SPRINGER BRIEFS IN OPTIMIZATION Remigijus Paulavičius Julius Žilinskas Simplicial Global Optimization SpringerBriefs in Optimization SeriesEditors PanosM.Pardalos JánosD.Pintér StephenM.Robinson TamásTerlaky MyT.Thai SpringerBriefs in Optimization showcases algorithmic and theoretical tech- niques,casestudies,andapplicationswithinthebroad-basedfieldofoptimization. Manuscripts related to the ever-growing applications of optimization in applied mathematics, engineering, medicine, economics, and other applied sciences are encouraged. Forfurthervolumes: http://www.springer.com/series/8918 Remigijus Paulavicˇius (cid:129) Julius Žilinskas Simplicial Global Optimization 123 RemigijusPaulavicˇius JuliusŽilinskas InstituteofMathematicsandInformatics InstituteofMathematicsandInformatics VilniusUniversity VilniusUniversity Vilnius,Lithuania Vilnius,Lithuania ISSN2190-8354 ISSN2191-575X(electronic) ISBN978-1-4614-9092-0 ISBN978-1-4614-9093-7(eBook) DOI10.1007/978-1-4614-9093-7 SpringerNewYorkHeidelbergDordrechtLondon LibraryofCongressControlNumber:2013949407 MathematicsSubjectClassification(2010):90C26,90C57,52B11,26B35,90C90 ©RemigijusPaulavicˇius,JuliusŽilinskas2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Simplicialglobaloptimizationfocusesondeterministiccoveringmethodsforglobal optimization partitioning the feasible region by simplices. Although rectangular partitioning is used most often in global optimization, simplicial covering has advantages shown in this book. The purpose of the book is to present global optimization methods based on simplicial partitioning in one volume. The book describes features of simplicial partitioning and demonstrates its advantages in globaloptimization. Asimplexisapolyhedroninamultidimensionalspace,whichhastheminimal numberofvertices.Thereforesimplicialpartitionsarepreferableinglobaloptimiza- tionwhenthevaluesoftheobjectivefunctionatallverticesofpartitionsareusedto evaluatesubregions. The feasible region defined by linear constraints may be covered by simplices and therefore simplicial optimization algorithms may cope with linear constraints inadelicatewaybyinitialcovering.Thismakessimplicialpartitionsveryattractive foroptimizationproblemswithlinearconstraints. Thereareoptimizationproblemswheretheobjectivefunctionshavesymmetries which may be taken into account for reducing the search space significantly by settinglinearinequalityconstraints.Theresultedsearchregionmaybecoveredby simplices. Applications benefiting from simplicial partitioning are examined in the book: nonlinear least squares regression, center-based clustering of data having one feature, and pile placement in grillage-type foundations. In the examples shown, thesearchregionreducedtakingintoaccountsymmetriesoftheobjectivefunctions isasimplexthussimplicialglobaloptimizationalgorithmsmayuseitasastarting partition. The book provides exhaustive experimental investigation and shows theimpact of various bounds, types of subdivision, and strategies of candidate selection on theperformanceofglobaloptimizationalgorithms.Researchersandengineerswill benefit from simplicial partitioning algorithms presented in the book: Lipschitz branch-and-bound,LipschitzoptimizationwithouttheLipschitzconstant.Wehope v vi Preface the readers will be inspired to develop simplicial versions of other algorithms for global optimization and even use other non-rectangular partitions for special applications. The book deals with theoretical, computational, and application aspects of simplicial global optimization. It is intended for scientists and researchers in optimizationandmayalsoserveasausefulresearchsupplementforPh.D.students inmathematics,computerscience,andoperationsresearch. TheauthorsareverygratefultoProf.PanosPardalos,DistinguishedProfessorat theUniversityofFloridaandDirectoroftheCenterforAppliedOptimization,for hiscontinuingencouragementandsupport.TheauthorshighlyappreciateSpringer’s initiative to publish SpringerBriefs on Optimization and the given opportunity to publish their book in this series. The authors would like to thank Springer’s publishingeditorRaziaAmzadforguidingustopublicationofthebook. Postdoctoral fellowship of R. Paulavicˇius is being funded by European Union Structural Funds project “Postdoctoral Fellowship Implementation in Lithuania” withintheframeworkoftheMeasureforEnhancingMobilityofScholarsandOther Researchers and the Promotion of Student Research (VP1-3.1-ŠMM-01) of the ProgramofHumanResourcesDevelopmentActionPlan. Vilnius,Lithuania RemigijusPaulavicˇius JuliusŽilinskas Contents 1 SimplicialPartitionsinGlobalOptimization............................. 1 1.1 CoveringMethodsforGlobalOptimization........................... 1 1.2 SimplicialPartitioning.................................................. 5 1.3 CoveringaHyper-RectanglebySimplices ............................ 9 1.4 CoveringofFeasibleRegionDefinedbyLinearConstraints......... 16 2 LipschitzOptimizationwithDifferentBoundsoverSimplices ......... 21 2.1 LipschitzOptimization ................................................. 21 2.2 ClassicalLipschitzBounds............................................. 23 2.3 ImpactofNormsonLipschitzBounds................................. 28 2.4 LipschitzBoundBasedonCircumscribedSpheres ................... 34 2.5 TightLipschitzBoundoverSimpliceswiththe1-norm .............. 37 2.6 Branch-and-BoundwithSimplicialPartitionsandVarious LipschitzBounds........................................................ 42 2.7 ParallelBranch-and-BoundwithSimplicialPartitions................ 49 2.8 ExperimentalComparisonofSelectionStrategies .................... 56 3 SimplicialLipschitzOptimizationWithoutLipschitzConstant........ 61 3.1 DIRECTAlgorithm...................................................... 62 3.2 ModificationsofDIRECTAlgorithm................................... 66 3.2.1 ModificationsofDIRECTforProblemswithConstraints..... 68 3.2.2 SymDIRECTAlgorithm ........................................ 69 3.3 DISIMPLAlgorithm..................................................... 71 3.3.1 DISIMPL forLipschitzOptimizationProblems withLinearConstraints......................................... 77 3.3.2 ParallelDISIMPLAlgorithm ................................... 79 3.4 ExperimentalInvestigations............................................ 81 4 ApplicationsofGlobalOptimizationBenefiting fromSimplicialPartitions................................................... 87 4.1 GlobalOptimizationinNonlinearLeastSquaresRegression......... 87 vii viii Contents 4.2 Center-BasedClusteringProblemforData HavingOnlyOneFeature .............................................. 96 4.3 PilePlacementinGrillage-TypeFoundations ......................... 101 AppendixA DescriptionofTestProblems................................... 107 References......................................................................... 131 Acronyms n Numberofvariables Rn n-dimensionalEuclideanspace D Feasibleregion " Tolerance x;y;z Variables x;y;z Vectorsofvariables f.x/ Objectivefunction rf.x/ Gradientofobjectivefunctionf.x/ F.x/ Lowerboundingfunction f(cid:2) Globaloptimumfunctionvalue f.x / "-globaloptimum opt x(cid:2) Globaloptimumvector x "-globaloptimumvector opt S Solution(subregion,optimumpoint) T Finite set of points where the objective function value has been evaluated I Subregionoffeasibleregion L Candidateset jLj Cardinalityofacandidateset v Vertexofsubregion V.I/ Setofverticesofsubregion O n-dimensionalball LB Lowerboundforminimum UB Upperboundforminimum R Circumradius D Determinant p Numberofprocessors p;q Normindex s Speedup p e Efficiency p ix