ebook img

Simple Nature - Light and Matter PDF

983 Pages·2016·40.9 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Simple Nature - Light and Matter

2 Simple Nature An Introduction to Physics for Engineering and Physical Science Students Benjamin Crowell www.lightandmatter.com Fullerton, California www.lightandmatter.com Copyright (cid:13)c 2001-2008 Benjamin Crowell rev. April 26, 2017 Permission is granted to copy, distribute and/or modify this docu- ment under the terms of the Creative Commons Attribution Share- Alike License, which can be found at creativecommons.org. The license applies to the entire text of this book, plus all the illustra- tions that are by Benjamin Crowell. (At your option, you may also copy this book under the GNU Free Documentation License ver- sion 1.2, with no invariant sections, no front-cover texts, and no back-cover texts.) All the illustrations are by Benjamin Crowell ex- cept as noted in the photo credits or in parentheses in the caption of the figure. This book can be downloaded free of charge from www.lightandmatter.com in a variety of formats, including editable formats. Brief Contents 0 Introduction and Review 13 1 Conservation of Mass 55 2 Conservation of Energy 73 3 Conservation of Momentum 129 4 Conservation of Angular Momentum 245 5 Thermodynamics 299 6 Waves 343 7 Relativity 385 8 Atoms and Electromagnetism 459 9 Circuits 515 10 Fields 563 11 Electromagnetism 653 12 Optics 739 13 Quantum Physics 829 5 6 Contents 0 Introduction and Review 0.1 Introduction and Review . . . . . . . . . . . . . . 13 The scientific method, 13.—What is physics?, 16.—How to learn physics,19.—Velocityandacceleration,21.—Self-evaluation,23.— Basics of the metric system, 24.—Less common metric prefixes, 28.—Scientificnotation,28.—Conversions,29.—Significantfigures, 31.—A note about diagrams, 33. 0.2 Scaling and Order-of-Magnitude Estimates . . . . . . 35 Introduction,35.—Scalingofareaandvolume,36.—Order-of-magnitude estimates, 44. Problems . . . . . . . . . . . . . . . . . . . . . . 48 1 Conservation of Mass 1.1 Mass . . . . . . . . . . . . . . . . . . . . . . 55 Problem-solving techniques, 58.—Delta notation, 59. 1.2 Equivalence of Gravitational and Inertial Mass . . . . . 60 1.3 Galilean Relativity. . . . . . . . . . . . . . . . . 62 Applications of calculus, 66. 1.4 A Preview of Some Modern Physics . . . . . . . . . 68 Problems . . . . . . . . . . . . . . . . . . . . . . 70 2 Conservation of Energy 2.1 Energy . . . . . . . . . . . . . . . . . . . . . 73 Theenergyconcept,73.—Logicalissues,75.—Kineticenergy,76.— Power, 80.—Gravitational energy, 81.—Equilibrium and stability, 86.—Predicting the direction of motion, 89. 2.2 Numerical Techniques . . . . . . . . . . . . . . . 91 2.3 Gravitational Phenomena. . . . . . . . . . . . . . 96 Kepler’s laws, 96.—Circular orbits, 98.—The sun’s gravitational field,99.—Gravitationalenergyingeneral,99.—Theshelltheorem, 102.—Evidence for repulsive gravity, 108. 2.4 Atomic Phenomena . . . . . . . . . . . . . . . . 109 Heatiskineticenergy.,110.—Allenergycomesfromparticlesmov- ing or interacting., 111. 2.5 Oscillations . . . . . . . . . . . . . . . . . . . 113 Problems . . . . . . . . . . . . . . . . . . . . . . 118 Exercises . . . . . . . . . . . . . . . . . . . . . . 126 3 Conservation of Momentum 3.1 Momentum In One Dimension. . . . . . . . . . . . 130 Mechanical momentum, 130.—Nonmechanical momentum, 133.— Momentum compared to kinetic energy, 134.—Collisions in one dimension, 136.—The center of mass, 140.—The center of mass frame of reference, 144. 3.2 Force In One Dimension . . . . . . . . . . . . . . 145 Momentum transfer, 145.—Newton’s laws, 147.—What force is not,150.—Forcesbetweensolids,152.—Fluidfriction,155.—Analysis offorces,156.—Transmissionofforcesbylow-massobjects,158.— Work, 160.—Simple Machines, 167.—Force related to interaction energy, 168. 3.3 Resonance. . . . . . . . . . . . . . . . . . . . 171 Damped, free motion, 172.—The quality factor, 175.—Driven mo- tion, 176. 3.4 Motion In Three Dimensions . . . . . . . . . . . . 187 TheCartesianperspective,187.—Rotationalinvariance,190.—Vectors, 193.—Calculuswithvectors,208.—Thedotproduct,212.—Gradients and line integrals (optional), 215. Problems . . . . . . . . . . . . . . . . . . . . . . 218 Exercises . . . . . . . . . . . . . . . . . . . . . . 239 4 Conservation of Angular Momentum 4.1 Angular Momentum In Two Dimensions. . . . . . . . 245 Angularmomentum,245.—Applicationtoplanetarymotion,250.— Two theorems about angular momentum, 251.—Torque, 254.— Applicationstostatics,258.—ProofofKepler’sellipticalorbitlaw, 262. 4.2 Rigid-Body Rotation . . . . . . . . . . . . . . . . 265 Kinematics, 265.—Relations between angular quantities and mo- tion of a point, 266.—Dynamics, 268.—Iterated integrals, 270.— Finding moments of inertia by integration, 273. 4.3 Angular Momentum In Three Dimensions . . . . . . . 278 Rigid-body kinematics in three dimensions, 278.—Angular mo- mentum in three dimensions, 280.—Rigid-body dynamics in three dimensions, 285. Problems . . . . . . . . . . . . . . . . . . . . . . 288 Exercises . . . . . . . . . . . . . . . . . . . . . . 297 5 Thermodynamics 5.1 Pressure and Temperature . . . . . . . . . . . . . 300 Pressure, 300.—Temperature, 304. 5.2 Microscopic Description of An Ideal Gas . . . . . . . 307 Evidence for the kinetic theory, 307.—Pressure, volume, and tem- perature, 308. 5.3 Entropy As a Macroscopic Quantity . . . . . . . . . 312 Efficiencyandgradesofenergy,312.—Heatengines,313.—Entropy, 315. 5.4 Entropy As a Microscopic Quantity. . . . . . . . . . 319 Amicroscopicviewofentropy,319.—Phasespace,320.—Microscopic definitions of entropy and temperature, 321.—The arrow of time, or“thiswaytotheBigBang”,329.—Quantummechanicsandzero entropy, 330.—Summary of the laws of thermodynamics, 331. 8 Contents 5.5 More About Heat Engines . . . . . . . . . . . . . 331 Problems . . . . . . . . . . . . . . . . . . . . . . 338 6 Waves 6.1 Free Waves . . . . . . . . . . . . . . . . . . . 344 Wave motion, 344.—Waves on a string, 350.—Sound and light waves, 353.—Periodic waves, 355.—The Doppler effect, 358. 6.2 Bounded Waves . . . . . . . . . . . . . . . . . 364 Reflection,transmission,andabsorption,364.—Quantitativetreat- mentofreflection,369.—Interferenceeffects,372.—Wavesbounded on both sides, 374. Problems . . . . . . . . . . . . . . . . . . . . . . 381 7 Relativity 7.1 Time Is Not Absolute . . . . . . . . . . . . . . . 385 Thecorrespondenceprinciple,385.—Causality,385.—Timedistor- tion arising from motion and gravity, 386. 7.2 Distortion of Space and Time . . . . . . . . . . . . 388 The Lorentz transformation, 388.—The γ factor, 393.—The uni- versalspeedc,398.—Noactionatadistance,403.—Thelightcone, 406.—The spacetime interval, 406.—Four-vectors and the inner product, 411.—Doppler shifts of light and addition of velocities, 412. 7.3 Dynamics . . . . . . . . . . . . . . . . . . . . 415 Momentum,415.—Equivalenceofmassandenergy,419.—Theenergy- momentum four-vector, 423.—Proofs, 426. 7.4 General Relativity . . . . . . . . . . . . . . . . . 429 Ouruniverseisn’tEuclidean,429.—Theequivalenceprinciple,432.— Black holes, 436.—Cosmology, 439. Problems . . . . . . . . . . . . . . . . . . . . . . 443 Exercises . . . . . . . . . . . . . . . . . . . . . . 451 8 Atoms and Electromagnetism 8.1 The Electric Glue . . . . . . . . . . . . . . . . . 459 Thequestfortheatomicforce,460.—Charge,electricityandmag- netism, 461.—Atoms, 466.—Quantization of charge, 471.—The electron, 474.—The raisin cookie model of the atom, 478. 8.2 The Nucleus . . . . . . . . . . . . . . . . . . . 480 Radioactivity, 480.—The planetary model, 483.—Atomic number, 487.—The structure of nuclei, 492.—The strong nuclear force, al- pha decay and fission, 495.—The weak nuclear force; beta decay, 498.—Fusion, 500.—Nuclear energy and binding energies, 502.— Biological effects of ionizing radiation, 503.—The creation of the elements, 508. Problems . . . . . . . . . . . . . . . . . . . . . . 510 Exercises . . . . . . . . . . . . . . . . . . . . . . 514 Contents 9 9 Circuits 9.1 Current and Voltage . . . . . . . . . . . . . . . . 516 Current, 516.—Circuits, 519.—Voltage, 520.—Resistance, 525.— Current-conducting properties of materials, 534. 9.2 Parallel and Series Circuits . . . . . . . . . . . . . 538 Schematics,538.—Parallelresistancesandthejunctionrule,539.— Series resistances, 543. Problems . . . . . . . . . . . . . . . . . . . . . . 550 Exercises . . . . . . . . . . . . . . . . . . . . . . 558 10 Fields 10.1 Fields of Force. . . . . . . . . . . . . . . . . . 563 Whyfields?,563.—Thegravitationalfield,565.—Theelectricfield, 569. 10.2 Voltage Related To Field . . . . . . . . . . . . . 573 One dimension, 573.—Two or three dimensions, 576. 10.3 Fields by Superposition . . . . . . . . . . . . . . 578 Electric field of a continuous charge distribution, 578.—The field near a charged surface, 584. 10.4 Energy In Fields . . . . . . . . . . . . . . . . . 587 Electricfieldenergy,587.—Gravitationalfieldenergy,592.—Magnetic field energy, 592. 10.5 LRC Circuits . . . . . . . . . . . . . . . . . . 594 Capacitanceandinductance,594.—Oscillations,598.—Voltageand current, 600.—Decay, 605.—Review of complex numbers, 608.— Euler’sformula,610.—Impedance,612.—Power,615.—Impedance matching, 618.—Impedances in series and parallel, 620. 10.6 Fields by Gauss’ Law . . . . . . . . . . . . . . . 622 Gauss’ law, 622.—Additivity of flux, 626.—Zero flux from outside charges, 626.—Proof of Gauss’ theorem, 630.—Gauss’ law as a fundamental law of physics, 630.—Applications, 631. 10.7 Gauss’ Law In Differential Form . . . . . . . . . . 634 Problems . . . . . . . . . . . . . . . . . . . . . . 639 Exercises . . . . . . . . . . . . . . . . . . . . . . 649 11 Electromagnetism 11.1 More About the Magnetic Field . . . . . . . . . . . 653 Magnetic forces, 653.—The magnetic field, 657.—Some applica- tions, 661.—No magnetic monopoles, 662.—Symmetry and hand- edness, 665. 11.2 Magnetic Fields by Superposition. . . . . . . . . . 667 Superpositionofstraightwires,667.—Energyinthemagneticfield, 671.—Superposition of dipoles, 671.—The Biot-Savart law (op- tional), 675. 11.3 Magnetic Fields by Ampe`re’s Law. . . . . . . . . . 679 Amp`ere’s law, 679.—A quick and dirty proof, 681.—Maxwell’s equations for static fields, 682. 11.4 Ampe`re’s Law In Differential Form (Optional) . . . . . 684 The curl operator, 684.—Properties of the curl operator, 685. 10 Contents

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.