ebook img

Simple Nature PDF

619 Pages·2003·18.28 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Simple Nature

Simple Nature An Introduction to Physics for Engineering and Physical Science Students Benjamin Crowell www.lightandmatter.com Light and Matter Fullerton, California www.lightandmatter.com Copyright (cid:13)c 2001 Benjamin Crowell All rights reserved. Edition 0.1 — 2001 rev. July 1, 2003 ISBN 0-9704670-7-9 Permission is granted to copy, distribute and/or modify this doc- ument under the terms of the GNU Free Documentation License, Version 1.1, with no invariant sections, no front-cover texts and no back-cover texts. A copy of the license is provided in the appendix titled GNU Free Documentation License. The license applies to the entire text of this book, plus all the illustrations that are by Benjamin Crowell. All the illustrations are by Benjamin Crowell except as noted in the photo credits or in parentheses in the cap- tion of the figure. This book can be downloaded free of charge from www.lightandmatter.com in a variety of formats, including editable formats. Brief Contents 1 Conservation of Mass 11 2 Conservation of Energy 31 3 Conservation of Momentum 81 4 Conservation of Angular Momentum 149 5 Thermodynamics 191 6 Waves 219 7 Relativity 258 8 Atoms and Electromagnetism 289 9 DC Circuits 339 10 Fields 373 11 Electromagnetism 435 12 Quantum Physics 495 3 4 Contents 1 Conservation of Mass 1.1 Mass . . . . . . . . . . . . . . . . . . . . . . 11 Problem-solving techniques, 13.—Delta notation, 15. 1.2 Equivalence of Gravitational and Inertial Mass . . . . . 16 1.3 Galilean Relativity. . . . . . . . . . . . . . . . . 19 Applications of calculus, 22. 1.4 A Preview of Some Modern Physics . . . . . . . . . 25 Problems . . . . . . . . . . . . . . . . . . . . . . 27 2 Conservation of Energy 2.1 Energy . . . . . . . . . . . . . . . . . . . . . 31 Theenergyconcept,31.—Logicalissues,33.—Kineticenergy,34.— Power, 37.—Gravitational energy, 38.—Equilibrium and stability, 43.—Predicting the direction of motion, 44. 2.2 Numerical Techniques . . . . . . . . . . . . . . . 46 2.3 Gravitational Phenomena. . . . . . . . . . . . . . 51 Kepler’s laws, 51.—Circular orbits, 53.—The sun’s gravitational field,54.—Gravitationalenergyingeneral,55.—Theshelltheorem, 58. 2.4 Atomic Phenomena . . . . . . . . . . . . . . . . 64 Heat is kinetic energy., 64.—All energy comes from particles mov- ing or interacting., 65. 2.5 Oscillations . . . . . . . . . . . . . . . . . . . 68 Problems . . . . . . . . . . . . . . . . . . . . . . 73 3 Conservation of Momentum 3.1 Momentum in One Dimension. . . . . . . . . . . . 81 Mechanicalmomentum,81.—Nonmechanicalmomentum,84.—Momentum comparedtokineticenergy,85.—Collisionsinonedimension,86.— Thecenterofmass,90.—Thecenterofmassframeofreference,93. 3.2 Force in One Dimension . . . . . . . . . . . . . . 94 Momentumtransfer,94.—Newton’slaws,95.—Forcesbetweensolids, 96.—Work, 98.—Simple machines, 104.—Force related to interac- tion energy, 105. 3.3 Resonance. . . . . . . . . . . . . . . . . . . . 107 Damped,freemotion,108.—Thequalityfactor,111.—Drivenmotion, 111. 3.4 Motion in Three Dimensions . . . . . . . . . . . . 118 TheCartesianperspective,118.—Rotationalinvariance,120.—Vectors, 122.—Calculuswithvectors,132.—Thedotproduct,134.—Gradients and line integrals (optional), 137. Problems . . . . . . . . . . . . . . . . . . . . . . 140 4 Conservation of Angular Momentum 4.1 Angular Momentum in Two Dimensions. . . . . . . . 149 Angularmomentum,149.—Applicationtoplanetarymotion,153.— Two Theorems About Angular Momentum, 155.—Torque, 157.— Applicationstostatics,161.—ProofofKepler’sellipticalorbitlaw, 163. 4.2 Rigid-Body Rotation . . . . . . . . . . . . . . . . 166 Kinematics, 166.—Relations between angular quantities and mo- tionofapoint,167.—Dynamics,169.—Findingmomentsofinertia by integration, 171. 4.3 Angular Momentum in Three Dimensions . . . . . . . 174 Rigid-body kinematics in three dimensions, 174.—Angular mo- mentum in three dimensions, 176.—Rigid-body dynamics in three dimensions, 180. Problems . . . . . . . . . . . . . . . . . . . . . . 184 5 Thermodynamics 5.1 Pressure and Temperature . . . . . . . . . . . . . 192 Pressure, 192.—Temperature, 196. 5.2 Microscopic Description of an Ideal Gas . . . . . . . 199 Evidenceforthekinetictheory,199.—Pressure,volume,andtemperature, 199. 5.3 Entropy as a Macroscopic Quantity. . . . . . . . . . 202 Efficiencyandgradesofenergy,202.—Heatengines,202.—Entropy, 204. 5.4 Entropy as a Microscopic Quantity (Optional) . . . . . 208 Amicroscopicviewofentropy,208.—Phasespace,209.—Microscopic definitions of entropy and temperature, 209.—The arrow of time, or “This way to the Big Bang”, 213.—Quantum mechanics and zero entropy, 214. Problems . . . . . . . . . . . . . . . . . . . . . . 216 6 Waves 6.1 Free Waves . . . . . . . . . . . . . . . . . . . 220 Wave motion, 220.—Waves on a string, 224.—Sound and light waves, 227.—Periodic waves, 229.—The Doppler effect, 232. 6.2 Bounded Waves . . . . . . . . . . . . . . . . . 237 Reflection,transmission,andabsorption,237.—Quantitativetreat- mentofreflection,242.—Interferenceeffects,245.—Wavesbounded on both sides, 247. Problems . . . . . . . . . . . . . . . . . . . . . . 252 7 Relativity 7.1 Basic Relativity . . . . . . . . . . . . . . . . . . 258 The principle of relativity, 258.—Distortion of time and space, 259.—Applications, 262. 7.2 The Lorentz transformation . . . . . . . . . . . . . 266 Coordinate transformations in general, 266.—Derivation of the Lorentz transformation, 267.—Spacetime, 270. 6 Contents 7.3 Dynamics . . . . . . . . . . . . . . . . . . . . 275 Invariants,275.—Combinationofvelocities,275.—Momentumand force,276.—Kineticenergy,278.—Equivalenceofmassandenergy, 280. Problems . . . . . . . . . . . . . . . . . . . . . . 284 8 Atoms and Electromagnetism 8.1 The Electric Glue . . . . . . . . . . . . . . . . . 289 Thequestfortheatomicforce,290.—Charge,electricityandmagnetism, 291.—Atoms, 295.—Quantization of charge, 300.—The electron, 303.—The raisin cookie model of the atom, 307. 8.2 The Nucleus . . . . . . . . . . . . . . . . . . . 309 Radioactivity, 309.—The planetary model of the atom, 312.— Atomic number, 315.—The structure of nuclei, 320.—The strong nuclear force, alpha decay and fission, 323.—The weak nuclear force;betadecay,326.—Fusion,329.—Nuclearenergyandbinding energies, 329.—Biological effects of ionizing radiation, 331.—The creation of the elements, 333. Problems . . . . . . . . . . . . . . . . . . . . . . 336 9 DC Circuits 9.1 Current and Voltage . . . . . . . . . . . . . . . . 339 Current, 339.—Circuits, 342.—Voltage, 344.—Resistance, 347.— Current-conducting properties of materials, 354. 9.2 Parallel and Series Circuits . . . . . . . . . . . . . 358 Schematics,358.—Parallelresistancesandthejunctionrule,358.— Series resistances, 362. Problems . . . . . . . . . . . . . . . . . . . . . . 367 10 Fields 10.1 Fields of Force. . . . . . . . . . . . . . . . . . 373 Whyfields?,373.—Thegravitationalfield,375.—Theelectricfield, 378. 10.2 Voltage Related to Field. . . . . . . . . . . . . . 381 One dimension, 381.—Two or three dimensions, 382. 10.3 Fields by Superposition . . . . . . . . . . . . . . 384 Electric field of a continuous charge distribution, 384.—The field near a charged surface, 390. 10.4 Energy in Fields . . . . . . . . . . . . . . . . . 392 Electricfieldenergy,392.—Gravitationalfieldenergy,396.—Magnetic field energy, 396. 10.5 LRC Circuits . . . . . . . . . . . . . . . . . . 397 Capacitanceandinductance,397.—Oscillations,399.—Voltageand current,402.—Decay,404.—Impedance,406.—Power,408.—Impedance Matching, 410.—Complex Impedance, 412. 10.6 Fields by Gauss’ Law . . . . . . . . . . . . . . . 415 Gauss’ law, 415.—Additivity of flux, 418.—Zero flux from outside charges, 419.—Proof of Gauss’ theorem, 420.—Gauss’ law as a fundamental law of physics, 420.—Applications, 421. Contents 7 10.7 Gauss’ Law in Differential Form. . . . . . . . . . . 423 Problems . . . . . . . . . . . . . . . . . . . . . . 427 11 Electromagnetism 11.1 More About the Magnetic Field . . . . . . . . . . . 435 Magneticforces,435.—Themagneticfield,438.—Someapplications, 441.—No magnetic monopoles, 442.—Symmetry and handedness, 444. 11.2 Magnetic Fields by Superposition. . . . . . . . . . 446 Superpositionofstraightwires,446.—Energyinthemagneticfield, 449.—Superpositionofdipoles,449.—TheBiot-Savartlaw(optional), 452. 11.3 Magnetic Fields by Ampe`re’s Law. . . . . . . . . . 456 Amp`ere’s law, 456.—A quick and dirty proof, 457.—Maxwell’s equations for static fields, 458. 11.4 Ampe`re’s Law in Differential Form (optional) . . . . . 460 The curl operator, 460.—Properties of the curl operator, 461. 11.5 Induced Electric Fields . . . . . . . . . . . . . . 465 Faraday’sexperiment,465.—Whyinduction?,467.—Faraday’slaw, 469. 11.6 Maxwell’s Equations . . . . . . . . . . . . . . . 474 Induced magnetic fields, 474.—Light waves, 476. Problems . . . . . . . . . . . . . . . . . . . . . . 484 12 Quantum Physics 12.1 Rules of Randomness . . . . . . . . . . . . . . 495 Randomness isn’t random., 496.—Calculating randomness, 496.— Probability distributions, 499.—Exponential decay and half-life, 501.—Applications of calculus, 505. 12.2 Light as a Particle . . . . . . . . . . . . . . . . 507 Evidenceforlightasaparticle,508.—Howmuchlightisonephoton?, 509.—Wave-particle duality, 512.—Photons in three dimensions, 516. 12.3 Matter as a Wave . . . . . . . . . . . . . . . . 518 Electrons as waves, 518.—Dispersive waves, 522.—Bound states, 524.—Theuncertaintyprincipleandmeasurement,526.—Electrons in electric fields, 529.—The Schr¨odinger equation, 531. 12.4 The Atom. . . . . . . . . . . . . . . . . . . . 534 Classifying states, 534.—Angular momentum in three dimensions, 536.—The hydrogen atom, 537.—Energies of states in hydrogen, 538.—Electron spin, 541.—Atoms with more than one electron, 543. Problems . . . . . . . . . . . . . . . . . . . . . . 545 Appendix 1: Programming with Python 553 Appendix 2: Miscellany 555 Appendix 3: Acknowledgments 563 Appendix 4: Photo Credits 565 Appendix 5: Hints and Solutions 567 8 Contents Appendix 6: Useful Data 581 Notation and terminology, compared with other books, 581.— Notation and units, 582.—Metric prefixes, 582.—Nonmetric units, 583.—The Greek alphabet, 583.—Fundamental constants, 583.— Subatomic particles, 583.—Earth, moon, and sun, 584.—The pe- riodic table, 584.—Atomic masses, 584. Appendix 7: Summary 587 Appendix 8: Glossary 605 Contents 9 10 Contents

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.