International Journal o f Molecular Sciences Review Similarities and Differences between Silver Ions and Silver in Nanoforms as Antibacterial Agents AnnaKe˛dziora1,*,MateuszSperuda1,EvaKrzyz˙ewska2 ID,JacekRybka2,AnnaŁukowiak3 andGabrielaBugla-Płoskon´ska1,* 1 DepartmentofMicrobiology,InstituteofGeneticsandMicrobiology,UniversityofWrocław,51-148Wrocław, Poland;[email protected] 2 DepartmentofImmunologyofInfectiousDiseases,HirszfeldInstituteofImmunologyandExperimental Therapy,PolishAcademyofSciences,53-114Wrocław,Poland;[email protected](E.K.); [email protected](J.R.) 3 InstituteofLowTemperatureandStructureResearch,PolishAcademyofSciences,50-422Wrocław,Poland; [email protected] * Correspondence:[email protected](A.K.);[email protected](G.B.-P.); Tel.:+48-71-375-62-22(A.K.);+48-71-375-63-23(G.B.-P.) Received:2December2017;Accepted:16January2018;Published:2February2018 Abstract: Silverisconsideredasantibacterialagentwithwell-knownmodeofactionandbacterial resistance against it is well described. The development of nanotechnology provided different methodsforthemodificationofthechemicalandphysicalstructureofsilver,whichmayincreaseits antibacterialpotential. Thephysico-chemicalpropertiesofsilvernanoparticlesandtheirinteraction withlivingcellsdifferssubstantiallyfromthoseofsilverions. Moreover,thevarietyoftheformsand characteristicsofvarioussilvernanoparticlesarealsoresponsiblefordifferencesintheirantibacterial modeofactionandprobablybacterialmechanismofresistance. Thepaperdiscussesindetailsthe aforementionedaspectsofsilveractivity. Keywords: silverions;silvernanoparticles;silvernanocompounds;nanotechnology;modeofaction; resistanceofbacteria 1. Introduction Silverionsasantibacterialagentshavebeenknownforages. Adetailedhistoryofsilverusage waswelldocumentedintheliterature[1,2]. Silverionsfromdissolvedsilvernitrate(lapis,AgNO ) 3 and silver sulfadiazine are agents with proved efficacy against Gram-positive and Gram-negative bacteria[3–6]. The dynamic development of nanotechnology in recent years has provided possibilities for fabricating various forms of silver nanoparticles (AgNPs) [7]. Their most important feature is the highly developed surface area of small-size particles, which allows to increase the antimicrobial efficacyandbioavailabilityofmaterialsusedinthebiologyandbiomedicalsector[8]. Wecanobserve a “nanotechnology race” of nanoproducts applications [7] in the biomedical sector too. In 2017 Shengetal.[9]reviewedthatover1000articlesconcernedtheeffectsofnanoparticlesonbacteriaand over90%ofthemwerepublishedafter2008. Atpresent,moreandmorepublicationsconcerningthe synthesisandantibacterialactivityofsilvernanoformsarebeingpublished[10–32]. Therefore,themaingoalofthismanuscriptistoemphasizethevarietyofsilvernanomaterials, theirdiversityinphysico-chemicalpropertiesandfinally,thehighpossibilityfordifferentinteractions withcells—especiallywithbacterialpathogens. Wecomparedthemodeofactionofsilverionsand silvernanocompositesagainstbacteria(Gram-positiveandGram-negativebacterialcells),analysed thelimitationofusageofsilvermaterialsconsideringthebacterialresistancetothem,determinedthe Int.J.Mol.Sci. 2018,19,444;doi:10.3390/ijms19020444 www.mdpi.com/journal/ijms Int.J.Mol.Sci. 2018,19,444 2of17 gapofknowledgeandshowedfutureperspectives. Increasingamountofsilverintheenvironment, havingitssourceinhumanactivities,especiallynanotechnologyproducts,causeair,waterandearth pollution. Wewouldliketoemphasizethesubstantialdifferencesbetweenvariousformsofsilver nanoparticleswhichcannotbeconsideredasidenticalmaterials. Asinthecaseofotherbiocidesthe borderbetweenbenefitsandtoxiceffectisverynarrow[33]. 2. PropertiesofSilverMaterialsvs. AntibacterialActivity Silverionsarerelativelyreactive. Thebindingofsilverionsintheformofinsolubleprecipitates (AgCl),orduringtheinteractionswithproteins(e.g.,albumin),causesasignificantdecreaseofits antibacterialefficacy,whichisveryimportantinthecaseofAg+bioapplications. AgNPscanexistintheformofmetallicsilverwithatomsstronglyconnectedwitheachother[34]. ThetypicalAgNPsareusuallyofafewtoadozennmindiameter[35]andcantakedifferentshapes (spherical,irregularorplanar)[9,20,24–28,36–38]thatdependonthemethodsofproduction. Oneof themostpopular“bottomup”eco-friendlymethodisbiologicalsynthesis,usinglivingcellsofbacteria, fungiandplantstoobtainsilvernanoparticles[9,15–17,19,24,27,37,38]. ItisworthtounderlinethatAgNPsneverperformaloneduetotheirtendencytoaggregateas aresultoftheinteractionsbetweensilveratoms. Topreventaggregationorganic(e.g.,citricacid)or inorganiccarriers(stabilizers,suchassilica,grapheneortitaniumdioxide)areused. Fromthepoint ofviewofnanotechnology,theunaffectedphysico-chemicalpropertiesofAgNPs(especiallylarge surfaceareatovolumeratio)arecrucialtomaintaintheirantibacterialefficacy. Varietyofsynthesis methods(includingchemicalsandreactionparameters)determinethevarietyofphysico-chemical propertiesofnanomaterialsandtheirbiologicalactivity. InTable1theinfluenceofimportantchemical andphysicalpropertiesonthatactivityisshown. Int.J.Mol.Sci. 2018,19,444 3of17 Table1.Overviewofcertainnanocompositesofsilver:theirphysico-chemicaldescriptionandbiologicalactivity. Nanocomposite SilverNanoparticles SilverNanoparticles SilverAmountin FormofCompound (NamedAccording TypeofSynthesis AntibacterialActivity References Size Shape Nanocomposites (IfApplicable) totheReference) Antibacterialeffectwasdose-dependent.Testedsilver nanoparticlesweremoreeffectiveagainstGram-negative Silvernanoparticles 10–15nm spherical,polyhedral n/a n/a chemical bacteriathanGram-positive; [18] MoA:bindingtothecellwallandpenetratingit;modulation ofcellularsignalling Increasedantibacterialactivityofantibioticsinthepresence variable:most AgNPs 5–30nm n/a n/a biological ofAgNPs; [19] spherical MoA:bindingtoproteins(bythiolgroups)andDNA 39nm(spherical),40nm InhibitionofEscherichiacoligrowthonmediumwithsilver variable:most (triangular),133–192nm, nanoparticles; Silvernanoparticles spherical,triangular, n/a n/a chemical [20] diameter:16nm MoA:damageofbacterialcellmembraneonmultiple rod-shaped (rod-shaped) locations,formationofirregularpits InhibitionofE.coligrowthat6µMconcentrationofNano-Ag; MoA:changesinexpressionofgenesencodingenvelope Nano-Ag 9.3±2.8nm spherical n/a n/a chemical proteins(accumulationofenvelopeproteinprecursors), [21] destabilizationofoutermembrane,disturbanceofproton motiveforce InhibitionofE.coligrowthat50–60µg/mLconcentrationof silvernanoparticles; Silvernanoparticles 12nm spherical n/a n/a chemical MoA:damageofmembranes,incorporationofsilver [22] nanoparticlesintomembranes,formingpits,disturbancesin permeability InhibitionofGram-negativeandGram-positivebacteria growthat75µg/mLconcentrationofsilvernanoparticles; icosahedral,twinned, agglomeratedinside MoA:bindingtocellmembrane,permeabilitychanges, Silvernanoparticles 16±8nm,21±18nm n/a chemical [23] decahedral thecarbonmatrix disturbancesinrespirationprocess,penetrationofthe bacterialmembranes,interactingwithDNA,releasing silverions nanotexture,rutile, InhibitionofS.aureus(MRSA)andE.coligrowthat15–75µM; Ti/Ag notspecified notspecified 1.93–6.08%[m/m] biological [24] anatase MoA:notspecified 0.5gnanosilver/diatomitekillsabove99%ofE.coliwithin Nanosilver/diatomite 1–20nm sphericalparticles 0.537%[m/m] notspecified chemical 30min; [25] MoA:notspecified InhibitionofE.coli,Klebsiellapneumoniae,Bacilluspumilusand chitosan/alginate Chitosan-AgNps 8–28nm spherical 1%[m/m] chemical Staphylococcusaureusgrowth; [26] nanofibers MoA:notspecified Int.J.Mol.Sci. 2018,19,444 4of17 Table1.Cont. Nanocomposite SilverNanoparticles SilverNanoparticles SilverAmountin FormofCompound (NamedAccording TypeofSynthesis AntibacterialActivity References Size Shape Nanocomposites (IfApplicable) totheReference) Inhibitionofmultidrug(MDR)pathogens:Acinetobacter 15–160nm(mean sphericaland baumannii,E.coli,PseudomonasaeruginosaandSalmonella AgNps n/a notspecified biological [27] diameter60±10nm) irregular entericagrowthat25–50µgconcentration; MoA:notspecified graphenesheets 31.5–42nm(mean InhibitionofE.coligrowth GO-L-cys-AgNps diameter35.34±0.2nm) spherical notspecified functionalizedwith chemical MoA:damagesofthecellmembrane [28] L-cysteine InhibitionoftheGram-positiveandGram-negativebacteria AgNPs 6–26nm,4.24–23.22nm spherical n/a foam biological growthat676.9mg/Lconcentration; [29] MoA:notspecified 100nm,30nmdiameter InhibitionofE.coliandS.aureusgrowthat0.05mg/L; Ag-NPs Spherical,rod-like n/a oilmicroemulsion chemical [30] 200–300length MoA:notspecified InhibitionofE.coli,S.aureus,P.aeruginosagrowthat AgNPs 15nm spherical n/a n/a biological 50µg/mL; [31] MoA:notspecified Increasedantibacterialactivityofampicillin,erythromycin variable:sphericalor andchloramphenicolinthepresenceofAgNPs(E.coli, AgNPs 5–40nm n/a n/a biological [32] rod-like SalmonellaTyphi,S.aureus,Micrococcusluteus); MoA:notspecified n/a—notapplicable;MoA—Modeofantibacterialactionofsilver;AgNPs—silvernanoparticles;GO—grapheneoxide;MDR—multi-drugresistant;MRSA—Methicillin-resistantS.aureus. Int.J.Mol.Sci. 2018,19,444 5of17 3. ModeofAntibacterialActionofSilver(MoA) Lietal.[39]provedthatsilverionshavesimilarmodeofactiontosilvernanoparticlesbutstronger antibacterialactivitythanAgNPs. The antibacterial activity of silver ions (Ag+) is directly proportional to the environmental concentrationofsilverions. Duetotheoligodynamiceffect,silvershowshighantibacterialefficacy eveninlowconcentrations. Jungetal.[40]comparedtheantibacterialactivityofsilverionsobtained invariouswaysandshowedthatsilverionsproducedinanelectrolyticwayarebetterantibacterial agentsthanthoseobtainedbydissolvingthesilvercompounds. Theantibacterialmodeofactionofsilverionsisconnectedwith: (i)interactionwiththebacterial cellenvelope(destabilizationofthemembrane—lossofK+ionsanddecreaseofATPlevel,bondedwith phospholipids),(ii)interactionwithmoleculesinsidethecell(e.g.,nucleicacidsandenzymes),(iii)the productionofreactiveoxygenspecies(ROS)[41]. Theinteractionofsilverionswithbacterialinner membraneisoneofthemostimportantmechanismsofAg+toxicity[42]. Jungetal.[40]provedthat theaccumulationofAg+inthebacterialcellenvelopeisfollowedbytheseparationofthecytoplasmic membrane (CM) from the cell wall in both Gram-positive and Gram-negative bacteria [40,43]. Sütterlinetal.[41]showedthataminimalbactericidalconcentration(MBC)ofAg+forGram-positive bacteriawasmorethan32timeshigherthantheMBCvaluesfortheGram-negativebacterialcells. According to reference [40], carboxyl groups (–COOH) in glutamic acid and phosphate groups in teichoicacidaremostlyresponsibleforbindingofsilverions.Ontheotherhand,Randalletal.[44] suggestedthatthedamagecausedbyAg+intheinnermembrane(IM)isoneofthemostimportant mechanismsinstaphylococci. Ithasbeenprovedthatsilverionsenterbacteriacellswithin30min of exposition and bind to cytoplasm components, proteins and nucleic acids [40,45]. As it can be seen from the TEM (transmission electron microscopy) pictures, shown in Figure 1, both types of bacterialcells(Gram-positiveandGram-negative)treatedwithAg+ werelysedandtheleakageof cytoplasmcouldbeobservedinallcases.Jungetal.[40]suggestedthatsilverionsinducean”activebut nonculturable”state(ABNC)inbacteriacells. StressinducedbyAg+ causedthatbacteriamaintained themetabolismandphysiologybutstoppedthegrowth,thereforethenumberofviablecellsdecreased intheperformedinvitrotests. OneofthedifferencesbetweenthemodeofAg+actionagainstGram-positiveandGram-negative bacteriaregardsthewayofsilveruptakeintothecell. SilverionsenterGram-negativecellsviamajor outer membrane proteins (OMPs), especially OmpF (and its homolog OmpC) [21,43], which is a 39 kDa transmembrane protein with trimeric β-barrel structure. Each monomer of OmpF is built by sixteen transmembrane, antiparallel β-strands assembled with each other via hydrogen bonds. Those strands form a stable β-sheet which afterwards folds into a cylindrical tube with a channel function. Besidesporinandiontransporteractivity,OmpFisinvolvedinthetransportofothersmall molecules (e.g., drugs) across the bacterial outer membrane (OM) [46,47]. The importance of the OmpF/OmpCroleinthemechanismofresistancetosilverhasbeendiscussedrepeatedlyinafew publishedpapers[43,48–50]. Sometimestheresultsoftheconductedexperimentswerequitedifferent. Radzigetal.[48]claimedthatE.colilackingOmpF(orOmpC)intheOMwas4–8timesmoreresistant toAg+ orAgNPsthanE.coliwhichpossessedthoseproteins. Inanotherstudy, Randalletal.[43] provedthatprolongedexposuretosilverionscausedmissensemutationsinthecusSandompRgene. ThelatterresultedinthelossoffunctionofOmpRprotein(whichisatranscriptionfactorofOmpF and OmpC) and, finally, in the lack of OmpF/C proteins in the OM. E. coli BW25113 without the mentionedOMPsischaracterizedbyalowpermeabilityoftheOMandahighlevelofresistanceto Ag+. Thosefeatureswereobservedonlyinthesituationwhenbothproteinswerenotpresentinthe OM[43]. Yenetal.[49]standinoppositiontotheresultsshownabove. Intheirresearch,regardlessof thepresenceorabsenceofOmpF/OmpCinthebacterialOM,theyobservednochangesinbacterial sensitivitytosilverions. Lietal.[50]testedtheantibacterialactivityofsilver-coatedcarbonnanotubes on Salmonella Typhimurium and observed reduced expression of the ompF gene after exposure to thesenanoparticles. Int.J.Mol.Sci. 2018,19,444 6of17 Int. J. Mol. Sci. 2018, 19, x 6 of 17 Figure 1. Internal morphology of S. aureus (A) and E. coli (B) observed via TEM (a,b) untreated Figure1.InternalmorphologyofS.aureus(A)andE.coli(B)observedviaTEM(a,b)untreatedbacteria, bacteria, (c,d) bacteria treated with Ag+ (0.2 ppm) during 2 h. Black and white arrows indicate (c,d)bacteriatreatedwithAg+(0.2ppm)during2h.Blackandwhitearrowsindicatepeptidoglycan peptidoglycan and cytoplasmic membrane, respectively (A) and outer membrane, peptidoglycan and andcytoplasmicmembrane,respectively(A)andoutermembrane,peptidoglycanandcytoplasmic cytoplasmic membrane (B). Arrowhead indicate separation of the cell membrane from the cell wall. membrane(B).Arrowheadindicateseparationofthecellmembranefromthecellwall. Reprinted Reprinted from [40] with American Society for Microbiology Publishing Group permission. from[40]withAmericanSocietyforMicrobiologyPublishingGrouppermission. Another molecular mechanism of antibacterial toxicity of silver ions is connected with their interAacntiootnh ewr mitho lesctruulactrumrael chanandi sfmunocftiaonntailb apcrtoerteiainlst,o xeiscpiteycioafllsyi lvtheorsieo nwsiitshc othninoel ctgerdouwpist h(–thSeHir) i[n4t2e,r4a5c,5ti1o]n. Iwnhitihbisttirounc touf rtahlea mndaifnu nrecstipoinraatloprryo ctehianisn, epsrpoeteciinalsl y(et.hgo.,s ceywtoicthhrtohmioel gbr)o cuapusse(–s SaHn )in[4c2re,4a5s,e5 1o]f. IRnOhiSb iintisoindeo fththe ecemlla, iwnhraest pcoirnattroirbyuctehsa tino tphreo tdeeinatsh( eo.fg b.,accytteorciah.r Eoxmpeobsu)rcea utos essilavneri nrecsreualtsse ionf tRheO iSnicnresiadsee tohfe thceel ll,ewvehla otfc oinnttrraibceultleuslator rtheaecdtievaet hoxoyfgbeanct esprieac.iEesx,p woshuarte lteoadsisl vteor orxeisdualttsivien sthtreesins,c rperaosteeionf dthaemleavgeel, oDfNinAtr astcrealnludl abrrreeaakcatgivee, aonxdyg, econnsspeeqcuieesn,twlyh, acetllle addeasttho [o4x5i]d. aOtinvee osft rtehses ,mpraojoter itnardgaemtsa ignes,idDeN tAhes ctrealln ids bthreea Sk2a gper,oatneidn,, clooncsaeliqzueedn itnly ,scmealllld seuatbhun[4i5ts] .oOf ntheeo fbtahcetemriaaljo rribtaorsgoemtsei.n Tshidee bthinedcienlgl iosft hsielvSe2r piroontse itno, lroibcaolsiozmedailn psrmotaelilnssu breusnuilttss oifnt htheeb adcetneraitaulrraitbioosno mofe t.hTeh eribboinsdoimnge onfastiivlvee rstirouncstutorer iabnodso imnhalibpirtoiotnei nosf rpersoutletisni nbitohseydnetnhaestuisr a[t4i5o]n. Mofothreeorvibero,s oitm heasn abteivene sptrruovcteudr ethaantd siinlvheibr iitoionns oinftperroatceti nwbitiho snyuncthleeisci sa[c4id5]s. Mfoormreionvge r,biotnhdass bweeitnhp proyvreimditdhiantes ilbvaesreiso.n Isni nttherea cctownsitehqunuenclceei,c aDcNidAsf ocromndinegnbseosn dasnwd itrhepplyicraimtioidni nies binahseibs.itIend t[h5e2]c.o nsequence,DNAcondensesandreplicationisinhibited[52]. TThhee aannttiibbaacctteerriiaall mmooddee ooff aaccttiioonn ooff ssiillvveerr nnaannooppaarrttiicclleess rreemmaaiinnss ssttiillll uunncclleeaarr aanndd iiss tthhee ssuubbjjeecctt ooff ddiissccuussssiioonn.. AAl olotto offs csiceinecnecere rpeoprotsrtssu sguggesgtesstths atthtahte tmhee cmhaenchisamniosmft ooxfi ctiotyxiociftAy goNf PAsgiNssPism iisla srimtoislailrv etor isoilnvse,rd uioentso, tdhueel ifteo ctyhcel eloiffe siclyvcelre noafn osiplvaertri cnleasnaonpdartthicelierst raannds fothrmeira ttioranntsofosrimlvaetrioionn sto[ 2s2i,l2v3e,5r 3i,o5n4]s. S[2il2v,2e3r,5n3a,n54o]p. aSritlivcelers nraenaocptawrtiitchleGs rraeamc-tn wegitaht iGveraamn-dneGgraatimve-p aonsdit iGverabma-cpteorsiiativcee lblsacintertihae cfeolllslo iwn itnhge wfoallyo:w(iin)gw withayt: h(ei) cewllithen vtheelo pceell( ee.ngv.,emlopeme b(era.gn.,e ,mpeemptbidraongel,y cpaenp,tiFdioggulryeca2n),, (Fiii)guwreit h2)s, ig(ini)ifi wcaintht sstirguncitfuicraenmt osltercuuclteusre(e .mg.,oplercouteleins s,(en.ug.c,l epicroatceiidnss), annudc(lieiii)c inacbidiosc)h eamndic a(liipi)a tihnw baiyosch[2e0m,2i1c,a2l3 ,p3a5t,5h5w–a57y]s. S[2h0r,i2v1a,s2t3a,3v5a,5e5t–a5l.7[]1. 8S]hsruivgagsetastvead etth aalt. o[1n8e] osfutghgeepstoesds itbhlaeta onntieb aocf ttehreia plmososidbeles oafnstiiblvaecrtenraianl ompaordteicsl eosf asciltvioenr nisanthoepianrhtiicbleitsi oanctoiofnsi igsn tahlet riannhsibdiuticotnio nofa snigdngarlo twratnhs(dnuoctteidono nanlydi ngrGowratmh -(nneogtaedti voenblya citne rGiar)amby- dneepghatoisvpeh boarcytleartiiao)n boyf dthepehpoesppthidoerysluabtisotrna otefs thone ptyerpotsidinee sruebsisdtruaetse.s on tyrosine residues. Int.J.Mol.Sci. 2018,19,444 7of17 Int. J. Mol. Sci. 2018, 19, x 7 of 17 Figure 2. Accumulation of silver nanoparticles in P. aeruginosa cells (silver nanoparticle concentration Figure2.AccumulationofsilvernanoparticlesinP.aeruginosacells(silvernanoparticleconcentration 75 µg/mL, silver size: 10 nm). Reprinted from [23] with Copyright Clearance Center permission. 75µg/mL,silversize:10nm).Reprintedfrom[23]withCopyrightClearanceCenterpermission. One of the most important ways of silver antibacterial activity is the induction of ROS productOionne. oTfhtihse emffeocstt iinm tphoe rctaasnet owfa syilsvoefr sioilnvse rwaanst ipbaarcttiearlilayl daectsicvriitbyeids itnh ethinisd cuhcatpiotnero. fARgONSPps riondduuccteio n. theT hhiigsheeffre ccotnincetnhteractaisoeno offs hilyvderroigoenns pwearsoxpiadreti (aHlly2Od2e),s scuripbeerdoxinidteh iasncihonap (tOer2−.•A) gaNndP shyinddruoxceylt hraedhicigahl er (OcHo•n)c iennstirdaet iboancotefrhiayl dcreollg [e5n2,p58e,r5o9x]i.d Teh(eH d2eOta2i)l,esdu mpeercohxaindiesman iiso snti(lOl n2o−t• w)aenlld knhoywdrno xbyult rsaudpiecraolx(iOdHe •) is pinresdidicetebda cttoe briea lthcee lml [a5jo2r,5 R8O,59S] i.n Tthhies pdreotacielsesd [5m2,e6c0h]a. nAigsmNPiss dsitsiltlunrbo tthwe eflulnkcntioown nofb tuhte sruesppeirroaxtoidrye is chapirne dinic ttehde tcoelble rtehseulmtinagjo rinR OROSSin gtehniserpartoiocnes. sW[5h2e,6n0 ]t.hAe gleNvPels odfi sRtuOrSb tehxecefeudnsc ttihoen coafpthaceitrye sopfi rtahteo ry celcluhlaainr ianntthioexciedlalnret sudletfinengcien RsyOsStegmen (efroart ioenx.amWphleen, tthheroleuvgehl odfeRpOleStieoxnc eeodf sgtlhuetactahpiaocnitey, oGfSthHe, caenlldul ar proatnetiino-xbioduanntdd seuflefhnycedrsyyls tgermou(pfosr aenxda cmhpalneg,eths rinou thgeh adcetpivliettyio onf voafrgilouutsa tahnitoinoex,idGaSnHts,),a onxdidpartoitveein s-tbreosusn d occsuurlfsh, yledardyilnggr otuop dsiaffnedrecnhta wngaeyss inoft hinehaicbtiitvioitny ooff vcaerlli opursoalinfetiroaxtiiodnan. tRsa),moxaildinagtiavme settr easls. o[5c8cu] risn, ltehaediri ng resteoardcihff etersetnetdw baioyssyonfthineshiizbeidti oAngoNfPcse (ll9.p1r ±o l1if.6e rnamtio).n T.hReaym parolivnegda mthaett tahle. [m58in]iimnatlh ceoirnrceesnetararctihonte osft ed AgbNioPssy nrethqeusiirzeedd fAorg NthPes i(n9d.1u±cti1o.n6 nofm t)h.eT hreeaycptirvoev oedxytgheant tshpeemciiensi mpraoldcuonctcieonnt rsattainondso fatA 1g.N35P µsgre/mquLir. ed Hifgohretrh AeginNdPusc tleiovnelos frethsuelrte ianc tai vdeeopxleytgioenn ospf eGcSieHs—praond uancttiioonxidstaanntd csruacti1a.l3 i5nµ nge/umtrLal.izHaitgiohne roAf tghNe Ps frelee-vraeldsicreasl uslpteicnieasd. Peparlekt ieotn aol.f [G61S]H c—laiamneadn tthioaxti dthaen stucrpuecrioaxliidnen aenuitornal iwzaatsi othneo mftahien ffroerem-ra odfi craealcstpievcei es. oxyPgaerkn ethtaatl .c[a6u1s]ec lbaaicmteerdiatlh caetllt hdeeastuhp. eFruorxtihdeermanoiroen, twheays pthreovmedai nthfaot rHm2Oof2 wreaasc tnivoet porxoydguecnetdh iant tchaeu se bacbtaecrtiearl iacellcle allftdeer atthhe. Feuxprtohseurrme otroe ,Atgh+e.y Tphreo vmeedchthaantisHm2 Oo2f whyadsrnoogtepnr poderuocxeiddein gtehneebraatcitoenr iraelfceerlsl atoft er bacthteerieax epxopsuosreedto toA agt+m.oTshpehmereicc hoaxnyigsemn oafnhdy tdhreo agnetnibpaecrtoexriiadle agcteinveitrya toiof nsilrveeferr nsatnoobpaacrtteircilaese xapgaoisnesdt to anaaetmroobsepsh (eirni cthoex ylagcekn oafn doxtyhgeeann)t iibs avceteryri alolwac.t iIvt iitsy iomfpsiolvrtearnnt atnhoapt aArtgiNclePss acgaanin isntdauncaee raonb aesdd(iintitohnealla, ck exoogfeonxoyuges,n R)iOsvS egreynloerwa.tiIotnis. iAmsp noartnaonptathrtaitcAlegs—NPsuscchan aisn TdiuOce2 oanr ZadndOit—iownaitl,he lxaorggeen souursf,aRceO aSrgeeans earnatdio n. higAhslyn arneoacptaivrteic cleast—alysuticch saitseTs iOca2no prrZondOu—cew RitOhSl airng ethseu rpfarceeseanrceea soafn UdVh iglihglhyt rdeaucet ivtoe cpahtoaltyotciactsailtyetsicc an propproedrtuiecse [R62O]S, ailnsoth tehep rpehseontocceaotaflUytVicl RigOhtS dgueenetoraptihoont obcya tsaillvyetirc fporrompse rctainesno[6t2 b],e aelxsocluthdeepdh [o6t3o]c. atalytic ROLSokg eent earla. t[i5o4n] pbyoisnitlevde rofuotr mthse chainghn oatnbtiebeaxccteluridael dac[t6i3v]i.ty of AgNPs and claimed that the effective concentLraotkioentsa lo.f[ 5A4]gpNoPins teadndo uAtgth+ e(uhnigdhera nateirboabcitce rciaolnadcittiivointy) owfeAreg NatP nsaannodmcloaliamr eadndth amtitchreomeffoelcatri ve levceolns,c ernetsrpaeticotinvseolyf.A RgaNi Pest aanld. A[5g6+] (ruenvdieewreader otbhiact csoinlvdeitri onna)nwoepraeratitcnleasn ommaoyl abrea nadlsom iucrsoemd oalgaarilnesvte ls, murletsidpreuctgi vreelsyi.stRaanit e(tMalD.R[5)6 ]braecvteieriwa,e dbotthha tGsrilavmer-pnoasnitoivpea r(tmicleetshimciallyinb-reeasilsstoanuts eSd. aaguareinuss—tmMuRltSidAr,u g Strreepstiosctoacnctus(M pyDogRe)nbesa)c atenrdia G,braomth-nGergaamti-vpeo (sEit. icvoeli,( mK.e pthniecuimllionn-iraees, iPst.a anetruSg.ianuorseau).s — MRSA,Streptococcus pyoMgeannedsa)la entd aGl. r[6a4m] -pnreogvaetdiv teh(eE c.hcaolrig,eK-.dpenpeeunmdoennita em,Pe.cahearnuigsimno osaf) A. gNPs efficacy. They noticed the Zeta poMteanntidaal loeft Eanl.t[e6r4oc]opcrcouvs efdaetchaelisc,h Parrogtee-udse vpuelngdareins tamndec AhagnNisPms oofnA thgeN lPesveefl:fi −ca1c5y, .−T2h6e, y−3n2o.2ti cmedVt, he resZpeetcatipvoeltye,n wtiahlicohf Etenstteirfoyc tohcceu cshfaaregcael icse,lPlsr oatneuds pvaurltgiaclreiss aanndd AingdNicPasteodn tthhaet lGevraeml:-−po15si,t−iv2e6 E,.− fa3e2c.a2lims V, celrle aspcceuctmivuellay,tew mhiochret eAstgifNyPths etchhaanr gGercaemlls-naengdatpiavret icPl.e svuanlgdariinsd. iScoanteddi tehta taGl. r[a2m2]- pcolasiitmiveedE t.hfaaetc aallissoc ell negacactiuvmeluyl actheamrgoerde sAilgvNerP s(stihlvaenr Gnraanmoc-noemgpaotisvietePs.),v uinlg caorims.pSaornisdoine ttoa l.p[o2s2i]ticvlealiym cehdatrhgaetda lssiolvneer giaotnivs,e ly shocwhasr gheigdhs ailnvteibra(scitlevreiarln eafnfiocacocym apso wsietells. ), incomparisontopositivelychargedsilverions,showshigh anTtihbea clitfeerciyalcleef fiofc ancaynoapsawrteilcll.es and nanocomposites has an important influence on the antimicrobial mode oTfh aecltiifoency calnedo fenffaincaocpya ratincdle sdaenpdenndans oocnom thpeo seitnevsihroasnmaneinmtaplo crtoanndtiitnioflnuse.n Gceitoipnotuher aent tiaml. ic[r6o5b] ial obsmerovdeed othfaatc stpiohneraicnadl AegffiNcPasc y(3–a5n dnmd)e, puesnedd saso an dtihsienfeencvtairnot ninm menotuatlhcwoansdhi,t uionndse.rgGoi ttriapnosufroremtaatli.on[6 5] (agogbrseegravteidonth) aatfsteprh eursicaagleA. gTNheP si(n3n–e5rn dmia),muesetedr aosfa dAigsiNnfPesc tiannctrienamseodu tthow 5a0s–h2,0u0n dnemrg oantrda ncshfeomrmicaatli on tra(nasgfgorremgaattiioonn )ofa AftegrNuPssa tgoe A. gTChl eafitnern uersadgiea wmaeste orbosefrAvegdN, wPshaint ccraena pserdovteo th5e0 –io2n0i0zantmiona onfd mcehteamllicic al silver from nanoparticles to silver ions. Biotransformation of silver nanoparticles depending on environmental condition is often observed. Mokhena et al. [26] observed that size and shape of Int.J.Mol.Sci. 2018,19,444 8of17 transformationofAgNPstoAgClafterusagewasobserved,whatcanprovetheionizationofmetallic silver from nanoparticles to silver ions. Biotransformation of silver nanoparticles depending on environmental condition is often observed. Mokhena et al. [26] observed that size and shape of nanoparticles changed after heating at 90 ◦C. After 3 h of heating, the size of AgNPs increased from 28 to 30 nm and spherical particles became irregular: their shape changed from spherical to rod-like. Heatingfor48hresultedinamixtureofrod-like(76–121nm)withlessabundantspherical (28–50nm)nanoparticles. Ramanetal.[27]indicatedthatduringtheeco-friendlyproductionofsilver nanoparticles their size and shape were pH and temperature dependent. McGillicuddy et al. [66] reportedthatAgNPsreleasedfromconsumerproductstotheenvironmentduringtheirlifecyclehave variedproperties,althoughtheirdeterminationisdifficult. ThetheoryaboutantibacterialmodeofactionofAgNPsisalsoconnectedwiththeoxidation ofAgNPs. Itismorethanlikelythatthesurfaceofsilvernanoparticlesisoxidized[57]. Thesmaller thesizeoffabricatedparticles,thehigheroxidecontentduetolargersurfaceareatovolumeratio. The presence of oxide on the surface ensures high antibacterial activity of AgNPs, most probably duetothehigherconcentrationofROS[55]generated. Xiuetal.[67]showedthattoxicityofAgNPs dependsonthepresenceofO andisconnectedwithsilverionsrelease.Theytestedglycol-thiol-coated 2 (PEG) AgNPs with different sizes. The oxidative dissolution of AgNPs was observed only under aerobicconditionsandPEGcoatingdidnotsecurenanoparticlesfromthatphenomenon. Inanaerobic conditions, tested PEG-AgNPs did not show the antibacterial activity upon E. coli K-12 due to nonoccurrenceofdissolvedsilverions. Xiuetal.[67]claimedthatamongotherthesizeandshape or AgNPs coating has an influence on extent and duration of Ag+ release into solution. It was shown that the release of Ag+ ions from nanosilver in aqueous solutions corresponds to the mass leachedordissolvedofoneortwooxidizedmonolayersfromitssurfacedependingonnanosilver size. Theantibacterialactivity(againstE.coli)ofnanoparticles(size<10nm,whereAg Olayerwas 2 removed),wassignificantlylowerthanthatofas-preparedparticleswithoxidizedsurface[68]. Raietal.[56]andDuránetal.[69]reportedthatantibacterialefficacydependsonthesize,shape, concentrationanddosesofusedAgNPs. Moronesetal.[23]observedthehighestefficacyforAgNPs withasizebelow10nm. Paletal.[20]showedtheshape-dependentefficacyofAgNPs,whichresults fromthedifferentsurfaceareabetweensphericalandtriangularAgNPs,withthelatterformexhibiting muchhigherefficacy. Shengetal.[9]reviewedindetailsthedose-responseofbacteriatoAgNPsand noticedhighdifferencesintheefficacyconcentrationsofdifferentAgNPsandvariouscellresponse. Everynanocompositehasadifferentphysical(size,shape,amount)andchemical(presenceof othercompounds, oxidationstate)properties[9,21,28](Table1). Therefore,wespeculatethatthey should be considered as separate forms, with different properties and different ways of bacterial toxicity. Thus, the mode of action of particular silver nanoparticles (nanoforms, nanocomposites) could be the result of the binding strength, type of target, time of interaction, oxidation level, etc. Moreover, the carrier’s compound can enhance the antibacterial activity due to changes of the physico-chemical properties as well as mechanical mode of action (for example, TiO in anatase 2 formpossessphotoactivityandgraphene-basedstructuresmightcausemechanicaldamagesofthe cell,overwrapbacteriaorincreasethesurfacearearesultinginstrongerinteractionwithcells[28,62]. Whenbioactivityofmetalnanoparticlesisconsidered,itisworthtomentionthatthesematerialscan change their properties and toxicity depending on the time and conditions of storage. Both these parameters, as well as surface chemistry of AgNPs, influence the evolution of the nanoparticles’ properties over time. While stored, different processes may occur, such as oxidation, dissolution, agglomeration,cappingagentdegradationorattachmentofAg+ionstocontainerwalls[70]. Allthe changeshaveasignificantinfluenceontheparticlestoxicity[54,70]indicatingstrong”aging”effects. Therefore,contradictorytoxicityresultsmightbeobservedintheliteratureforidenticalAgNPsagainst thesamebacteria. AcomparisonofthemodeofactionofsilverionsandsilvernanoparticlesagainstGram-negative andGram-positivebacteriawithshortinteractiondescriptionispresentedinFigure3. Int.J.Mol.Sci. 2018,19,444 9of17 Int. J. Mol. Sci. 2018, 19, x 9 of 17 FFiigguurree 33.. AA ccoommppaarriissoonn ooff tthhee ssiillvveerr iioonnss ((AA)) aanndd ssiillvveerr nnaannooppaarrttiicclleess’’ ((BB)) mmooddee ooff aaccttiioonn ttoo GGrraamm-- nneeggaattiivvee ((lleefftt)) aanndd GGrraamm--ppoossiittiivvee ((rriigghhtt)) bbaacctteerriiaa.. ((11)) PPoorree ffoorrmmaattiioonn;; mmeettaabboolliitteess aanndd iioonnss lleeaakkaaggee ((sshhoowwnn aassp lpulsuas nadnmd inmuisnuins thine fithgeu rfeigaubroev ea)b(o2v)eD) e(n2a)t uDreantiaotnuroaftsiotrnu cotuf rsatlrauncdtucryalt oapnlads mcyictopprloatseminisc; epnrzoyteminess; ineancztiyvmateios ni.n(a3c)tIinvaacttiiovna.t io(3n) ofInreascptiivraattoiorny cohfa inreesnpziryamtoersy. (4c)hIanicnr eeansezyomfienstr. a(c4e)l luIlnacrrreeaascet ivoef oinxtyrgaecenllsupleacri erse(aRcOtivSe) coonxycegnetnr atsipoenc.i(e5s) I(nRtOerSa)c ticoonncweinthtraritbioons.o m(5e). (I6n)tIenrtaecrtaiocnti onwwithit hrnibuocsloemicea.c id(6s). (I7n)teInrahcitbiiotnio wniotfhs niguncalelitcr aancisddsu. c(t7i)o Inn.hibition of signal transduction. 4. Current Limitations and Future Prospects of Silver Materials Usage 4. CurrentLimitationsandFutureProspectsofSilverMaterialsUsage The general resistance of bacteria to heavy metals is presented in Figure 4. The mechanism of The general resistance of bacteria to heavy metals is presented in Figure 4. The mechanism resistance to heavy metals is connected with the locking of uptake metal into the cell or the of resistance to heavy metals is connected with the locking of uptake metal into the cell or the detoxification of the metals inside. The resistance of bacteria to silver may be divided into an detoxification of the metals inside. The resistance of bacteria to silver may be divided into an endogenous and exogenous mechanism. The first one (endogenous) is connected with a loss of endogenousandexogenousmechanism.Thefirstone(endogenous)isconnectedwithalossofspecial special proteins (OmpC/F) and an up-regulation of efflux mechanism (Cus system) as an effect of two point mutation after long-term exposition of bacteria (e.g., E. coli) to silver ions (AgNO3). The Int.J.Mol.Sci. 2018,19,444 10of17 proteins(OmpC/F)andanup-regulationofeffluxmechanism(Cussystem)asaneffectoftwopoint mInut.t Ja. tMioonl. Sacfit. e2r01l8o, n19g,- xt ermexpositionofbacteria(e.g.,E.coli)tosilverions(AgNO ). Theendoge1n0o ouf s17 3 mechanismofbacterialresistancetosilverionswasprovenbyRandalletal.[43]. Theyshowedthat endogenous mechanism of bacterial resistance to silver ions was proven by Randall et al. [43]. They silverprovideselectivepressuretoenrichapopulationofsilverresistantbacteria. After6daysof showed that silver provide selective pressure to enrich a population of silver resistant bacteria. After exposuretosubinhibitoryconcentrationsofsilverions,theresistantstrainofE.coliBW25113could 6 days of exposure to subinhibitory concentrations of silver ions, the resistant strain of E. coli BW25113 beselected. could be selected. TheexogenouswayisassociatedwithSilproteinslocatedinthecellmembranesandresponsible The exogenous way is associated with Sil proteins located in the cell membranes and responsible foreffluxofsilverionsoutofthebacterialcell. Thedescriptionofthosemechanismislocatedbelow for efflux of silver ions out of the bacterial cell. The description of those mechanism is located below (Figure4). (Figure 4). Figure 4. Diversity of bacterial mechanisms of resistance to heavy metals [71]. Figure4.Diversityofbacterialmechanismsofresistancetoheavymetals[71]. The chromosome-encoded mechanism of resistance to silver is strictly connected with the presTehnecec horfo emffolusxo mpue-menpcso wdeitdhmine bcahcatneirsiaml mofermesbisrtaannecse [t4o3s]i. lDveurei stos tirtisc ftulynccotinonnesc, tseidmwilaitrhittihese ipnr epsreontecein osfeeqffluuenxcpeus,m spusbwstirtahtien sbpaecctiefriicailtym aenmdb rsaunbecsel[l4u3l]a.rD luoecatotioitns,f ualnl cetifoflnusx, spimumilaprsit iweserine pclraostseiifniesde qiuneton cfeivs,e susubpsterraftaemsiplieecsi:fi AciBtyCa n(AdTsPu-bbcienldluinlagr cloacsasteitoten),, aMllFefSfl (umxapjourm fpasciwlitearteorc lsausspiefirefdaminitloy)f,i vReNsDup (errefsaimstailniecse:- AnBoCdu(AlaTtPio-bni-nddivinisgiocnas),s eMttAe)T,ME F(mSu(mltaidjorrufga cainlidta ttoorxiscu cpoemrfapmouilnyd), RexNtrDus(rioesni)s taanndce S-nMoRd u(lsamtiaolnl -mdiuvlitsiidornu),g MreAsTisEtan(mceu) l[t7id2]r.u Tghea npdumtopxsi cofc eoamchp omuenndtioenxterdu ssiuopne)rfaanmdilyS MwRere( samlraelaldmy ufoltuidndru ign trheesi sctealln ocef )G[r7a2m].- Tnheegaptuivme pbsacotefrieaa c[5h0]m. Ternatniospnoedrtesrus preesrpfaomnsiliyblew feorre thael reexatdruysifoonu nodf dirnugtsh,e decteelrlgoefntGs,r baimoc-indeegsa, tdivyees baanctde,r iimap[5o0r]t.anTtrlayn, shpeoarvtye rmserteaslpso innstoib elextfroarcetlhluelaerx tsrpuascioe nbeolfondgru tgos t,hdee rteesrigsetanntsc,e-bnioodciudleast,iodny-desivaisnido,n imsuppoerrtfaanmtliyly,.h Teahvey amctievtaitlys ionft otheoxster apceulmluplasr dseppaecnedbse loonn gthteo pthreotorens-imstoatnivcee- nfoodrcuel a[t7io2n,7-3d]i.v Tishioonse sutrpaenrsfpaomrtielyr.s hTahvee athctei vaibtyilitoyf toth coaspetuprue mtopxsic dcoempepnodusndosn frtohme pcyrototopnla-smmo tainvde tfhoer cpeer[i7p2l,a7s3m],icT shpoascee. trRaNnsDp oprutemrsp hcaovnesitshtse oafb tihlirteyet soucbaupntiutrse: stuobxsictrcaotem-bpionudnindgs tfrraonmspcoyrttoepr l(alsomcataendd inth tehep ienrnipelra msmeimcbspraancee)., RpNeDrippluasmmpicc omnesmistbsraonfeth frueseiosnu bpurontietsi:ns (uMbFstPr)a aten-dbi onudtienrg mtreamnsbproanrtee rfa(clotocra t(eOdMinF)t.h Tehien nfoerrmmeedm cbormanpele),x pseereipmlass tmo ibcem spemanbnriannge bfoutshio mnepmrobtreainne(sM [7F3P,)7a4n].d RoNuDte trrmanesmpobrrtaenres wfaicttho rh(igOhM sFp)e.cTifhiceitfyo rtmo etodxcico mcaptiloenxs sebeemlosntgo tboe thspe aHnMninEg-RbNotDh (mheemavbyr-amneetsa[l7 e3f,f7l4u]x.)R sNubDfatrmanilsyp, osurtcehrs aws CithushCigFhBAsp—ecoifincei toyf tfoewto HxicMcEa-tRioNnsD bpeluomngpst,o rtehsepoHnMsibEl-eR fNorD b(ahcetaerviya-lm reestiasltaenfflceu xto) scuobpfpaemr ialyn,ds usiclhvears iConuss C[7F5B–A77—]. o neoffewHME-RND pumpTs,hree soppoenrsoinbl ecufosCrFbBacAt eorifa lar ebsaicsttearnicael tcohcroomppoesroamned esnilcvoedreios ntsh[e7 5s–y7s7te].m of active, extracellular tranTsphoerot poef rAogn(Ic)u asnCdF BCAu(oI)f wahbiachct ecroinasliscthsr oomf CousosAm,e CeunscBo, dCeusstCh e(psryostteeimns, osfuabcutnivites, oefx RtrNacDel eluffllaurx trpaunmsppo)r tanodf Aag p(Ie)raipnldasCmui(cI )chwahpiecrhocnoen, sCisutssFo f[7C5u,7s8A]., TChues Btr,aCnuscsrCip(tpioront eoifn sg,esnuebsu ennictsodoifnRgN CDuseCfflFuBxA pduemppen)dasn dona tpheer eipxtlarascmelilcuclahra pcoenrocnene,trCatuiosFn [o7f5 h,7e8a]v.yT-mheettaral niosncrsi pantido nthoef ogcecnuersreenncceo odfi nogpeCrounsC cuFsBRAS. dTehpee nodpseroonnt hgeatehxetrrsa cgeelnluelsa rofc oCnucseRn t(rraetsipoonnosfeh reeagvuyla-mtoert)a alniodn CsuasnSd (thhiestoidcicnuer rkeinncaeseo)f wopheicrhon recguusRlaSt.e Tthhee oepxeprroenssgioanth oefr sthgee nefefsluoxf CpuumsRp(’sr ecsopmonpsoenreengtus laafttoerr) raenadctiCouns wSi(thhi stthide isnteimkuinlaanset )[w79h,8ic0h]. rTehguusl aftaer, CusCBA is the only known chromosomal-encoded pump responsible for silver resistance [75,80]. The function and structure of each CusCFBA subunit and CusF is well known. The substrate- binding transporter, CusA, is located in the inner membrane. This homotrimer consists of 1047 amino acids and contains 12-transmembrane α-helices [75,76,80]. Its activity depends on proton-motive
Description: