ebook img

Simple Lie Algebras over Fields of Positive Characteristic: II. Classifying the Absolute Toral Rank Two Case (De Gruyter Expositions in Mathematics) PDF

392 Pages·2009·2.54 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Simple Lie Algebras over Fields of Positive Characteristic: II. Classifying the Absolute Toral Rank Two Case (De Gruyter Expositions in Mathematics)

de Gruyter Expositions in Mathematics 42 Editors V.P.Maslov, Academy of Sciences, Moscow W.D.Neumann, Columbia University, New York R.O.Wells, Jr., International University, Bremen Simple Lie Algebras over Fields of Positive Characteristic II. Classifying the Absolute Toral Rank Two Case by Helmut Strade ≥ Walter de Gruyter · Berlin · New York Author HelmutStrade E-mail:[email protected] MathematicsSubjectClassification2000:17-02,17B50,17B20,17B05. Keywords:SimpleLiealgebras,Liealgebrasofpositivecharacteristic, dividedpoweralgebras,Cartanprolongation,recognitiontheorems. (cid:2)(cid:2) Printedonacid-freepaperwhichfallswithintheguidelines oftheANSItoensurepermanenceanddurability. ISSN 0938-6572 ISBN 978-3-11-019701-3 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableintheInternetathttp://dnb.d-nb.de. (cid:2)Copyright2009byWalterdeGruyterGmbH&Co.KG,10785Berlin,Germany. All rights reserved, including those of translation into foreign languages. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, includingphotocopy,recording,oranyinformationstorageorretrievalsystem,withoutpermis- sioninwritingfromthepublisher. Typesetusingtheauthor’sTEXfiles:KayDimler,Müncheberg. Printingandbinding:Hubert&Co.GmbH&Co.KG,Göttingen. Coverdesign:ThomasBonnie,Hamburg. Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 10 ToriinHamiltonianandMelikianalgebras . . . . . . . . . . . . . . . . 3 10.1 DeterminingabsolutetoralranksofHamiltonianalgebras . . . . . . 3 10.2 MoreonH.2I.1;2//.2/ . . . . . . . . . . . . . . . . . . . . . . . 13 Œp(cid:141) 10.3 2-dimensionaltoriinH.2I1Iˆ.(cid:28)//.1/ . . . . . . . . . . . . . . . . 39 10.4 SemisimpleelementsinH.2I1Iˆ.1// . . . . . . . . . . . . . . . 45 Œp(cid:141) 10.5 Melikianalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 10.6 SemisimpleLiealgebrasofabsolutetoralrank1and2 . . . . . . . 106 10.7 Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 11 1-sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 11.1 Liealgebrasofabsolutetoralrank1 . . . . . . . . . . . . . . . . . 121 11.2 1-sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 11.3 Representationsofdimension<p2 . . . . . . . . . . . . . . . . . . 131 11.4 MoreonH.2I1/.2/ . . . . . . . . . . . . . . . . . . . . . . . . . . 138 11.5 LowdimensionalrepresentationsofH.2I1/.2/ . . . . . . . . . . . . 150 12 Sandwichelementsandrigidtori . . . . . . . . . . . . . . . . . . . . . 162 12.1 Derivingidentities . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 12.2 Sandwichelements . . . . . . . . . . . . . . . . . . . . . . . . . . 170 12.3 Rigidroots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 12.4 Rigidtori . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 12.5 Trigonalizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 13 Towardsgradedalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . 242 13.1 Thepentagon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 13.2 Anupperbound . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 13.3 Filtrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 13.4 MoreonHamiltonianroots . . . . . . . . . . . . . . . . . . . . . . 278 13.5 Switchingtori . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 vi Contents 13.6 Goodtriples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 13.7 Ontheexistenceofgoodtoriandgoodtriples . . . . . . . . . . . . 303 14 Thetoralrank2case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 14.1 Norootisexceptional . . . . . . . . . . . . . . . . . . . . . . . . . 313 14.2 S isnotofCartantype . . . . . . . . . . . . . . . . . . . . . . . . 326 14.3 Gradedcounterexamples . . . . . . . . . . . . . . . . . . . . . . . 354 15 SupplementstoVolume1 . . . . . . . . . . . . . . . . . . . . . . . . . . 378 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385 Introduction Thisthreevolumemonographon“SimpleLieAlgebrasoverFieldsofPositiveChar- acteristic”presentsmajormethodsonmodularLiealgebras,alltheexamplesofsim- pleLiealgebrasoveralgebraicallyclosedfieldsofcharacteristicp (cid:21) 5andthecom- pleteproofoftheClassificationTheoremmentionedintheintroductionofVolume1. The first volume contains the methods, examples and a first classification result. It turnedoutduringtheworkonthereproductionoftheclassificationproofthatonehas topayforareasonablecompletenessbyextendingthetextconsiderably. Sothewhole workisnowplannedasathreevolumemonograph. Thissecondvolumecontainsthe proofoftheClassificationTheoremforsimpleLiealgebrasofabsolutetoralrank2. WehavealreadymentioneddetailsoutliningtheproofoftheClassificationTheo- remintheintroductionofthefirstvolume. Thereforewewilljustrecallverybriefly some strategy in order to place the content of this volume into the whole picture. Already in the early work on simple Lie algebras over the complex numbers people determined,asageneralprocedure,1-sectionsL.˛/WDP L .H/withrespect i2Fp Pi˛ to a toral CSA H, described their representations in the spaces i2Fp LˇCi˛.H/, and determined 2-sections. The breakthrough paper [B-W88] made this procedure workformodularLiealgebrasaswell(ifthecharacteristicisbiggerthan7). Itturned out,however,thatthemanymoreexamplesandtherichnessoftheirstructuresmade thingsmuchmoreinvolved. Imaginethatintheclassicalcaseonlysl.2/˚H \ker˛ occursasthe1-sectionL.˛/,whileinthemodularcasetheclassicalalgebrasl.2/,the smallest Witt algebra W.1I1/ and the smallest Hamiltonian algebra H.2I1/.2/ have absolute toral rank 1 (by Corollaries 7.5.2 and 7.5.9). Hence each such algebra is a 1-section of itself. There are nonsplit radical extensions of these Cartan type Lie al- gebras,anditisapriorinotclearwhichofthesecanoccuras1-sectionsofsimpleLie algebras. Moreover,therepresentationtheoriesofsuchextensionsareveryrich,and thereforetheverydetailsofthesetheoriescanhardlybedescribed. Lessinformation is, fortunately, sufficient for the Classification Theory. Namely, it is sufficient and possible to describe semisimple quotients LŒ˛(cid:141) WD L.˛/=radL.˛/ with respect to certaintoriT (wehavetodecidewhichtoriwetakeintoconsiderationthough),andit isalsopossibletodescribetheT-semisimplequotientsof2-sectionsintermsofsim- pleLiealgebrasofabsolutetoralrank1and2byBlock’sTheoremCorollary3.3.6. If oneknowsthesimpleLiealgebrasofabsolutetoralranknotbiggerthan2oneisable 2 Introduction todescribeallsuchsemisimplequotientsof2-sectionsintheseterms. Inthissecond volumewewillprovethefollowing Theorem. Every simpleLie algebraover analgebraically closed fieldof character- isticp >3havingabsolutetoralrank2isexactlyoneofthefollowing: (a) classicaloftypeA ,B orG ; 2 2 2 (b) therestrictedLiealgebrasW.2I1/,S.3I1/.1/,H.4I1/.1/,K.3I1/; thenaturallygradedLiealgebrasW.1I2/,H.2I.1;2//.2/; H.2I1Iˆ.(cid:28)//.1/,H.2I1Iˆ.1//; (c) theMelikianalgebraM.1;1/. Since we classified the simple Lie algebras of absolute toral rank 1 in Chapter 9 of Volume1,theresultofthissecondvolumewillprovidesufficientinformationonthe 2-sectionsofsimpleLiealgebraswithrespecttoadequatetori. TheproofoftheClassificationTheoremforsimpleLiealgebrasofabsolutetoral rank2iscompletelydifferentfromwhatwehavedoneinChapter9ofVolume1and what one has to do in Volume 3 for the general case. In fact, when writing this text I have changed some of the original items, so that even more the description in the introductionofthefirstvolumedoesnotcorrectlydescribethepresentprocedure. Let me say a few words about the sources for the proofs of this volume and the citation policy. The breakthrough paper [B-W88] gave the general procedure and provided manyideasforthesolutionoftheabsolutetoralrank2case. Inthepresentexposition I stressed the point of using sandwich elements and graded algebras in combination with the Block–Weisfeiler description of these. The major contribution of sandwich elementmethodsisduetoA.A.PREMET. Mostoftheothermaterialcanbefoundin the papers [P-S97]–[P-S01]. I will not quote these results in detail. If the reader is interestedintheoriginalsourcesheshouldlookinto[B-W88],[Pre85]–[Pre94]and [P-S97]–[P-S01]. Chapter 10, the first chapter of this volume, is somewhat different from the rest. In that chapter we determine which of the Cartan type and Melikian algebras have absolute toral rank 2, determine automorphism groups of these algebras, describe orbits of toral elements in the minimal p-envelope under the automorphism group, compute the centralizers of toral elements and estimate the number of weights on restrictedmodules. Indoingthiswedecoveralotofdetailsofthestructureofthese algebras. Thisalreadyindicatesaweaknessofthetheory: atpresentoneneedsreally muchinformationonthealgebrastructurestoapplysomesophisticatedarguments. The notations in this volume and all references to Chapter 1–9 refer to the first volume. Asageneralassumption, F alwaysdenotesanalgebraicallyclosedfieldof characteristicp > 3(whileinthefirstvolumewealsoincludedthecasep D 3),and allalgebrasareregardedtobealgebrasoverF. Chapter 10 Tori in Hamiltonian and Melikian algebras InthischapterwedeterminetheHamiltonianandMelikianalgebrashavingabsolute toral rank not bigger than 2. For those algebras the automorphism groups are deter- mined and conjugacy classes of tori in the minimal p-envelopes are described. We gainstructuralinsightinrootspacesandsectionswithrespectto2-dimensionaltori. 10.1 Determining absolute toral ranks of Hamiltonian algebras We remind the reader to the concept of an absolute toral rank of a Lie algebra g. Namely, let g be a Lie algebra with subalgebra q and let .g ;Œp(cid:141);(cid:19)/ be any p- Œp(cid:141) envelope of g. In general we suppress the notion of (cid:19), regard g as a subalgebra of g and just say that g is a p-envelope of g. The p-envelope of q in g is the Œp(cid:141) Œp(cid:141) Œp(cid:141) restrictedsubalgebraofg generatedby(cid:19).q/andisdenotedbyq . ByDefinition Œp(cid:141) Œp(cid:141) 1.2.1 the toral rank TR.q;g/ of q in g equals the maximum of dimensions of tori in q CC.g /=C.g /. Dueto[S-F,Theorem2.4.5]thenTR.q;g/equalsthemaxi- Œp(cid:141) Œp(cid:141) Œp(cid:141) mumofdimt=t\C.g /fortorit(cid:26)q . Accordingly,theabsolutetoralrankofg, Œp(cid:141) Œp(cid:141) denotedbyTR.g/,equalsthemaximumofdimt=t\C.g /fortoriting . These Œp(cid:141) Œp(cid:141) definitionsdonotdependonthep-envelopechosen(Theorem1.1.7). Supposegiscenterlessandg denotesaminimalp-envelope(Definition1.1.2). Œp(cid:141) Bydefinition,g iscenterlessaswell. IntheNotation1.2.5,TR.g/ D MT.g /is Œp(cid:141) Œp(cid:141) themaximalpossibledimensionoftoriing . Theorem1.1.7provesthattheminimal Œp(cid:141) p-envelopeisuniqueasarestrictedLiealgebra. It is stated in Volume 1, p. 299 that every simple finite dimensional Lie algebra of Cartan type can be viewed as an algebra X.mInI'/.1/ (cid:26) W.mIn/ for some X D W;S;H;K and' 2 Aut O..m//satisfyingthecompatibilityproperty(6.2.2). c ThroughoutthisvolumewealwayswillwithoutfurthermentioningassumethatCar- tantypeLiealgebrasX.mInI'/.1/ satisfythecompatibilityproperty(6.2.2). ThealgebrasW.m/,S.m/,H.2r/andK.2rC1/carrynaturalgradings(Volume1, p.186). Correspondingly,thecommutativealgebraO.m/andthespaceofdifferential forms(cid:127).m/aregraded. EveryCartantypeLiealgebraX.mInI'/.1/ hasauniquely determined subalgebra X.mInI'/.1/ of minimal codimension (Theorem 4.2.6) .0/

Description:
This is the second volume by the author, presenting the state of the art of the structure and classification of Lie algebras over fields of positive characteristic, an important topic in algebra. The contents is leading to the forefront of current research in this field. Leading to the forefront of
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.