ebook img

Simple Lie Algebras over Fields of Positive Characteristic. I. Structure Theory PDF

551 Pages·2017·2.466 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Simple Lie Algebras over Fields of Positive Characteristic. I. Structure Theory

HelmutStrade SimpleLieAlgebrasoverFieldsofPositiveCharacteristic De Gruyter Expositions in Mathematics Editedby LevBirbrair,Fortaleza,Brazil VictorP.Maslov,Moscow,Russia WalterD.Neumann,NewYorkCity,NewYork,USA MarkusJ.Pflaum,Boulder,Colorado,USA DierkSchleicher,Bremen,Germany Volume 38 Helmut Strade Simple Lie Algebras over Fields of Positive Characteristic Volume I: Structure Theory 2nd Edition MathematicsSubjectClassification2010 17-02;17B50,17B20,17B05 Author Prof.Dr.HelmutStrade MarmstorferWeg124 21077Hamburg Germany [email protected] ISBN978-3-11-051516-9 e-ISBN(PDF)978-3-11-051544-2 e-ISBN(EPUB)978-3-11-051523-7 Set-ISBN978-3-11-051545-9 ISSN0938-6572 LibraryofCongressCataloging-in-PublicationData ACIPcatalogrecordforthisbookhasbeenappliedforattheLibraryofCongress. BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2017WalterdeGruyterGmbH,Berlin/Boston Typesetting:Typesetting:I.Zimmermann,Freiburg Printingandbinding:CPIbooksGmbH,Leck ♾Printedonacid-freepaper PrintedinGermany www.degruyter.com FürmeineliebeRenate,diemitbewundernswerter GedulddieEntstehungdiesesBuchesbegleitethat Contents Introduction 1 1 Toralsubalgebrasinp-envelopes 17 1.1 p-envelopes 17 1.2 Theabsolutetoralrank 23 1.3 Extendedroots 30 1.4 Absolutetoralranksofparametrizedfamilies 39 1.5 Toralswitching 46 2 Liealgebrasofspecialderivations 58 2.1 Dividedpowermappings 59 2.2 Subalgebrasdefinedbyflags 73 2.3 TransitiveembeddingsofLiealgebras 79 2.4 Automorphismsandderivations 89 2.5 Filtrationsandgradations 91 2.6 MinimalembeddingsoffilteredandassociatedgradedLiealgebras 99 2.7 Miscellaneous 104 2.8 Auniversalembedding 111 2.9 Theconstructionscanbemadebasisfree 119 3 Derivationsimplealgebrasandmodules 133 3.1 Frobeniusextensions 134 3.2 Inducedmodules 138 3.3 Block’stheorems 151 3.4 Derivationsemisimpleassociativealgebras 163 3.5 Weisfeiler’stheorems 167 3.6 Conjugacyclassesoftori 176 4 SimpleLiealgebras 180 4.1 ClassicalLiealgebras 180 4.2 LiealgebrasofCartantype 184 4.3 Melikianalgebras 199 4.4 SimpleLiealgebrasincharacteristic3 209 viii Contents 5 Recognitiontheorems 217 5.1 Cohomologygroups 217 5.2 FromlocaltoglobalLiealgebras 228 5.3 Representations 252 5.4 GeneratingMelikianalgebras 258 5.5 TheWeakRecognitionTheorem 262 5.6 TheRecognitionTheorem 269 5.7 Wilson’sTheorem 272 6 Theisomorphismproblem 283 6.1 Afirstattack 283 6.2 Thecompatibilityproperty 295 6.3 Specialalgebras 299 6.4 OrbitsofHamiltonianforms 314 6.5 Hamiltonianalgebras 329 6.6 Contactalgebras 346 6.7 Melikianalgebras 349 7 StructureofsimpleLiealgebras 357 7.1 Derivations 357 7.2 Restrictedness 363 7.3 Automorphisms 372 7.4 Gradings 386 7.5 Tori 388 7.6 W(1;n) 420 8 Pairingsofinducedmodules 432 8.1 Cartanprolongation 432 8.2 Modulepairings 449 8.3 Trigonalizability 461 9 Toralrank1Liealgebras 484 9.1 Solvablemaximalsubalgebras 484 9.2 Cartansubalgebrasoftoralrank1 496 Notation 521 Bibliography 527 Index 539 Introduction ThetheoryoffinitedimensionalLiealgebrasoverfieldsF ofpositivecharacteristicp wasinitiatedbyE.Witt,N.Jacobson[Jac37]andH.Zasssenhaus[Zas39]. Sometime before 1937 E.Witt came up with the following example of a simple Lie algebra of dimensionp (forp > 3),afterwardsnamedtheWittalgebraW(1;1). Onthevector (cid:29) p−2 space Fe definetheLieproduct i=−1 i (cid:15) [e ,e ]:= (j −i)ei+j if −1≤i+j ≤p−2, i j 0 otherwise. This algebra behaves completely different from those algebras we know in charac- t eristic0. Asanexample,itcontainsauniquesubalgebraofcodimension1,namely Fe . Italsohassandwichelements,i.e.,elementsc (cid:19)=0satisfying(adc)2 =0 i≥0 i (forexample,ep−2). E.Witthimselfneverpublishedthisexampleorgeneralizations ofit,whichhepresumablyknewof.Atthattimehewasinterestedinthesearchfornew finitesimplegroups. Whenherealizedthatthesenewstructureshadonlyknownau- tomorphismgroupsheapparentlylosthisinterestinthesealgebras. Wehaveonlyoral andindirectinformationofWitt’sworkonthisfieldbytwopublicationsofH.Zassen- haus[Zas39]andChangHoYu[Cha41]. Changdeterminedtheautomorphismsand irreduciblerepresentationsofW(1;1)overalgebraicallyclosedfields. Healsomen- tionedthatWitthimselfgavearealizationofW(1;1)intermsoftruncatedpolynomial rings. Namely,W(1;1)isisomorphicwiththevectorspaceF[X]/(Xp)endowedwith the product {f,g} :=fd/dx(g) −gd/dx(f) for all f,g ∈ F[X]/(Xp) under the mappinge (cid:20)→xi+1,wherex =X+(Xp). i In[Jac37]N.JacobsonprovedaGaloistypetheoremforinseparablefieldexten- sionsbysubstitutingthealgebraofderivationsfortheautomorphismgroupofafield extension. Moreexplicitly,hewasabletoshowthatthesetofintermediatefieldsofa fieldextensionF(c ,...,c ):F withcp ∈F isinbijectionwiththesetofthoseLie 1 n i subalgebrasofDer F(c ,...,c ),whichareF(c ,...,c )-modulesandareclosed F 1 n 1 n underthep-powermappingD (cid:20)→Dp.AtthatearlytimeJacobsonalreadyintroduced the term “restrictable” for those Lie algebras, which admit a p-mapping x (cid:20)→ x[p] satisfyingtheequationadx[p] =(adx)p forallx. Laterhepreferredtousetheterm “restrictedLiealgebra”forpairs(L,[p]),whensuchap-mappingisfixed. TheLie algebrasoflinearalgebraicgroupsoverF areallequippedwithanaturalp-mapping, hencetheycarrycanonicalrestrictedLiealgebrastructures.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.