaconvexbodyK,whosedensityf(x)isproportionaltoagivenexponential functione−aTx,i.e., e−aTx f(x) = (cid:1) . (1) e−aTydy K Let the corresponding measure be (cid:2) .The algorithm needs a starting point X ∈ K and a bound on the f followingnormmeasuringthedistancebetweenthestartingdensity(cid:3)andthetargetdensity(cid:2) : f (cid:5) (cid:6) (cid:5) (cid:6) (cid:4) (cid:4) 2 d(cid:3) d(cid:3) d(cid:3)(X) (cid:6)(cid:3)/(cid:2)f(cid:6) = d(cid:2) d(cid:3) = d(cid:2) d(cid:2)f = E(cid:3) d(cid:2) (X) . K f K f f Convexbodysampler: • Input:aconvexbodyK ∈ Rn givenbyamembershiporacle,avectora ∈ Rn,astartingpointX ∈ K drawnfromsomedistribution(cid:3),aboundMontheL normof(cid:3)w.r.t.(cid:2) ,andanaccuracyparameter 2 f (cid:1) > 0; • Output:apointY ∈ K drawnfromadistributionthathasvariationdistanceatmost(cid:1)from(cid:2) . f A sampler we can use is given in [19], using the hit-and-run algorithm. We make the following as- sumptionsabouttheinput: (A1)EverylevelsetLoffcontainsaballwithradius(cid:2) (L)r2. (cid:1) f (A2) f(x)|x|2dx = R2. K (A3)ThestartingpointXisarandompointfromadistribution(cid:3)whoseL -normwithrespectto(cid:2) is 2 f atmostM. A distribution that satisfies (A1) and (A2) is said to be (r,R)-rounded. If r = (cid:1)(1) and R = O∗(1), thenwesaythatfiswell-rounded. Under these assumptions, the main result of [19] says that the total variation distance of the output distributionfrom(cid:2) islessthan(cid:1).Furthermore,thenumberofcallsonthemembershiporacleis f (cid:2) (cid:3) R2 Mn O n2 ln5 . r2 (cid:1)2 √ Intheanalysis,wewillshowthat(A1)issatisfiedwithr = 1/10,(A2)issatisfiedwithR = O( nln 1) ε and(A3)withM(cid:1)8.Thus,thecomplexityisO(n3ln7 n)perrandompoint. ε(cid:1) Forthespecialcasewhena = 0in(1),i.e.,fistheuniformdistribution,wecansimplify(A1)tothe conditionthatKcontainsaballofradiusr.Inthiscase,thesamplerisabitmoreefficient—thenumber 2Strictlyspeaking,[19]onlyneedsthisforthelevelsetofprobability1/8. 396 L.Lovász,S.Vempala/JournalofComputerandSystemSciences72(2006)392–417 Fig.1.ThepencilconstructionwhenKisapentagon.Thecross-sectionisaballnearthetipandKatthebase. ofcallstothemembershiporacleis (cid:2) (cid:3) R2 M O n2 ln3 . r2 (cid:1) 2.2. Thepencilconstruction LetKbethegivenbodyinRn andε > 0.LetCdenotetheconeinRn+1 definedby (cid:7) (cid:9) (cid:8)n C = x ∈ Rn+1 : x (cid:2)0, x2(cid:1)x2 , 0 i 0 i=1 wherex = (x ,x ,... ,x )T.WedefineanewconvexbodyK(cid:7) ∈ Rn+1asfollows(recallthatB ⊆ K ⊆ 0 1 n DB): (cid:10) (cid:11) K(cid:7) = [0,2D]×K ∩C. Inotherwords,K(cid:7) isan(n+1)-dimensional“pencil”whosecross-sectionisK,whichissharpenedand itstipisattheorigin.NotethatbythedefinitionofD,thepartofK(cid:7) inthehalfspacex (cid:2)D isinsideC 0 andsoitisacylinderoverK.Also,sinceKcontainsaunitball,thepartofK(cid:7) inthehalfspacex (cid:1)1isa 0 cone C over the unit ball. See Fig. 1 for an illustration. It is trivial to implement a membership oracle B (cid:7) forK . ThevolumeofthepencilK(cid:7)isatleasthalfthevolumeofthecylinder[0,2D]×K.Hence,ifweknow thevolumeofK(cid:7),itiseasytoestimatethevolumeofKbygeneratingO(1/ε2)samplepointsfromthe uniformdistributionon[0,2D]×K andthencountinghowmanyofthemfallintoK(cid:7).NotethatK(cid:7) is containedinaballofradius2D. 2.3. Themulti-phaseMonte-Carlo Nowwedescribethe“morphing”partofthealgorithm.Foreachrealnumbera > 0,let (cid:4) Z(a) = e−ax0dx, K(cid:7) wherex isthefirstcoordinateofx.Fora(cid:1)ε/D,aneasycomputationshowsthat 0 (1−ε)vol(K(cid:7))(cid:1)Z(a)(cid:1)vol(K(cid:7)), L.Lovász,S.Vempala/JournalofComputerandSystemSciences72(2006)392–417 397 soitsufficestocomputeZ(a)forsuchana.Ontheotherhand,fora(cid:2)2nthevalueofZ(a)isessentially thesameastheintegraloverthewholecone,whichiseasytocompute: (cid:4) (cid:4) ∞ Z(a)(cid:1) e−ax0dx = e−attn(cid:4) dt = n!(cid:4) a−(n+1) n n C 0 (where(cid:4) = vol(B))and n (cid:4) (cid:4) (cid:4) 1 ∞ Z(a)(cid:2) e−ax0dx = e−attn(cid:4) dt > (1−ε) e−attn(cid:4) dt n n CB 0 0 bystandardcomputation(assumingε > (3/4)n). So,ifweselectasequencea > a > ··· > a forwhicha = 2nanda (cid:1)ε/D,thenwecanestimate 0 1 m 0 m (cid:7) vol(K )by m(cid:12)−1 Z(a ) = Z(a ) Z(ai+1). m 0 Z(a ) i=0 i ThealgorithmwillestimateZ(a )byestimatingtheratios m R = Z(ai+1). (2) i Z(a ) i We will estimate the R ’s using sampling. Let (cid:2) be the probability distribution over K(cid:7) with density i i proportionaltoe−aix0,i.e., d(cid:2) (x) e−aix0 i = . dx Z(a ) i LetXbearandomsamplepointfrom(cid:2)i,letX0 beitsfirstcoordinateandY = e(ai−ai+1)X0.Itiseasyto verifythatYhasexpectationR : (cid:4) i E(Y)= e(ai−ai+1)x0d(cid:2) (x) i (cid:4)K(cid:7) = e(ai−ai+1)x0 e−aix0 dx K(cid:7) (cid:4) Z(ai) = 1 e−ai+1x0dx = Z(ai+1). Z(ai) K(cid:7) Z(ai) So,toestimatetheratioR ,wedrawrandomsamplesX1,... ,Xk from(cid:2) ,andcomputetheaverageof i i thecorrespondingY’s. (cid:8)k Wi = 1 e(ai−ai+1)(Xij)0. (3) k j=1 Sample points that are (approximately) from (cid:2) are easy to get: select a random positive real number 0 X from the exponential distribution with density proportional to e−2nx, and a uniform random point 0 (Y ,... ,Y )fromtheunitballB.IfX = (X ,X Y ,... ,X Y ) ∈/ K(cid:7),tryagain;else,returnX. 1 n 0 0 1 0 n 398 L.Lovász,S.Vempala/JournalofComputerandSystemSciences72(2006)392–417 Inordertogetappropriatesamplepointsfrom(cid:2) (i > 0)efficiently(i.e.,satisfyassumptions(A1)and i (A2)ofthesampler)√,wehavetomakeasimpleaffinetransformation,namelyascalingalongthex0axis. Let(cid:5) = max(1,a / n)and i i (cid:7) (cid:5) x ifj = 0, (T x) = i 0 i j x otherwise. j Thiswillensurethatthedistributionswesamplearewell-rounded.Thealgorithmshownintheboxtakes as input the dimension n of K, a sampling oracle for (cid:2) (i = 1,... ,m), and an accuracy parameter ε. i Forcallingtheoracle,theroundnessparametersandthewarmstartmeasurewillalwaysbeboundedby (cid:7) thesamevalues,andsowedonotmentionthembelow.TheoutputZisanestimateofthevolumeofK , correcttowithina1± ε factor,withhighprobability. 2 Volumealgorithm: (cid:10) (cid:11) √ √ i V1. Setm = 2(cid:9) nln n(cid:10), k = 512 nln n, (cid:1) = ε2n−10 and a = 2n 1− √1 ε ε2 ε i n for i = 1,... ,m. V2. Fori = 1,... ,m,dothefollowing. • Run the sampler k times for convex body T K(cid:7), with vector (a /(cid:5) ,0,... ,0) (i.e., i i i exponential function e−aix0/(cid:5)i), error parameter (cid:1), and (for i > 0) starting points T X1 ,...,T Xk .ApplyT−1 totheresultingpointstogetpointsX1,... ,Xk. i i−1 i i−1 i i i • Usingthesepoints,compute (cid:8)k Wi = 1 e(ai−ai+1)(Xij)0. k j=1 V3. Return Z = n!(cid:4) (2n)−(n+1)W ...W n 1 m (cid:7) astheestimateofthevolumeofK . 2.4. Outlineofanalysis The analysis of the algorithm will verify the following claims. The first asserts that the estimate computedbythealgorithmisaccurate,whilethesecondandthirdaddresstheconditionsrequiredbythe sampler. 1. The variance of the function e(ai−ai+1)x0 relative to the distribution (cid:2) is small enough so that k i sample points suffice to estimate its mean (Lemma 4.1) and the dependence between samples is smallenoughthattheoutputisaccuratewithlargeprobability(Lemma4.2). L.Lovász,S.Vempala/JournalofComputerandSystemSciences72(2006)392–417 399 2. Randomsamplesfromonephaseprovideagoodstartforthenextphase(Lemma4.4),i.e.,thewarm startmeasure(L norm)Misboundedand(A3)issatisfied. 2 3. TheconvexbodyTiK(cid:7) andexponentialfunctione−aix0/(cid:5)i satisfy(A1)and(A2)(Lemmas4.5,4.6), theroundnessassumptionsrequiredbytheconvexbodysampler. 4. Theoverallcomplexityis √ √ O∗( n)phases ×O∗( n)samplesperphase ×O∗(n3)queriespersample = O∗(n4). Together,theseclaimsyieldTheorem1.1.Theirproofsneedsometechnicaltools,collectedinthenext section(theymightbeusefulelsewhere). Below, we are going to assume that n(cid:2)15 and ε > (3/4)n, which only excludes uninteresting cases butmakestheformulassimpler. 3. Analysistools 3.1. Logconcavity Anonnegativefunctionf : Rn → R+ issaidtobelogconcaveifforanyx,y ∈ Rn andany(cid:6) ∈ [0,1], f((cid:6)x +(1−(cid:6))y)(cid:2)f(x)(cid:6)f(y)1−(cid:6). ThefollowingtheoremprovedbyDinghas[4],Leindler[13]andPrékopa[21,20]summarizesfundamental propertiesoflogconcavefunctions. Theorem3.1. Allmarginalsaswellasthedistributionfunctionofalogconcavefunctionarelogconcave. Theconvolutionoftwologconcavefunctionsislogconcave. Thenextlemmaisnewandwillplayakeyroleintheanalysis. Lemma3.2. LetK ⊆ Rn beaconvexbodyandf : K → R,alogconcavefunction.Fora > 0,define (cid:4) Z(a) = f(ax)dx. K ThenanZ(a)isalogconcavefunctionofa. Proof. Let (cid:7) 1 ift > 0and(1/t)x ∈ K, G(x,t) = 0 otherwise. ItiseasytocheckthatG(x,t)islogconcave,andsothefunction F(x,t) = f(x)G(x,t) 400 L.Lovász,S.Vempala/JournalofComputerandSystemSciences72(2006)392–417 isalsologconcave.ByTheorem3.1,itsmarginalintisalogconcavefunctionoft.Butthismarginalis just (cid:4) (cid:4) f(x)G(x,t)dx = tn f(tx)dx. (cid:3) Rn K Thenextlemmaisfrom[18]. Lemma3.3. Let X be a random variable with a logconcave distribution, such that E(X) = X¯ and E(|X−X¯|2) = (cid:3)2.Then (cid:13) (cid:14) P |X−X¯| > t(cid:3) (cid:1)e−t+1. ThefollowinglemmaisalongthelinesofTheorem4.1in[10]anditsproofisthesame. Lemma3.4. LetKbeaconvexbodyinRn whosecentroidistheorigin.Foraunitvectorv,let −a = minvTx, b = maxvTx and (cid:3)2 = E ((vTx)2). K x∈K x∈K Then (cid:15) n+2 (cid:16) (cid:3) (cid:1)a,b(cid:1)(cid:3) n(n+2). n 3.2. Probability FortworandomvariablesX,Y,wewillusethefollowingmeasureoftheirindependence: (cid:17) (cid:17) (cid:2)(X,Y) = sup(cid:17)P(X ∈ A, Y ∈ B)−P(X ∈ A)P(Y ∈ B)(cid:17), A,B where A and B range over measurable subsets of the ranges of X and Y. We say that X and Y are (cid:2)- independentwhere(cid:2) = (cid:2)(X,Y).Bytheidentity (cid:17) (cid:17) (cid:17) (cid:17) (cid:17)P(X ∈ A, Y ∈ B)−P(X ∈ A)P(Y ∈ B)(cid:17) = (cid:17)P(X ∈ A, Y ∈ B)−P(X ∈ A)P(Y ∈ B)(cid:17), (4) whereAdenotesthecomplementarysetofA,itsufficestoconsidersetsA,B withP(X ∈ A)(cid:2)1/2and P(Y ∈ B)(cid:2)1/2. Thefollowingaresomebasicpropertiesof(cid:2). Lemma3.5. Iffandgaretwomeasurablefunctions,then (cid:2)(f(X),g(Y))(cid:1)(cid:2)(X,Y). L.Lovász,S.Vempala/JournalofComputerandSystemSciences72(2006)392–417 401 Proof. Trivialfromtheequation (cid:17) (cid:17) (cid:17)P(f(X) ∈ A, g(Y) ∈ B)−P(f(X) ∈ A)P(f(Y) ∈ B)(cid:17) (cid:17) (cid:17) = (cid:17)P(X ∈ f−1(A), Y ∈ g−1(B))−P(X ∈ f−1(A))P(Y ∈ g−1(B))(cid:17). (cid:3) Thenextlemmaisavariationofalemmain[11]. Lemma3.6. LetX,Y berandomvariablessuchthat0(cid:1)X(cid:1)a and0(cid:1)Y(cid:1)b.Then (cid:17) (cid:17) (cid:17)E(XY)−E(X)E(Y)(cid:17)(cid:1)ab(cid:2)(X,Y). Proof. TheLHScanbewrittenas (cid:17)(cid:4) (cid:4) (cid:17) (cid:17) a b (cid:17) (cid:17) (cid:17) (cid:17) P(X(cid:2)x,Y(cid:2)y)dxdy(cid:17) 0 0 whichisclearlyatmost(cid:2)ab. (cid:7) (cid:7) Lemma3.7. LetX,Y,X ,Y berandomvariables,andassumethatthepair(X,Y)isindependentfrom (cid:7) (cid:7) thepair(X ,Y ).Then (cid:2)((X,X(cid:7)),(Y,Y(cid:7)))(cid:1)(cid:2)(X,Y)+(cid:2)(X(cid:7),Y(cid:7)). Proof. Set(cid:2) = (cid:2)(X,Y)and(cid:2)(cid:7) = (cid:2)(X(cid:7),Y(cid:7)).LetR,R(cid:7),S,S(cid:7) betherangesofX,Y,X(cid:7),Y(cid:7),respectively, andletA ⊆ R×R(cid:7),B ⊆ S ×S(cid:7) bemeasurablesets.Wewanttoshowthat (cid:17) (cid:17) (cid:17)P((X,X(cid:7)) ∈ A, (Y,Y(cid:7)) ∈ B)−P((X,X(cid:7)) ∈ A)P((Y,Y(cid:7)) ∈ B)(cid:17)(cid:1)(cid:2)+(cid:2)(cid:7). (5) Forr ∈ Rands ∈ S,letA = {r(cid:7) ∈ R(cid:7) : (r,r(cid:7)) ∈ A},B = {s(cid:7) ∈ S(cid:7) : (s,s(cid:7)) ∈ B},f(r) = P(X(cid:7) ∈ A ), r s r g(s) = P(Y(cid:7) ∈ B )andh(r,s) = P(X(cid:7) ∈ A ,Y(cid:7) ∈ B ).Then s r s P((X,X(cid:7)) ∈ A) = E(f(X)), P((Y,Y(cid:7)) ∈ B) = E(g(Y)) and P((X,X(cid:7)) ∈ A, (Y,Y(cid:7)) ∈ B) = EX,Y(PX(cid:7),Y(cid:7)(X(cid:7) ∈ AX, Y(cid:7) ∈ BY)) = EX,Y(h(X,Y)) (cid:7) (cid:7) (hereweusethat(X,Y)isindependentof(X ,Y )).Wecanwritetheleft-handsideof(5)as E(h(X,Y))−E(f(X))E(g(Y)) (cid:18) (cid:19) (cid:18) (cid:19) = E(h(X,Y)−f(X)g(Y)) + E(f(X)g(Y))−E(f(X))E(g(Y)) . (6)

Description:
algorithm are (i) a “morphing” technique that can be viewed as a variant of simulated annealing and (ii) a new rounding algorithm to put a convex body
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.