ebook img

Simple models of pattern and process PDF

7 Pages·1995·2.7 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Simple models of pattern and process

Simple Models ofPattern and Process MichaelBedward (CommunicatedbyD.Keith) Bedward, M. Simple models ofpattern and process. Proc. Linn. Soc. N.S.W., 115: 17-23 (1995). Patternandprocessdynamicsinplantcommunitiescanbemodelledusingcellular automata.Thesearesimuladonmodelsthatareeasytobuildandmodify,andthatareespe- cially useful in visualizing the processes that are being modelled. To illustrate this approach,Idescribeacellularautomatonthatsimulatespatternandprocessinasimple bryophytecommunitygrowingonasteeprockface. NSWNationalParksand WildlifeService, P.O. Box1967, HurstvilleN.S.W. 2220; manuscript received26July1994,acceptedforpublication14December1994. KEYWORDS:Cellularautomata,communitypopulation,lichen,moss. Come-and-go pervades everything ofwhich we have knowledge, and though great thingsgomore slowly, theytooarebuiltupofsmallonesandmustfareasthatwhich makes them. -SamuelButler Introduction Patternandprocessbehaviour,acontinualsequenceofdisturbanceorsenescence andregrowth (Watt, 1947), occursin manytypesofvegetation butisparticularlyeasyto observeinbryophytecommunitiesthatgrowonsteepsurfaces.Ashton (1986) givessome interestingexamplesofpatternandprocessinbryophytecommunitiesonrockfacesand tree trunks. Heavymossmatscanslumpfrom asurfacecreatingnewspace thatcan then becolonizedbyalgae,liverworts,lichensandeventuallymosses.Mossmatsmayshadeout and kill crustose and foliose lichens byovergrowing them. Alternatively, mosses can be parasitizedandkilledbylichens (McWhorter, 1921:Ashton, 1986) and the germination ofmoss spores can be inhibited by chemical compounds produced by lichens (Lawrey 1977). Such dynamics can produce a mosaic ofdifferentspecies and unoccupied space that is always shifting over time. Both the distribution and the area occupied by each speciesinthecommunitycanvarysubstantially. One way ofviewing this shifting mosaic is long term observation. Another is to attemptto modeltheprocessesinvolved. Modellingcan alsohelp to testthe logicofour current understanding of these processes and help us to develop new hypotheses. However,thereareproblemsintryingtoconstructmathematicalmodelsofthesetypesof communities.Manyoftheinteractionsbetweenspeciesareverylocalizedandspatialcon- figurationisimportant.Forexample,thepatternofgrowthofamossmatdependsonthe arrangementofsuitablespacewhilethepatternofmossslumpingfromasteepsurfaceis influencedbyhowconnectedthemossmatsare.Itisusuallydifficulttoincorporatethese sortoffactorsintomathematicaltreatments (Hastings, 1991;DeAngelisandRose, 1992). Analternativetomathematicalmodellingistousecomputersimulations. Onevery simplefamilyofsimulationmodels,cellularautomata,havebeenusedforavarietyofeco- logical studies including fire patterns in vegetation (Green, 1983), the fire ecology of plant species (Green, 1985; Bradstock el al., in press), host-parasite dynamics in insects (Hassell el al, 1991) and evolutionary theory (e.g. Nowak and May, 1992). A cellular automaton isacollection ofcellsthatinteractinsimplewaysbutwherethewholecollec- Proc.Linn.Soc.n.s.w.,i15, 1995 18 SIMPLEMODELSOFPATTERNANDPROCESS tion can display very complex overall behaviour (Wolfram, 1984; Phipps 1992). Simulationsusingcellularautomataproceedindiscretetimesteps.Eachcellassumesone ofafinite number ofstates, and its state at the nexttime step depends upon its current state,andthestatesofitsneighbours.Theneighbourhoodofacellcantakemanyforms, e.g. theeightimmediatelyadjacentcellsorallcellswithinaspecifiedradius,andinsome models the size and shape ofthe neighbourhood canvary over time. The rules used to decidethestateofeachcellateachtimestepcanbepurelydeterministicorincludesome elementofchance (Phipps, 1992). In this paper, I describe a cellular automaton that simulates the dynamics of a bryophytecommunitygrowingonasteeprockface.Althoughsimple,themodeldisplays realistic pattern andprocessbehaviourand could easilybe extendedorrefined to study specific communities. I have implemented the model as a computer program, MOBI (ModelofBryophyteInteractions) thatdisplaystheshiftingmosaicofspeciesandvacant , spaceonacomputerscreen. Description ofthe Model Forsimplicity, themodelcommunitypresentedhere consistsofonlytwospecies: a mossandafruticoselichenthatgrowsuponthemossandparasitizesit.Later,Iwilldiscuss some possibilities for including further species as well as environmental variables. The habitat, a steep rockface, is represented bya square gridwhere each cell can be either vacant,occupiedbymoss,oroccupiedbymossandlichen.Ateachtimestepduringasim- ulation,cellscanchangestateaccordingtorulesthatdescribethegrowthanddispersalof themossandthelichen,andtheslumpingofmossmatsfromtherockface.Thesizeofthe gridandthenumberoftimestepsinasimulationcanvary.Thetemporalandspatialscale is flexible, but here I am assuming thateach cell represents an area ofabout 1 cm2 and eachtimestepisabout1year. Mossgrowthanddispersal At the beginning ofa simulation, moss is assigned to agiven numberofrandomly selectedcells.Themosscanthenspreadintoadjacentcellstosimulatethegrowthofmoss clumps.Thegrowthmechanismincludesastochasticelementsuchthattheprobabilityof mossspreadingintoavacantcellis: l)=MAX[1.0,C./ Pmoss(t+ t] where p moss(t+l) 1S the probabilityofthevacant cell being occupied at the next time step; Cisaconstant;and/ isthefractionofneighboursofthecellthatalreadyhave t moss.Theneighbourhoodconsistsoftheeightimmediatelyadjacentcells.Figure 1 shows thepatternofgrowththatisproducedusingC=2. Mosssporelingestablishmentwasmodelledbyassumingthatarain ofmossspores fallsequallyonallpartsoftherockface.Ateachtimestep,mosssporelingscouldestablish insuitablevacantcellswithaspecifiedprobabilitythatwasconstantthroughoutthesimu- lation. Conditions on the suitability of vacant cells for sporeling establishment are explainedfurtherbelow. Mossslumping MOBI simulatestheslumpingofheavymossclumpsfrom therockwall.Todo this, eachmosscellisassignedaweight.When thecellisfirstoccupiedbymoss,orreoccupied afterbeingvacant, aweightof1 isassigned. Theweightisthen incrementedby 1 ateach timestepuntilapresetmaximumvalueisreached.Theslumpingofmossclumpsissimu- latedateach timestepbytestingeach mosscelltoseeifitwillinitiateaslump.Theproba- ProcLinn.Soc.n.S.w.,115, 1995 M.BEDWARD 19 bilityofthisforeachmosscellisequaltotheweightofthemossmultipliedbyaconstant. Cellswhoseweightsarebelowaspecifiedminimumcannotstartaslump.When afalling cell isfounditbecomes the focusforaslump areathatspreads to contiguous mosscells usingthesamestochasticmechanismdescribedaboveformossgrowth.Thegrowthofthe slumpareacontinuesuntilnomoremosscellscan bereached, oruntilaspecifiedmaxi- mumareaisattained,whicheverhappensfirst.Thenallofthemosscellsintheslumparea Fig.1.Simulatedmossgrowthfromtenrandomlyplacedinitialcellsina100x100gridafter15timesteps. areconvertedtovacantcells.Anumberofclumpsofmossmayslumpfromtherockfacein asingletimestep. Newlyvacantcells In some bryophyte communities, newlycreated space mustbe colonized byother species, such as algae, before moss spores can germinate and establish (e.g. Ashton, 1986). To simulate this, the number oftime steps that must elapse before newlyvacant cells are suitable formoss sporelings can be specified as aconstant. Thisdoes notaffect growthintothesecellsfromadjacentmossclumps. Lichendispersalandgrowth The lichen can onlyoccupycells that contain moss. Clumps oflichen can growin the same stochastic mannerdescribed formossgrowth. The initial lichen population is createdbyrandomlyassigninglichentoaspecifiednumberofmosscellseitheratthestart ofthesimulationoratsomelatertime.Thedispersalofpropagules,andestablishmentin mosscells,ismodelledusingaconstantprobabilityasformossdispersal. Interactionofthelichenandmoss Theeffectofthelichenonthemossissimplytopreventgrowthfrominfectedmoss cells. Ifall cells in amoss clump become infected the clump ceases to expand. Once in- fected, amoss cell can notfree itselfoflichen. The lichen doesnotaffect the pattern of mossslumping.Thisisaveryconservativeandsimplifiedinteraction. Proc.Linn. Soc.n.s.w.,ii5, 1995 20 SIMPLEMODELSOFPATTERNANDPROCESS An ExampleApplication IusedMOBI to see howtherate andpattern ofmossmatsslumpingfrom therock facewouldaffectthesuccessofthelichen.Ivariedmossslumpingbysettingfourdifferent valuesforthemaximumareaofanindividualslump.Ialsovariedmossandlichendisper- sal to see what effect thiswould have on the behaviour ofthe model. Table 1 shows the designusedwhilethecompletelistofMOBIvariablevaluesisgivenintheappendix. Table 1 Numberofsimulationsforeachcombinationofmossslumpanddispersalvariables Maximummossslumparea(cells) 100 250 500 1000 Dispersal none 20 20 20 20 mossonly 20 20 20 20 mossandlichen 20 20 20 20 Figure 2showstheaveragemossandlichenpopulationsforeachsetof20replicate simulations. As the maximum size of a slumping moss mat increased from 100 cells (fig. 2a-c) to500cells (fig. 2g-i) theproportionofmossinfectedbylichendecreasedas indicated by the gap between the lines in each graph. The presence ofmoss and lichen dispersalmadelittledifference totheresults.Where themossfellinverylargeclumpsof up to 1000 cells (fig. 2j-l) dispersalhadagreatereffect.Withneithermossorlichen dis- persal (fig. 2j),bothspeciessoonbecameextinct.Wherethemossandlichencouldboth disperse (fig. 21),bothpersistedthroughoutthesimulationperiodalthoughonlyasmall proportionofthemosswasinfectedbylichen. 200 Fig. 2.Averagepopulationsofmossandlichenforeachsetof20replicatesimulations (seetext).Ineachgraph, the upper line is the moss population and the lower line is the lichen population. Codeswithin each graph indicatethesimulation settings:e.g. 100ismaxslumpareaof100cellswithnodispersal, 100+moissameslump areawithmossdispersal, 100-mo-liissameslumpareawithmossandlichendispersal. Proc.Linn. Soc.n.S.w.,i15, 1995 M.BEDWARD 21 Themechanismsbehindtheseresultsareeasytovisualizebywatchingthemossand lichen mosaic asitunfoldsin each simulation. Figure 3shows the communityin asingle simulationforeachlevelofmossslumpingwithnodispersal. Ineachsimulation,50time stepshaveelapsed.Lowlevelsofmossslumpingledtosmallfragmentsofuninfectedmoss inaseaoflichen.Whenwatchingoneofthese simulations, theuninfectedmossseemed tobeconstantlychasedaroundtherockfacebythelichen. Increasingthelevelofslump- ingledto the mossmatsbecomingmore discretewhich made itharderforthe lichen to spread vegetatively. This also increased the chance of large patches of lichen being removedfromtherockface.Atthehighestlevelofslumpingthemossitselfriskedextinc- tionwhentherewasnodispersal. c d Fig.3.Thestateofthemodelinoneexamplesimulationforeachoffourmossslumpareas:a.100cells;b.250cells; c.500cells;d.1000cells.Greydenotesuninfectedmoss;blackdenotesmossinfectedbylichen. Discussion The resultsshowthatMOBI is capable ofdisplayingcomplexand realistic pattern and process behaviour. The model could be refined and extended in many ways for specific applications to bryophytic communities. For example, the probabilities for growth, dispersal and moss slumping could be linked to a historical set ofrainfall data. Theinteractionbetween the mossandthelichencouldbe tailoredtodataforparticular species.Asimulationcouldalsoincludevascularplantspeciesthatestablishinmossmats and accelerate slumping ofthe moss when they grow large. With these sort ofelabora- tions,MOBIcouldbeusedasatoolforpopulationviabilityanalysis. Alternatively, it is possible to begin with a model such as MOBI that considers ProcLinn.Soc.n.s.w.,115, 1995 . 22 SIMPLEMODELSOFPATTERNANDPROCESS biologicalprocessesexplicitly,andthensimplifythemodeltoamoreabstractandgeneral form.Hasselletal. (1991) tookthisapproachwiththeirworkoninsecthost-parasitepopu- lations. Byobtainingverysimilarresultsfrommodelsthatwerebasedondetailedmathe- matical formulations of species interactions, and alternative models that were purely qualitativecellularautomata,theyshowedthatitwasthegeneralpatternofspeciesdisper- salratherthanthefinedetailofthespeciesinteractionsthatdeterminedthebehaviourof the system. This sort ofapproach seeks to identify common patterns that underlie the behaviourofmanydifferentkindsofbiologicalsystems (e.g. Green, 1993) Theresultsof . MOBIsimulationscouldsuggestusefulhypothesesforothertypesofplantcommunities thatdisplaypatternandprocessbehaviour. Itis easy to design and build models that are based on cellular automata, such as MOBI,toexplorepatternandprocessbehaviour.Perhapsthemostusefulfeatureofthese models is thatyou can watch the progress ofeach simulation and notice patterns that would not have been obvious from a mathematical treatment. This feature also makes cellularautomataveryusefulteachingtools. Acknowledgements ThankstoMurrayEllisforhelpwiththefigures. References — Ashton,D.H.1986. EcologyofbryophyticcommunitiesinmatureEucalyptusregnansF.Muell.forestatWallaby Creek,Victoria.Aust.J.Bot,34:107-29.— Bradstock,R.A.Bedward,M.andScott,J.A. InPress.Persistenceofplantpopulationsinlandscapessubjected torecurrentfire:simulationofeffectsofvariedfrequencyandsize.InProceedingsof2ndinternational conferenceonforestandfirerese—arch.Portugal. DeAngelis, D.L. and Rose, K.A. 1992. Which individual based approach is most appropriate for a given problem?InD.L.DeAngelisandL.J.Gross (eds.) Individualbasedmodelsandapproachesinecology: populations,—communitiesandecosystems,pp.67-87.Routledge,Chapman&Hall.NewYork. Conneix.J.H.1978—. Diversityintropicalrainforestsandcoralreefs.Science,199:1302-10. Green,D.G1983. —Shapesofsimulatedfiresindiscretefuels.Ecol.Model,20:21-32. Green,D.G. 1985. Simulatedeffectsoffire,dispersalandspatialpatternoncompetitionwithforestmosaics. Vegetatio,82:—139-153. Green, D.G. 1993. Em—ergent behaviour in biological systems. In D.G. Green and T.J. Bossomaier (eds.) Complexsystems frombiologytocomputa—tion,pp.24-35.IOSPress.Amsterdam. Hassell,M.P.,Comins,H.N.andMay,R.M. 1991. Spatialstructureandchaosininsectpopulationdynamics. Nature,353:—255-8. Hastings,A.1991.—Structuredmodelsofmetapopulationdynamics.Biol.J.Linn.Soc,42:57-71 LaWREY,J.D. 1977. Inhibitionofmosssporegermination byacetoneextractsofterricolous Cladoniaspecies. Bull.Torrey.Bot.C—lub.104:49-52. McWhorter,F.P.1921. Destruc—tionofmossesbylichens.Bot.Gazzette,72:321-5. NoWAK,M.A.and—May,RM.1992. Evolutionarygamesandspatialchaos.Nature,359:826-9. Phipps,M.J.1992. Fromlocaltoglobal:thelessonofcellularautomata.InD.L.DeAngelisandL.J.Gross(eds.) Individualbasedmodelsandapproachesinecology:populations,communitiesandecosystems,pp.165- 87.Routle—dge,Chapman&Hall.NewYork. Watt,A.S.1947. —Patternandprocessintheplantcommunity./.Ecol.35:1-22. Wolfram,S. 1984. Cellularautomataasmodelsofcomplexity.Nature,311:419-24. Proc.Linn. Soc.n.s.w., 115, \995 m.bedward 23 Appendix VariablesthatcanbesetinMOBIandvaluesusedforthesimulationsdiscussedinthetext. Numberofrows 100 Numberofcols 100 Simulationperiod 200timesteps Initialmosspopulation 100 Initiallichenpopulation 100 Timetoaddinitiallichencells 4 Lichengrowthrate(relativetomoss) 1 Probabilityofmosssporelingestablishmentinavacantcell or0.001 (seetext) Probabilityoflichensporelingestablishmentinamosscell or0.001 (seetext) Maximummossweight 10 Probabilityofanymossslippageateachtimestep 1.0 Minimumweightformosstostartslumping 5 SMlauxmipmcuomnsatraenatoCfs(lpurmopDisniugmmDos=sC.weight) 100to1000cells(seet0e.x0t1) Periodthatnewlyvacantcellsareunsuitableformosssporelings 2 Mosswithlichencangrow? no Proc.Linn.Soc.n.s.w.,i15,1995

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.