ebook img

Simple extensions of reflection subgroups of primitive complex reflection groups PDF

0.13 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Simple extensions of reflection subgroups of primitive complex reflection groups

SIMPLE EXTENSIONS OF REFLECTION SUBGROUPS OF PRIMITIVE COMPLEX REFLECTION GROUPS D. E. TAYLOR 2 1 Abstract. If G is a finiteprimitive complex reflection group, all reflection subgroups of G 0 and their inclusions are determined up to conjugacy. As a consequence, it is shown that if 2 the rank of G is n and if G can be generated by n reflections, then for every set R of n n reflections which generate G, every subset of R generates a parabolic subgroup of G. a J 6 1. Introduction ] R Thefiniteirreduciblecomplex reflection groupswereclassified byShephardandTodd[6]in G 1954. If Gis a primitive complex reflection group then, as shown by Shephardand Todd,G is . h either cyclic, a symmetric group Sym(n) for n ≥ 5, or one of 34 groups G , where 4≤ k ≤ 37. k at A reflection subgroup of G is a subgroup generated by reflections. A parabolic subgroup is m the pointwise stabiliser of a subset X of V. By a fundamental theorem of Steinberg [7] (see [ also [5, Theorem 9.44]) a parabolic subgroup is a reflection subgroup. If H is a reflection subgroup of G, the simple extensions of H are the subgroups hH,ri, 1 v where r is a reflection and r ∈/ H. 8 If H is a conjugacy class of reflection subgroups of G, a conjugacy class K is a simple 4 extension of H if there exists H ∈H and K ∈ K such that K is a simple extension of H. 3 All simple extensions of the conjugacy classes of reflection subgroups of the imprimitive 1 . complex reflection groups G(m,p,n) were determined in [8]. The purpose of the present 1 0 paper is to extend this result to all finite complex reflection groups by describing the simple 2 extensions of the conjugacy classes of reflection subgroups of the groups G (23 ≤ k ≤ 37). k 1 For the groups G of rank 2 (4 ≤ k ≤ 22) every element is a reflection modulo scalars and : k v the simple extensions can be deduced from the results of [5, Chapter 6]. i X The results are presented in Section 5 in the form of tables. The tables themselves were r computed with the aid of the computational algebra system Magma [1]. Tables of conjugacy a classes of the reflection subgroups of the Coxeter groups of types E , E , E , F , H and H 6 7 8 4 3 4 can be found in [3]. Tables of conjugacy classes of parabolic subgroups of these groups also appear in [4, Appendix A]. Refer to [5] and [8] for background and terminology not otherwise explained here. 2. Notation InhisthesisCohen[2]introducedanotation forprimitivecomplex reflectiongroupsofrank at least 3 which extends the standard (Cartan) notation for Coxeter groups. In this notation (4) (5) the complex reflection groups which are not Coxeter groups are labelled J , J , K , K , 3 3 5 6 Date: 9 January 2012. 1991 Mathematics Subject Classification. 20F55. Key words and phrases. complex reflection group; parabolic subgroup, reflection subgroup. 1 2 D.E.TAYLOR L , L , M , N and EN . In the tables which follow we shall label the conjugacy classes of 3 4 3 4 4 reflection subgroups using this notation except that, as in [5], we use O instead of EN . 4 4 A reflection subgroup which is the direct product of irreducible reflection groups of types T , T ,..., T will be labelled T +T +···+T and if T = T for all i we denote the group 1 2 k 1 2 k i by kT. For the imprimitive reflection subgroups which occur in the tables we use the notation introduced in [5, section 7.5] rather than the Shephard and Todd notation G(m,p,n). That (2p) (p) is, B denotes the group G(2p,p,n) and D denotes the group G(p,p,n). For consistency n n (2) (2) with the Cartan names we write Bn instead of Bn and Dn instead of Dn . Similarly An−1 (m) denotes the symmetric group Sym(n) ≃ G(1,1,n). However, we use D rather than I (m) 2 2 to denote the dihedral group of order 2m. (4) For small values of the parameters there are isomorphisms between the groups: B ≃ D , 2 2 (3) (4) A ≃ D , A ≃ D and B ≃ D . The tables use the first named symbol for these groups. 2 2 3 3 2 2 The cyclic groups of order 2 and 3 are denoted by A and L respectively, and L denotes 1 1 2 the Shephard and Todd group G . 4 If there is more than one conjugacy class of reflection subgroups of type T we label the conjugacy classes T.1, T.2, and so on. There is no significance to the order in which these indices occur. Given a reflection subgroup H, the parabolic closure of H is the pointwise stabiliser of the space of fixed points of H; it is the smallest parabolic subgroup which contains H. The rank of the parabolic closure equals is equal to the rank of H. For those (conjugacy classes of) reflection subgroups H whose parabolic closure is a simple extension of H we place the parabolic closure first in the list of simple extensions and use a bold font. The conjugacy classes of parabolic subgroups are labelled with the symbol ℘. 3. Main theorem Theorem 3.1. Suppose that H is a reflection subgroup of the finite primitive complex reflec- tion group G and suppose that K is a simple extension of H. If K is parabolic and the rank of K is greater than the rank of H, then H is parabolic. Proof. If G is the symmetric group Sym(n), it is well known—see [8, Corollary 3.9] for a proof—that every reflection subgroup of G is parabolic. Thus in this case there is nothing to prove. If the rank of G is 1, the only parabolic subgroup is G itself and so we may suppose that G = G for some k such that 4≤ k ≤ 37. k If the rank of G is 2 and H is a non-parabolic reflection subgroup of rank 1, then from [5, Table D.1] G contains an element of order 4 whose square generates H. If H has a simple extension of rank 2 which is parabolic, then the simple extension is G and so G is generated by two reflections. Theonly possibilities for GareG andG butfrom [5, Section 6.3] neither 8 9 group can be generated by two reflections one of which is the square of a reflection of order 4. Ifthe rankof Gis at least 3, the resultfollows from an inspection of the tables in Section 5. (cid:3) Corollary 3.2. If G is a primitive reflection group of rank n and if R is a set of n reflections which generate G, then for any subset S of R, the subgroup generated by S is a parabolic subgroup of G. REFLECTION SUBGROUPS OF PRIMITIVE REFLECTION GROUPS 3 4. The Magma code In order to construct the complex reflection group W = G , where 4 ≤ n ≤ 37, use the n Magma code roots, coroots, rho, W, J := ComplexRootDatum(n); In addition to W this function returns a set of roots, a set of coroots, a bijection rho from roots to coroots and a matrix J which defines a W-invariant positive definite hermitian form. The reflection r with root a and coroot rho(a) can be obtained via the code r := PseudoReflection(a,rho(a)); Given a reflection subgroup H of W, we create a sequence extn of simple extensions of H (up to conjugacy): (1) Let orbreps be a set of representatives for the orbits of the normaliser of H in W on the reflections which do not belong to H. (2) For each reflection r in orbreps construct the simple extension G := sub< W | H, r >; (3) If G is not conjugate in W to any simple extension already constructed, append G to extn. Identification of the type of a reflection subgroup H is carried out as follows. (1) Compute the list of indecomposable components L , L , ..., L of the root system 1 2 k L of H; that is, L is the union of the L , the L are pairwise orthogonal and the i i reflection subgroup of H corresponding to L is irreducible (as a reflection group). i (2) Compute the standard name of each indecomposable component of H. This is facili- tated by the observation that the irreducible reflection groups K which occur in the tables are uniquely determined by the pair of integers (n,m), where n is the order of K and m is the size of its line system. (3) An associative array refgroup is used to map the standard name of a reflection subgroup to the actual subgroup. refgroup := AssociativeArray(Parent("")); The full implementation of the Magma code is available at http://www.maths.usyd.edu.au/u/don/ in the file subsystems.m. The function showTable creates the data which is the basis for the tables in Section 5. For example load "subsystems.m"; showTable(23); displays the data P | A1 | [ A1A1, A2, D2(5) ] P | A1A1 | [ H3, A1A1A1 ] P | A2 | [ H3 ] P | D2(5) | [ H3 ] P | H3 | [] N | A1A1A1 | [ H3 ] 4 D.E.TAYLOR 5. The tables Table 1. Reflection subgroup classes of G =H 23 3 Class Simple extensions (5) ℘ A D , A , 2A 1 2 2 1 ℘ 2A H , 3A 1 3 1 ℘ A H 2 3 (5) ℘ D H 2 3 3A H 1 3 Table 2. Reflection subgroup classes of G = J(4) 24 3 Class Simple extensions ℘ A B , A , 2A .1, 2A .2 1 2 2 1 1 2A .1 B , B .1, A +B , A .1, 3A .1 1 2 3 1 2 3 1 2A .2 B , B .2, A +B , A .2, 3A .2 1 2 3 1 2 3 1 (4) ℘ A J , B .1, B .2, A .1, A .2 2 3 3 3 3 3 (4) ℘ B J , B .1, B .2, A +B 2 3 3 3 1 2 3A .1 B .1, A +B 1 3 1 2 3A .2 B .2, A +B 1 3 1 2 (4) A +B J , B .1, B .2 1 2 3 3 3 (4) A .1 J , B .1 3 3 3 (4) A .2 J , B .2 3 3 3 (4) B .1 J 3 3 (4) B .2 J 3 3 Table 3. Reflection subgroup classes of G = L 25 3 Class Simple extensions ℘ L L , 2L 1 2 1 ℘ 2L L , 3L 1 3 1 ℘ L L 2 3 3L L 1 3 REFLECTION SUBGROUPS OF PRIMITIVE REFLECTION GROUPS 5 Table 4. Reflection subgroup classes of G = M 26 3 Class Simple extensions (3) ℘ L L , 2L , B , A +L 1 2 1 2 1 1 (3) ℘ A B , A +L , A 1 2 1 1 2 (3) (3) 2L B , L , B +L , 3L 1 2 3 2 1 1 A B(3), B(3), D(3), A +L 2 2 3 3 2 1 ℘ L M , L , A +L 2 3 3 1 2 (3) (3) (3) ℘ B M , B , B +L 2 3 3 2 1 (3) (3) ℘ A +L M , B , B +L , A +L , A +L 1 1 3 3 2 1 1 2 2 1 (3) (3) D B 3 3 (3) 3L L , B +L 1 3 2 1 (3) (3) B +L M , B 2 1 3 3 (3) (3) A +L M , B , B +L 2 1 3 3 2 1 (3) B M 3 3 L M 3 3 A +L M 1 2 3 Table 5. Reflection subgroup classes of G = J(5) 27 3 Class Simple extensions (5) ℘ A B , D , A .1, A .2, 2A .1, 2A .2 1 2 2 2 2 1 1 2A .1 B , H .1, B .1, A +B , A .1, 3A .1 1 2 3 3 1 2 3 1 2A .2 B , H .2, B .2, A +B , A .2, 3A .2 1 2 3 3 1 2 3 1 (5) (3) ℘ A .1 J , H .2, B .1, D , A .1 2 3 3 3 3 3 (5) (3) ℘ A .2 J , H .1, B .2, D , A .2 2 3 3 3 3 3 (5) (5) ℘ D J , H .1, H .2 2 3 3 3 (5) ℘ B J , B .1, B .2, A +B 2 3 3 3 1 2 3A .1 H .1, B .1, A +B 1 3 3 1 2 3A .2 H .2, B .2, A +B 1 3 3 1 2 (5) A .1 J , B .1 3 3 3 (5) A .2 J , B .2 3 3 3 (5) A +B J , B .1, B .2 1 2 3 3 3 (5) H .1 J 3 3 (5) H .2 J 3 3 (5) B .1 J 3 3 (5) B .2 J 3 3 (3) (5) D J 3 3 6 D.E.TAYLOR Table 6. Reflection subgroup classes of G = F 28 4 Class Simple extensions ℘ A .1 B , A .1, 2A .1, 2A .3 1 2 2 1 1 ℘ A .2 B , A .2, 2A .2, 2A .3 1 2 2 1 1 2A .1 B , (A +B ).2, A .1, 3A .1, 3A .2 1 2 1 2 3 1 1 2A .2 B , (A +B ).1, A .2, 3A .3, 3A .4 1 2 1 2 3 1 1 ℘ 2A .3 B .1, B .2, (A +B ).2, (A +B ).1, 1 3 3 1 2 1 2 (A +A ).1, (A +A ).2, 3A .2, 3A .3 1 2 1 2 1 1 ℘ A .1 B .1, A .1, (A +A ).1 2 3 3 1 2 ℘ A .2 B .2, A .2, (A +A ).2 2 3 3 1 2 ℘ B B .1, B .2, (A +B ).1, (A +B ).2 2 3 3 1 2 1 2 A .1 B .1, B .1, D .1, (A +A ).1 3 3 4 4 1 3 A .2 B .2, B .2, D .2, (A +A ).2 3 3 4 4 1 3 3A .1 (A +B ).2, (2A +B ).1, D .1, 4A .1 1 1 2 1 2 4 1 3A .2 B .1, (A +B ).2, (A +B ).1, (2A +B ).1, 1 3 1 3 1 2 1 2 (A +A ).1, 4A .2 1 3 1 3A .3 B .2, (A +B ).1, (A +B ).2, (2A +B ).2, 1 3 1 3 1 2 1 2 (A +A ).2, 4A .2 1 3 1 3A .4 (A +B ).1, (2A +B ).2, D .2, 4A .3 1 1 2 1 2 4 1 (A +B ).1 B .1, B .2, 2B , (A +B ).1, (2A +B ).2 1 2 3 4 2 1 3 1 2 (A +B ).2 B .2, B .1, 2B , (A +B ).2, (2A +B ).1 1 2 3 4 2 1 3 1 2 ℘ (A +A ).1 F , B .1, (A +B ).1, 2A , (A +A ).1 1 2 4 4 1 3 2 1 3 ℘ (A +A ).2 F , B .2, (A +B ).2, 2A , (A +A ).2 1 2 4 4 1 3 2 1 3 ℘ B .1 F , B .1, (A +B ).1 3 4 4 1 3 ℘ B .2 F , B .2, (A +B ).2 3 4 4 1 3 4A .1 D .1, (2A +B ).1 1 4 1 2 4A .2 (2A +B ).1, (2A +B ).2, (A +B ).1, (A +B ).2 1 1 2 1 2 1 3 1 3 4A .3 D .2, (2A +B ).2 1 4 1 2 D .1 B .1 4 4 D .2 B .2 4 4 (2A +B ).1 2B , B .1, (A +B ).2 1 2 2 4 1 3 (2A +B ).2 2B , B .2, (A +B ).1 1 2 2 4 1 3 2B B .1, B .2 2 4 4 (A +A ).1 F , B .1, (A +B ).1 1 3 4 4 1 3 (A +A ).2 F , B .2, (A +B ).2 1 3 4 4 1 3 (A +B ).1 F , B .1 1 3 4 4 (A +B ).2 F , B .2 1 3 4 4 B .1 F 4 4 B .2 F 4 4 2A F 2 4 REFLECTION SUBGROUPS OF PRIMITIVE REFLECTION GROUPS 7 Table 7. Reflection subgroup classes of G = N 29 4 Class Simple extensions ℘ A B , A , 2A .1, 2A .2 1 2 2 1 1 2A .1 B , A +B , A .1, A .4, 3A .1, 3A .2 1 2 1 2 3 3 1 1 ℘ 2A .2 B , A +B , A +A , A .2, A .3, 3A .2 1 3 1 2 1 2 3 3 1 (4) ℘ A B , D , A +A , A .1, A .2, A .3, A .4 2 3 3 1 2 3 3 3 3 (4) ℘ B B , D , A +B 2 3 3 1 2 3A .1 A +B , 2A +B , D .1, 4A .1 1 1 2 1 2 4 1 3A .2 B , A +B , A +B , 2A +B , D .2, 4A .2, A +A 1 3 1 2 1 3 1 2 4 1 1 3 (4) A +B B , 2B , B , A +B , 2A +B , D 1 2 3 2 4 1 3 1 2 4 (4) A .1 B , D .1, D , A +A 3 3 4 4 1 3 (4) (4) A .4 D , B , D .1, D .2, D 3 3 4 4 4 4 (4) ℘ A .2 N , D .2, D , A .1 3 4 4 4 4 (4) ℘ A .3 N , D .2, D , A .2 3 4 4 4 4 ℘ A +A N , B , A +B , A +A , A .1, A .2 1 2 4 4 1 3 1 3 4 4 ℘ B N , B , A +B 3 4 4 1 3 (4) (4) ℘ D N , D 3 4 4 4A .1 D .1, 2A +B 1 4 1 2 4A .2 D .2, 2A +B , A +B 1 4 1 2 1 3 (4) 2A +B B , A +B , D , 2B 1 2 4 1 3 4 2 (4) 2B B , D 2 4 4 (4) D .1 B , D 4 4 4 (4) D .2 N , D 4 4 4 A +A N , A +B , B 1 3 4 1 3 4 A +B N , B 1 3 4 4 A .1 N 4 4 A .2 N 4 4 B N 4 4 (4) D N 4 4 8 D.E.TAYLOR Table 8. Reflection subgroup classes of G =H 30 4 Class Simple extensions ℘ A D(5), A , 2A 1 2 2 1 ℘ 2A H , A +D(5), A +A , A , 3A 1 3 1 2 1 2 3 1 ℘ A H , A +A , A 2 3 1 2 3 (5) (5) ℘ D H , A +D 2 3 1 2 3A H , A +H , D , 4A 1 3 1 3 4 1 ℘ A H , D , A 3 4 4 4 ℘ A +A H , A +H , A , 2A 1 2 4 1 3 4 2 ℘ A +D(5) H , A +H , 2D(5) 1 2 4 1 3 2 ℘ H H , A +H 3 4 1 3 4A A +H , D 1 1 3 4 A +H H 1 3 4 D H 4 4 2D(5) H 2 4 A H 4 4 2A H 2 4 Table 9. Reflection subgroup classes of G = O 31 4 Class Simple extensions (ranks 1, 2 and 3) ℘ A B , A , 2A .1, 2A .2 1 2 2 1 1 2A .2 B , (A +B ).1, A .2, 3A .1, 3A .2 1 2 1 2 3 1 1 B B(4), B , D(4), (A +B ).1, (A +B ).2 2 2 3 3 1 2 1 2 ℘ 2A .1 B , (A +B ).1, (A +B ).2, A +A , A .1, 3A .1 1 3 1 2 1 2 1 2 3 1 ℘ A B , D(4), A +A , A .1, A .2 2 3 3 1 2 3 3 ℘ B(4) B(4), A +B(4) 2 3 1 2 (4) (4) A .2 B , D , B .1, D , D .1, D .2, A +A 3 3 3 4 4 4 4 1 3 3A .1 B , (A +B ).1, (A +B ).2, D .1, A +B , 1 3 1 2 1 2 4 1 3 A +A , (2A +B ).1, (2A +B ).2, 4A .1 1 3 1 2 1 2 1 3A .2 (A +B ).1, D .2, (2A +B ).1, 4A .2 1 1 2 4 1 2 1 (A +B ).1 B , A +B(4), B .1, 2B .1, 2B .2, D(4), A +B , 1 2 3 1 2 4 2 2 4 1 3 (2A +B ).1 1 2 (A +B ).2 B(4), A +B(4), B .2, A +D(4), 2B .2, (2A +B ).2 1 2 3 1 2 4 1 3 2 1 2 A +B(4) B(4), B(4), A +B(4), B +B(4), 2A +B(4) 1 2 3 4 1 3 2 2 1 2 B B(4), N , F , B .1, B .2, A +B 3 3 4 4 4 4 1 3 D(4) B(4), N , D(4), A +D(4) 3 3 4 4 1 3 ℘ A .1 N , B .2, D(4), D .1, A .1, A .2 3 4 4 4 4 4 4 ℘ A +A N , F , B .1, B .2, A +B , A +D(4), A +A , 1 2 4 4 4 4 1 3 1 3 1 3 2A , A .1, A .2 2 4 4 ℘ B(4) O , B(4), A +B(4) 3 4 4 1 3 REFLECTION SUBGROUPS OF PRIMITIVE REFLECTION GROUPS 9 Table 10. Reflection subgroup classes of G = O (continued) 31 4 Class Simple extensions (rank 4) 4A .1 A +B , (2A +B ).1, (2A +B ).2, D .1 1 1 3 1 2 1 2 4 4A .2 D .2, (2A +B ).1 1 4 1 2 (4) (4) (2A +B ).1 B .1, D , A +B , 2A +B , 2B .1, 2B .2 1 2 4 4 1 3 1 2 2 2 (4) (4) (2A +B ).2 A +B , 2B .2, B .2, 2A +B 1 2 1 3 2 4 1 2 (4) A +A N , F , B .1, B .2, A +D , A +B 1 3 4 4 4 4 1 3 1 3 (4) A +B N , F , A +B , B .1, B .2 1 3 4 4 1 3 4 4 (4) (4) 2B .1 B .1, D , B +B 2 4 4 2 2 (4) (4) 2B .2 B .2, B , B +B 2 4 4 2 2 (4) (4) (4) (4) 2A +B B , A +B , B +B 1 2 4 1 3 2 2 (4) (4) (4) B +B B , 2B 2 2 4 2 (4) D .1 N , B .2, D 4 4 4 4 (4) D .2 B .1, D 4 4 4 (4) (4) 2B B 2 4 (4) (4) D N , B 4 4 4 (4) B .1 N , B , F 4 4 4 4 (4) B .2 O , B 4 4 4 (4) (4) (4) A +D O , B , A +B 1 3 4 4 1 3 (4) (4) A +B O , B 1 3 4 4 A .1 O , N 4 4 4 A .2 O , N 4 4 4 2A O , F 2 4 4 (4) B O 4 4 F O 4 4 N O 4 4 Table 11. Reflection subgroup classes of G =L 32 4 Class Simple extensions ℘ L L , 2L 1 2 1 ℘ 2L L , L +L , 3L 1 3 1 2 1 ℘ L L , L +L 2 3 1 2 3L L , L +L , 4L 1 3 1 3 1 ℘ L L , L +L 3 4 1 3 ℘ L +L L , L +L , 2L 1 2 4 1 3 2 4L L +L 1 1 3 L +L L 1 3 4 2L L 2 4 10 D.E.TAYLOR Table 12. Reflection subgroup classes of G = K 33 5 Class Simple extensions ℘ A A , 2A 1 2 1 ℘ 2A A +A , A , 3A 1 1 2 3 1 (3) ℘ A D , A +A , A 2 3 1 2 3 (3) ℘ A +A D , A +A , A , 2A 1 2 4 1 3 4 2 (3) ℘ A D , D , A +A , A 3 4 4 1 3 4 ℘ 3A D , A +A , 4A 1 4 1 3 1 (3) (3) ℘ D D 3 4 4A D , A +D , 5A 1 4 1 4 1 (3) 2A D , A 2 4 5 ℘ A +A K , A +D , A 1 3 5 1 4 5 ℘ D K , A +D 4 5 1 4 ℘ A K , A 4 5 5 (3) ℘ D K 4 5 5A A +D 1 1 4 A +D K 1 4 5 A K 5 5 Table 13. Reflection subgroup classes of G = K 34 6 Class Simple extensions (ranks 1 to 4) ℘ A A , 2A 1 2 1 ℘ 2A A +A , A , 3A 1 1 2 3 1 ℘ A D(3), A +A , A 2 3 1 2 3 ℘ A +A D(3), A +D(3), A +A , 2A +A , A , 2A .1, 2A .2 1 2 4 1 3 1 3 1 2 4 2 2 (3) ℘ A A , D , D , A +A 3 4 4 4 1 3 ℘ 3A D , A +A , 2A +A , 4A 1 4 1 3 1 2 1 ℘ D(3) D(3), A +D(3) 3 4 1 3 4A D , A +D , 2A +A , 5A 1 4 1 4 1 3 1 2A .2 D(3), A +D(3), A +2A , A .2 2 4 2 3 1 2 5 ℘ 2A .1 D(3), A +D(3), A +A , A .1, A .3 2 5 2 3 2 3 5 5 ℘ A +A K , D , A +D(3), A +D , A +A , A +A , 1 3 5 5 1 4 1 4 2 3 1 4 2A +A , A .1, A .2, A .3 1 3 5 5 5 ℘ 2A +A D , A +D(3), A +A , A +A , A +2A , 2A +A 1 2 5 1 4 2 3 1 4 1 2 1 3 ℘ A +D(3) D(3), A +D(3), A +D(3) 1 3 5 2 3 1 4 ℘ D K , D , A +D 4 5 5 1 4 ℘ A K , D , D(3), A +A , A .1, A .2, A .3 4 5 5 5 1 4 5 5 5 (3) (3) (3) ℘ D K , D , A +D 4 5 5 1 4

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.