HelmutStrade SimpleLieAlgebrasoverFieldsofPositiveCharacteristic De Gruyter Expositions in Mathematics Editedby LevBirbrair,Fortaleza,Brazil VictorP.Maslov,Moscow,Russia WalterD.Neumann,NewYorkCity,NewYork,USA MarkusJ.Pflaum,Boulder,Colorado,USA DierkSchleicher,Bremen,Germany Volume 38 Helmut Strade Simple Lie Algebras over Fields of Positive Characteristic Volume I: Structure Theory 2nd Edition MathematicsSubjectClassification2010 17-02;17B50,17B20,17B05 Author Prof.Dr.HelmutStrade MarmstorferWeg124 21077Hamburg Germany [email protected] ISBN978-3-11-051516-9 e-ISBN(PDF)978-3-11-051544-2 e-ISBN(EPUB)978-3-11-051523-7 Set-ISBN978-3-11-051545-9 ISSN0938-6572 LibraryofCongressCataloging-in-PublicationData ACIPcatalogrecordforthisbookhasbeenappliedforattheLibraryofCongress. BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2017WalterdeGruyterGmbH,Berlin/Boston Typesetting:Typesetting:I.Zimmermann,Freiburg Printingandbinding:CPIbooksGmbH,Leck ♾Printedonacid-freepaper PrintedinGermany www.degruyter.com FürmeineliebeRenate,diemitbewundernswerter GedulddieEntstehungdiesesBuchesbegleitethat Contents Introduction 1 1 Toralsubalgebrasinp-envelopes 17 1.1 p-envelopes 17 1.2 Theabsolutetoralrank 23 1.3 Extendedroots 30 1.4 Absolutetoralranksofparametrizedfamilies 39 1.5 Toralswitching 46 2 Liealgebrasofspecialderivations 58 2.1 Dividedpowermappings 59 2.2 Subalgebrasdefinedbyflags 73 2.3 TransitiveembeddingsofLiealgebras 79 2.4 Automorphismsandderivations 89 2.5 Filtrationsandgradations 91 2.6 MinimalembeddingsoffilteredandassociatedgradedLiealgebras 99 2.7 Miscellaneous 104 2.8 Auniversalembedding 111 2.9 Theconstructionscanbemadebasisfree 119 3 Derivationsimplealgebrasandmodules 133 3.1 Frobeniusextensions 134 3.2 Inducedmodules 138 3.3 Block’stheorems 151 3.4 Derivationsemisimpleassociativealgebras 163 3.5 Weisfeiler’stheorems 167 3.6 Conjugacyclassesoftori 176 4 SimpleLiealgebras 180 4.1 ClassicalLiealgebras 180 4.2 LiealgebrasofCartantype 184 4.3 Melikianalgebras 199 4.4 SimpleLiealgebrasincharacteristic3 209 viii Contents 5 Recognitiontheorems 217 5.1 Cohomologygroups 217 5.2 FromlocaltoglobalLiealgebras 228 5.3 Representations 252 5.4 GeneratingMelikianalgebras 258 5.5 TheWeakRecognitionTheorem 262 5.6 TheRecognitionTheorem 269 5.7 Wilson’sTheorem 272 6 Theisomorphismproblem 283 6.1 Afirstattack 283 6.2 Thecompatibilityproperty 295 6.3 Specialalgebras 299 6.4 OrbitsofHamiltonianforms 314 6.5 Hamiltonianalgebras 329 6.6 Contactalgebras 346 6.7 Melikianalgebras 349 7 StructureofsimpleLiealgebras 357 7.1 Derivations 357 7.2 Restrictedness 363 7.3 Automorphisms 372 7.4 Gradings 386 7.5 Tori 388 7.6 W(1;n) 420 8 Pairingsofinducedmodules 432 8.1 Cartanprolongation 432 8.2 Modulepairings 449 8.3 Trigonalizability 461 9 Toralrank1Liealgebras 484 9.1 Solvablemaximalsubalgebras 484 9.2 Cartansubalgebrasoftoralrank1 496 Notation 521 Bibliography 527 Index 539 Introduction ThetheoryoffinitedimensionalLiealgebrasoverfieldsF ofpositivecharacteristicp wasinitiatedbyE.Witt,N.Jacobson[Jac37]andH.Zasssenhaus[Zas39]. Sometime before 1937 E.Witt came up with the following example of a simple Lie algebra of dimensionp (forp > 3),afterwardsnamedtheWittalgebraW(1;1). Onthevector (cid:29) p−2 space Fe definetheLieproduct i=−1 i (cid:15) [e ,e ]:= (j −i)ei+j if −1≤i+j ≤p−2, i j 0 otherwise. This algebra behaves completely different from those algebras we know in charac- t eristic0. Asanexample,itcontainsauniquesubalgebraofcodimension1,namely Fe . Italsohassandwichelements,i.e.,elementsc (cid:19)=0satisfying(adc)2 =0 i≥0 i (forexample,ep−2). E.Witthimselfneverpublishedthisexampleorgeneralizations ofit,whichhepresumablyknewof.Atthattimehewasinterestedinthesearchfornew finitesimplegroups. Whenherealizedthatthesenewstructureshadonlyknownau- tomorphismgroupsheapparentlylosthisinterestinthesealgebras. Wehaveonlyoral andindirectinformationofWitt’sworkonthisfieldbytwopublicationsofH.Zassen- haus[Zas39]andChangHoYu[Cha41]. Changdeterminedtheautomorphismsand irreduciblerepresentationsofW(1;1)overalgebraicallyclosedfields. Healsomen- tionedthatWitthimselfgavearealizationofW(1;1)intermsoftruncatedpolynomial rings. Namely,W(1;1)isisomorphicwiththevectorspaceF[X]/(Xp)endowedwith the product {f,g} :=fd/dx(g) −gd/dx(f) for all f,g ∈ F[X]/(Xp) under the mappinge (cid:20)→xi+1,wherex =X+(Xp). i In[Jac37]N.JacobsonprovedaGaloistypetheoremforinseparablefieldexten- sionsbysubstitutingthealgebraofderivationsfortheautomorphismgroupofafield extension. Moreexplicitly,hewasabletoshowthatthesetofintermediatefieldsofa fieldextensionF(c ,...,c ):F withcp ∈F isinbijectionwiththesetofthoseLie 1 n i subalgebrasofDer F(c ,...,c ),whichareF(c ,...,c )-modulesandareclosed F 1 n 1 n underthep-powermappingD (cid:20)→Dp.AtthatearlytimeJacobsonalreadyintroduced the term “restrictable” for those Lie algebras, which admit a p-mapping x (cid:20)→ x[p] satisfyingtheequationadx[p] =(adx)p forallx. Laterhepreferredtousetheterm “restrictedLiealgebra”forpairs(L,[p]),whensuchap-mappingisfixed. TheLie algebrasoflinearalgebraicgroupsoverF areallequippedwithanaturalp-mapping, hencetheycarrycanonicalrestrictedLiealgebrastructures.