ebook img

Silicon content is a plant functional trait: implications in a changing world PDF

2018·0.61 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Silicon content is a plant functional trait: implications in a changing world

Flora xxx (xxxx) xxx–xxx ContentslistsavailableatScienceDirect Flora journal homepage: www.elsevier.com/locate/flora ☆ Silicon content is a plant functional trait: implications in a changing world Ofir Katz TheDeadSeaandAravaScienceCenter,MtMasada,TamarRegionalCouncil86910,Israel ARTICLE INFO ABSTRACT EditedbyHermannHeilmeier Plantsilicon(Si)contentisatraitthathasgainedincreasingattentioninrecentyears,andisnowoftensuggested Keywords: tobeaplantfunctionaltrait.ThispaperreviewstheevidencethatsupportstheinclusionofplantSicontent Phytolith within the plant functional traits framework. Plant Si contents can vary greatly among plant taxa and en- Siuptake vironments,reflectingmultiplicityofrolesandfunctionsinplantbiology.PlantSiuptakeandaccumulationalso Siaccumulation affectsplantcommunityandecosystemproperties,andthusecologicalfunctioningandresponsetoenviron- Stressadaptation mentalchange.FurtherinvestmentinstudyingplantSicontentasaplantfunctionaltraitanditsrolesineco- Herbivory logicalprocesseswillimproveourabilitytopredictandmitigatetheconsequencesofclimatechange. Biogeochemistry Grasslandorigin 1. Introduction mostlyignoredinplantfunctionaltraitsliterature.Forexample,many planttaxaareknowntoaccumulatesilicon(Si)intheirtissues,oftenas Plantfunctionaltraitsaretraitsthatindirectlyinfluencethefitnessof variousamorphousphasesincludingsilicondoublelayers(e.g.,Schaller an individual via their effects on its growth, reproduction and survival et al., 2013) and microscopic bodies of Opal-A (Si(OH)2·nH2O) called (Garnier et al., 2016), whose values vary in response to environmental phytoliths(e.g.,Hodsonetal.,2005).Here,Ireviewtheevidencethat conditions and affect ecosystem functioning (Funk et al., 2017;Garnier plant Si content is a plant trait whose multiple functions in plant re- etal.,2016),andareoftentakenasanymorphological,physiologicalor sponsetoenvironmentalfactors,effectsonplantperformance,andef- phenologicalfeature,measurableforindividualplants,atthecelltothe fects on plant communities and ecosystems has gained increasing ap- whole-plant level (Perez-Harguindeguy et al., 2013). Thus, plant func- preciationinrecentyears.Theaccumulationofsuchevidencesuggests tional traits are pivotal in linking environmental changes with plant that plant Si content is a plant functional trait that can contribute to community and ecosystem properties, functioning and responses (Diaz modelsofenvironmentalchangeeffectsonecosystemfunctioningand etal.,2004;Funketal.,2017;Garnieretal.,2016;Violleetal.,2014). potentially to improve their predictive power. Although this idea has Therefore,thestudyofplantfunctionaltraitscanenableustoquantita- been expressed both implicitly and explicitly by some (Cooke and tivelydescribehowenvironmentalvariablesaffectplanttraitvaluesand Leishman,2011a;Cookeetal.,2016;Katz,2014,2015;Schoelynckand howplanttraitvaluesaffectecosystemfunctioning(Garnieretal.,2016). Struyf, 2016; Schoelynck et al., 2014), elaborate discussions of the Consequently,suchanalysescanprovideparametersrequiredtodirectly potentialuseofplantSicontentasamediatingplantfunctionaltraitin modelandpredict–andhopefullymitigate–theeffectsofenvironmental predictive models are missing. I wish to set the step stones to these changeonecosystemfunctioning(Fig.1).Thisisamajorobjectiveinthese discussionshere. timesofclimatechange. Inthisshortreview,IdemonstratethecaseforSicontentasaplant Studiesofplantfunctionaltraitssofarhavefocusedalmostentirely functionaltrait.IfirstdiscussthevariabilityofSicontentsamongplants on morphological, physiological and phenological traits, or on the and environments, which demonstrates its correspondence with other contents ofessentialmacronutrients suchasnitrogen andphosphorus plantfunctionaltraitsandresponsetotheenvironment.Ithendiscuss (e.g., lists in Garnier et al., 2016; Perez-Harguindeguy et al., 2013). plantSi'sroles,fromindividualplantstotheentireecosphere,andhow Nevertheless, many plants also contain appreciable amounts of non- thistraitanditsfunctionsmayhaveevolvedovergeologictime.Finally, essentialbutbeneficialnutrientsthatareknowntoaffectplantfitness I discuss major knowledge gaps that, if filled, will improve under- andenvironment, andwhosecontents withintheindividual plantare standing,monitoring,predictingandmitigatingclimatechangeeffects driven by (i.e., respond to) the environment. These traits have been onplantcommunitiesandecosystems. ☆Thisarticleispartofaspecialissueentitled:“Functionaltraitsexplainingplantresponsestopastandfutureclimatechanges”publishedatthejournalFlora 254C,2019. E-mailaddress:[email protected]. https://doi.org/10.1016/j.flora.2018.08.007 Received16January2018;Receivedinrevisedform1August2018;Accepted7August2018 0367-2530/ © 2018 Elsevier GmbH. All rights reserved. Please cite this article as: Ofir Katz, Flora, https://doi.org/10.1016/j.flora.2018.08.007 O.Katz Flora xxx (xxxx) xxx–xxx convincingly attributed to plant structural support (Schoelynck et al., 2010).PlantSicontentwasalsofoundtobenegativelycorrelatedwith Candphenolcontents(CookeandLeishman,2012;Frewetal.,2016; JohnsonandHartley,inpress;Schalleretal.,2012a,b),withleafni- trogen and phosphorus content (Song et al., 2014) and thus to affect plantstoichiometry(Schalleretal.,2012a,2016a;Songetal.,2014). Puttogether,thereisareasonablecaseforSipartiallysubstitutingCin plantbiology(CookeandLeishman,2011a).Nevertheless,evidencefor Si:Ctrade-offsaremeagreandcomefromonlyafewecosystemsbutnot from regional- or global-scale analyses (Cooke and Leishman, 2011a; Klotzbücheretal.,2018;Schoelyncketal.,2010),andsofarlackevi- dence for clear effects on fitness or explanatory driving mechanisms. Therefore, further evidence is required to validate the partial sub- stitutionofCbySi. Notwithstandingthataplant'sSicontentisdrivenbyitstaxonomy, phylogeny and physiology, the plant's Si content is also driven by its environment. Intraspecific variations in plant Si contents have been studied for many years, mostly in the highly Si-rich grasses. Plant Si contenthasgenerallybeenshowntoincrease,forexample,withtran- Fig. 1.A simplified model of the plant functional diversity approach. spiration(Eulissetal.,2005;Faisaletal.,2013;Katzetal.,inpress)and Environmental variables (and especially abiotic ones) act as filters on plant herbivory intensity (Brizuela et al., 1986; Hartley, 2015; Hartley and functionaltraitvalues.Inturn,plantfunctionaltraitvaluesdriveplantcom- DeGabriel, 2016; Katz et al., in press; Massey et al., 2008). Plant Si munity species composition, together with biotic filters (e.g., competition). contentsresponsestowateravailabilityarelesspredictable,anditmay Plant community species composition and species functional trait values de- be that plant Si content increases towards both extremely arid and termine, together, functional trait indices (for each trait) and community rainierconditions(Katzetal.,2013;QuigleyandAnderson,2014). functional diversity indices(fortraitassemblages). Thelatter twodrive eco- ApartfromtheobviousdependenceonSisupply,mostfocussofar system properties through the effects of individual species or of species as- semblages. has been put on the effects of water availability and herbivory (Katz etal.,2013,2014,inpress).Thisisamirrorreflectionoftheextensive studiesofplantSi'srolesasanadaptationtoariditybyreducingwater 2. VariabilityofplantSicontents loss, improving water use efficiency and eliciting stomatal responses and antioxidant activity (e.g., Coskun et al., 2016; Gong et al., 2005; Althoughdataisstillmissingformanyplantfamilies(Katz,2015),it Zhu and Gong, 2014) and as an antiherbivory defence due to its low isclearnowthatSicontentsvarygreatly(toasmanyas2–3ordersof nutritionalvalueandtendencytoaccumulateasmicroscopicglass-like magnitude, from nearly 0% to over 10% of plant dry weight) among silica particles (Correa et al., 2005; Frew et al., 2016, 2017a, 2017b; plant families, orders and phyla (Hodson et al., 2005; Katz, 2015; HartleyandDeGabriel,2016;MasseyandHartley,2006,2009;Massey Trembath-Reichert et al., 2015). Hodson et al. (2005), for example, et al., 2007a; Wieczorek et al., 2015a). Although laboratory experi- foundthattaxonomicorderaccountsfor67%ofinterspecificvariability ments tend to demonstrate that plant Si contents are higher at high inSicontentsamongseedplants.Thesourcesofthisvariabilityremain wateravailability,extremedroughtandstrongherbivorypressure,such obscureandsomewhatdisputed(Katz,2015;Strömbergetal.,2016). trendsarelessfrequentlyfoundinnaturallygrowingplants(Katzetal., Fromanevolutionaryecologyperspective,onewouldexpectatraitto 2013,2014,inpress).Suchdiscrepanciespossiblyexistbecauseplants persist within a clade if it confers some advantage expressed in im- that grow in natural ecosystems are exposed to various other con- proved fitness. These implies that taxonomic variability can be ex- founding variables, including soil silicon and nutrient availability, plained by ecological roles and functions. However, the roles and temperature, transpiration and interactions with other plants, patho- functionsofplantSiandthevariationsintheirextentamongtaxawith gens and animals (in press). They may also stem from interactions varying Si contents are not always properly understood (Cooke and among various environmental variables. Moreover, Si may have dif- Leishman,2011a;Katz,2014,2015;Strömbergetal.,2016). ferentroles(e.g.,adaptationtoaridity,anti-herbivorydefence,etc.)in ThevariabilityofplantSicontentsisreflectedinitstrade-offswith variousecosystems,andtovariousdegrees.ThissuggeststhatplantSi other plant components. It has long been known that Si contents are contentinnaturallygrowingplantsmaybeexposedtonaturalselection higheringrasses–andmoregenerallyinmostcommelinidmonocots– byvariousagentsthatdonotexistinthelaboratory(Garbuzovetal., than in non-commelinid monocots and dicots (Hodson et al., 2005; 2011;HartleyandDeGabriel,2016;Katz,2014;Katzetal.,2013,2014, Katz, 2015; Trembath-Reichert et al., 2015). In contrast, calcium ox- inpress;QuigleyandAnderson,2014;Soininenetal.,2013).Likewise, alate crystals – another inorganic plant component comparable to short-term controlled experiments can seldom account for long-term phytoliths in function – are considerably more abundant in non-com- plantinteractionswiththeenvironmentor fornaturalselection (Katz melinidmonocotsanddicotsthanincommelinidmonocots(Franceschi et al., 2014; in press; Quigley and Anderson, 2014; Soininen et al., andNakata,2005;PrychidandRudall,1999).Thiscontrastsuggestsa 2013). trade-off between plant Si and calcium contents, which appears rea- sonable since phytoliths and calcium oxalate crystals are thought to AtmosphericCO2concentrationsmayalsoaffectplantSiuptakeand playcomparable rolesinplantstructuralsupportanddefence against accumulation. First and foremost, under higher CO2 concentrations plantsreducestomatalconductanceandhencetranspirationasamotive herbivores(seereviewsinCookeandLeishman,2011a;Franceschiand forceforSiuptake(Eulissetal.,2005;Faisaletal.,2013).Furthermore, Nakata,2005;andfurtherdiscussionofSirolesinplantsbelow). Si:Ctrade-offsandputativepartialsubstitutionofCbySisuggestthatat Nolessstrikingistheevidencefortrade-offsbetweenSiandcarbon (C)-based plant components. Raven (1983) was among the first to lower CO2 concentrations plantsmay invest more in Si-based adapta- tions, although this has not been demonstrated empirically so far. suggest such a trade-off, estimating the metabolic cost of Si-based mechanical support to be 10–20 times less than that of lignin. Thirty EvidencefortheeffectofelevatedatmosphericCO2concentrationson plant Si contents are inconsistent (Fulweiler et al., 2015; Frew et al., yearslater,atrade-offofSicontentwithligninandcellulosecontents 2017a;JohnsonandHartley,inpress;Lietal.,2014),althoughane- was found (Klotzbücher et al., 2018; Schoelynck et al., 2010) and gative effect in grasses (Li et al., 2014) may be explained by C 2 O.Katz Flora xxx (xxxx) xxx–xxx enrichment relieving postulated Si:C trade-off and allowing plants to foods (Massey and Hartley, 2009; Massey et al., 2006) and to have relylessonSiasasubstituteforC. slowergrowthrateswhenfeedingonSi-richdiets(Frewetal.,2017a, Different ecosystem types and biomes are often characterised by 2017b; Massey and Hartley, 2006, 2009; Kvedaras et al., 2007; differentplantcladesanddifferentstrategies(i.e.,differenttrade-offs). Wieczoreketal.,2015a). With that addition of intraspecific variabilities in plant Si contents Theotherwayaround,herbivorybyinvertebratesandvertebrates alongenvironmentalgradients,thissuggeststhatecosystemtypesand (HartleyandDeGabriel,2016;Masseyetal.,2007b)hasbeenshownto biomeswilldifferinplantcommunitySicontents.CareyandFulweiler induceSiuptakeandaccumulationbygrasses.Althoughthedegreeof (2012),basedonHodsonetal.(2005),estimatedSipercentagesofthe induction varies among herbivore types and may be masked by the total plant biomass for the world's biomes, and found that biomes in involvement of other environmental conditions or by grazing history whichgrassesaremoreabundanttendtobericherinSi(perbiomass) (Katzetal.,2014;QuigleyandAnderson,2014;Soininenetal.,2013), andmoreproductive.Themechanismsunderlyingthispatternareun- itappearstohaveacumulativeeffectandbestrongerwithincreasing clearandwerenotmethodicallystudiedsofar,butarelikelyrelatedto herbivory duration or frequency. Festuca ovina and Lolium perenne theadaptiveroleofSiinsomeplantspeciesandSi’shighcontentsin plants that were subjected to repeated damage by locust and voles grasses,whicharedominantfast-growingspecies.Nevertheless,atthis contained2–4timesmoreSithanplantsthatweresubjectedtoasingle point in time, the shortage in global-scale empirical field studies of damageevent(Masseyetal.,2007b).Thisinteractionhassomeintri- individual plants’ and community-level Si contents along large en- guingoutcomes.First,somegrassspecieshavebeenshowntohaveas vironmental gradients hinders developing global models ofhow com- much as twice the Si contents in more heavily grazed localities munity-level Si contents correspond to environmental variables and (Brizuela et al., 1986), while similar patterns are not found in plant howcommunity-levelSicontentsaffectecosystemfunctioning(Fig.1). species with lower Si contents (Katz et al., 2014). Second, if plant Oncesuchquantitativeknowledgeexists,itcanbeusedtoparametrise speciesdifferintheirabilitytotakeupandaccumulateSiasadefence, global models of the effects of environmental variables on ecosystem their competitive ability may depend on Si supply (Garbuzov et al., functioning(e.g.,Crameretal.,2001;Diazetal.,2004)andtoimprove 2011).Third,herbivorepopulationcycleshavebeenfoundtobedriven suchmodels’predictivepower. bygrassSicontentsandtobesynchronisedwithplantSicontentcycles (Hartley, 2015; Massey et al., 2008; Wieczorek et al., 2015b). Thus, 3. PlantSiasanadaptationtostress plantSicontentdoesnotonlyaffecttheplant,butalsoitsneighbours andherbivores,andthusecosystem-levelcomponentsandprocesses. Siliconprovidesplantswithprotectionfrommanystressesthatare inflictedbytheabioticenvironment(CookeandLeishman,2016)and 4. PlantSiinecosystemsandtheecosphere bypathogens(Fauteauxetal.,2005;VanBockhavenetal.,2013).Al- thoughthemechanismsunderlyingsuchprotectiverolesarenotalways Silicon'smanyrolesinplantphysiologysuggestthatinter-andintra- understood,itisnowknownthatthesemechanismsvaryintheirmode specificvariabilityinplantSicontents,uptakeandaccumulationcap- ofoperation. Sican inhibit toxicmetal uptakebythe root(Maet al., abilities – as well as Si roles and functions in plant–environment in- 2015)andimprovetheacquisitionorbeneficialandessentialminerals teractions – may affect how plant communities are assembled and such as phosphorus (Ma and Takahashi, 1990; Gao et al., 2011; Neu partly determine their properties (e.g., structure, species composition et al., 2017). Likewise, phytoliths act as physical barriers against pa- andinteractionnetworks).Nevertheless,evidenceforthisisstillscanty. thogenintrusion(Caietal.,2008).Withintheshoot,Sicanbebound Brizuela et al. (1986) demonstrated how higher grazing intensity in- withtoxicmetalsandthusneutralisethemandtransportthemtospe- creases Si contents in grass species. Garbuzov et al. (2011) demon- cialisedcompartments(Cockeretal.,1998;Wangetal.,2004),main- stratedhowlocustprefersgrassspecieswithlowerSicontents,which tain membrane and cell wall stability under stress (He et al., 2010, aremorepalatable,resultinginthemhavingsmallerbiomassandbe- 2015), and mediate apoplastic and symplastic osmotic gradients cominglesscompetitivecomparedwithgrassspeciesthataccumulate (Coskunetal.,2016).Intheleaf,Sidepositionhasbeenshowntore- more Si under similar conditions. Jacobs et al. (2013) demonstrated duceultra-violetabsorbance(Gotoetal.,2003;Schalleretal.,2013),to howSiavailabilityfacilitatestheformationandmaintenanceofgrass- reduceleaftemperature(Wangetal.,2005)andtoparticipateinreg- dominatedvegetationintidalmarshesandestuaries.Finally,observa- ulatingstomatalconductance(Hattorietal.,2005).Moresystemically, tions that Si-rich habitats are more frequently dominated by grasses Si has been shown to promote anti-pathogenic (Cai et al., 2008; Van whilecalcium-richhabitatsaremorefrequentlydominatedbylegumes Bockhaven et al., 2013) and anti-oxidative activity (Fialova et al., in (Schaller et al., 2016b) enabled developing a theoretical model that press; Gong etal., 2005; He et al.,2010), root growth under drought explains the succession from legume-dominated to grass-dominated stress (Hattori et al., 2005), stress signalling (Van Bockhaven et al., pasturelands.Calcicmineralsaremoreeasilyerodibleandthuscalcium 2013)andtoregulatetheexpressionofsomegenesthatareassociated is more available in early successional stages providing an advantage withstresstolerance(Fauteauxetal.,2006;Riosetal.,2017). forlegumes,butovertimecalciumleachesoutoftheecosystemwhile Phytolithsand otherSi depositswithin planttissuesareknown to Siaccumulates,shiftingtheadvantagetowardsgrasses(Schalleretal., have antiherbivoryroles inplants. Thesestructures’ rigidityincreases 2017). plant tissue abrasiveness (Massey and Hartley, 2006; Massey et al., By extension, the fact that Si uptake, accumulation and functions 2006,2007a;Wieczoreketal.,2015a).Thus,phytolithsandSideposits varyamongtaxa(Katz,2014)suggeststhatSiavailabilitycanpartially candamageherbivoremouthparts,mostlybyerodingorwearingthem. determinetherelativeabundanceandecologicaladvantageofgrasses Thishasbeendemonstratedbothoninvertebrate(MasseyandHartley, over species that take up and accumulate less Si and utilise it less. 2009; Massey et al., 2006) and vertebrate (Rivals et al., 2014; Therefore,itcanmodulateplantcommunitystructureandcomposition Wieczoreketal.,2015a)herbivores,althoughdamagedegreemayvary (e.g.,asproposedbySchalleretal.,2017),andeventuallycommunity- amongherbivorespecies(Sansonetal.,2007).PlantSistructuresalso level adaptation to abiotic environmental conditions (e.g., Cooke and physically protect cell contents, hence reducing herbivores' ability to Leishman, 2016) and herbivory (e.g., Massey et al., 2007a). Further- fullyextractanddigestcells'organiccontent(Huntetal.,2008;Massey more,herbivoresmayprefertograzeinplantcommunitieswithlower andHartley,2006,2009;Wieczoreketal.,2015a).Moreover,itisalso Si contents (Frew et al., 2016, 2017a; Hunt et al., 2008; Massey and feasiblethatSithatisingestedbyherbivoresoccupiesstomachvolume Hartley,2006,2009),orthemselvessufferfromlowergrowthratesand that could have been occupied by nutritional organic compounds, population growth when grazing in plant communities with high Si hence increasingsatiety sensation relative to actual nutritional value. contents(Hartley,2015;Masseyetal.,2008).Hence,Siavailabilityand Consequently, some herbivores show low preference for Si-rich plant itsuptakeandaccumulationinplantscanfavourherbivoreandanimal 3 O.Katz Flora xxx (xxxx) xxx–xxx communitieswithspeciesthataremoreadaptedandlessaffectedbySi- sink but also a source. Likewise, the relative contributions of various richdiets. biomes to the C cycle through the three abovementioned sinks vary However, the effects of plant Si uptake and accumulation clearly greatly,assomerecentstudieshaveshown(CareyandFulweiler,2012; exceedthecommunitylevelandaffectecosystems.Likeotherelements Song et al., 2017). Phytolith carbon sequestration fluxes are approxi- and nutrients that comprise parts of organismal tissues, Si is also re- mately 1–1.5t CO2km−2 yr−1 in forests and 3–4t CO2km−2 yr−1in cycled in ecosystems, with plants playing a key role in the process croplands, with little variation among continents, while grassland (CareyandFulweiler,2012;Struyfetal.,2009).PlantstakeupSifrom fluxes range from approximately 1t CO2km−2 yr−1 in Europe and thesoilasmonosilicicacid(H4SiO4)andeventuallyreleaseitbackto North America to 2.5–3t CO2km−2 yr−1in South America and Aus- thesoilindetritusasmonosilicicacidorasamorphoussilica(Alexandre tralia (Song et al., 2017). Therefore, the causal networks underlying etal.,2011;Cornelisetal.,2010;Farmeretal.,2005).Throughtheir biome- and global-scale processes and variations in Si–C interactions abilitytotakeupandreleaseSi,plantsmobiliseSiandtakepartinits are still ambiguous. Moreover, the effects of plant Si uptake and ac- export from terrestrial ecosystems to rivers, lakes and oceans (Carey cumulationontheCcyclearetheresultsofmultiplemechanismsacting and Fulweiler, 2012; Conley and Carey, 2015; Cornelis et al., 2010; atmultiplescales(fromindividualplantstoecosystems),respondingto Derryetal.,2005;Struyfetal.,2009).TheamountofdissolvedSire- multipleabioticandbioticvariables,andplayingvariousrolesinplant leasedfromplantlitterrangesfrom3to8tkm−2yr−1inforestsand biology and ecology (e.g., climate, soil, herbivory and pathogeny). saltmarshes(Jacobsetal.,2013).InHawaiianforest,forexample,itis Therefore, understanding and predicting how environmental changes estimated that 68–90% of Si carried by stream water has passed mayaffectplantSiuptakeandaccumulationattheregionaltoglobal throughphytoliths(Derryetal.,2005).PlantscanthereforeincreaseSi scales and what are the consequences for the C cycle remains a for- availabilitydownstream,facilitatingconditionsforaquaticSiaccumu- midablechallenge. lating plants and diatoms (Derry et al., 2005; Farmer et al., 2005; Jacobs et al., 2013; Ronchi et al., 2013; Schoelynck et al., 2014; 5. Anevolutionaryperspective Vandevenne et al., 2013). Pastures and grasslands, for example, can export as much as 2t dissolved Si km−2 yr−1 to adjacent rivers Extantspeciesandecosystemsaretheresultoflong-termdeep-time (Vandevenneetal.,2013).SuchprocessesofincreasingSiavailability evolutionaryprocesses.Theseprocessescanthereforeexplainwhether mayhaveplayedaroleinpromotingtheevolutionofSi-accumulating orhowextantspeciesandecosystemsareadaptedandmayrespondto plantsandalgae(Falkowskietal.,2004;Katz,2015). environmentalchange(BentonandEmerson,2007;Crispetal.,2009; The global Si and C cycles are sometimes thought to be coupled, Lamsdell et al., 2017; Wiens and Donoghue, 2004). Phytoliths' pre- sinceplants'roleinSicyclingformsthreeCsinks.First,Siaccumulation servation in soils and sediments makes them a powerful tool for re- improvesplantperformance(seereviewinprevioussection).Careyand constructing past vegetation formations, mostly during the Cainozoic Fulweiler (2012)have shown that Si-richbiomes tend tohave higher (e.g.,Bremondetal.,2004;Coeetal.,2017;Fengetal.,2017;Lietal., NPPthanSi-poorbiomes,andcalculatedthattheyaccountfor55%of 2018; Strömberg, 2004, 2005; Strömberg et al., 2013) and in archae- globalterrestrialNPPandCO2regulation.Second,bytakinguplarge ological studies (e.g., Katz et al., 2007; Tsartsidou et al., 2008), and amounts oflabile(dissolved)Si fromthe soilsandaccumulatingitas potentiallyalsoindeepertime. amorphous silica, plants may considerably change the stoichiometric Nevertheless, the roles plant Si itself played in the evolutionary balancebetweendissolvedandmineralSiphasesandacceleratesilicate historyofplants,theiradaptationtoabioticandbioticenvironmental dissolution (Alexandre et al., 1997; Borrelli et al., 2010; Carey and conditions, and plant–herbivore interactions remain obscure and dis- Fulweiler, 2016; Cornelis and Delvaux, 2016; Farmer et al., 2005; puted.Avibrantdiscussioninrecentyearsrevolvesaroundthepossible Hinsinger et al., 2001), a process that consumes atmospheric CO2 roleofplantSiintheglobalexpansionofthegrasslandbiomeonsev- (Exley,1998;SchuilingandKrijgsman,2006;Songetal.,2012;Street- eral continents during the mid-late Cainozoic (Edwards et al., 2010; Perrott and Barker, 2008). Third, some of the organic C produced by Strömberg, 2011). Although atmospheric changes (CO2 concentration plants can be occluded within phytoliths, thus potentially becoming decrease,coolinganddrying)areusuallytakenasthekeyinitiatorsof sequestered within soils and sediments for as much as millennia thisexpansion,reinforcementbyecologicalprocessesisalsoproposed (Alexandreetal.,2015,2016;Lietal.,2013;Songetal.,2012,2017). (Beerling and Osborne, 2006; Edwards et al., 2010; Kürschner et al., However, the contribution of this latter sink to the global C cycle is 2008).PlantSiissometimesthoughttohaveplayedanappreciablepart disputed. Santos and Alexandre (2017) suggest that post-depositional in grassland evolution and expansion, due to its roles in protecting processessuchasoxidationandmineralisationconsiderablyreducethe plantsfromdrought(Coskunetal.,2016;Gongetal.,2005;Zhuand amount of phytolith-occluded C that is actually stored for such long Gong,2014)andherbivory(Frewetal.,2017a;HartleyandDeGabriel, time periods. Reyerson et al. (2016) suggest that the source of some 2016;MasseyandHartley,2006,2009;Masseyetal.,2007a).Oneof phytolith-occluded C is from the soil itself, i.e., that it is transferred the driving and reinforcing ecological processes is a putative co-evo- between pools rather than reflecting net sequestration. Furthermore, lutionary escalation between Si-rich grasses and large mammalian Songetal.(2017)estimatedphytolith-relatedCsequestrationinglobal herbivores possessing abrasion-adapted dentition (MacFadden, 1997; terrestrialbiomesat0.0428GtCyr−1,suggestingitcontributeslittleto Stebbins, 1981). Recent evidence challenge the significance of this theglobalterrestrialsinkof1.9GtCyr−1(Quereetal.,2016). putative co-evolution. Northern hemisphere grasslands predate mam- Global models of plant Si effects on the C cycle are still at their malian abrasion-adapted dentition by several million years infancy, and some major temporal and spatial variations need to be (Mihlbachleretal.,2011;SolouniasandSemprebon,2002;Strömberg, resolved. In the short run plant Si uptake and accumulation removes 2005, 2006, 2011), whereas in South America mammalian abrasion- andsequestersatmosphericCO2,whereasinthelongrunitispossible adapted dentition predates grasslands by several million years (Dunn thatSi'srolesinimprovingplantperformanceandSi:Ctrade-offsmay et al., 2015). Hence, there appears to be no clear coalescence in the resultinplantsimprovingtheirCuseefficiencyandreducingtheirCO2 evolution of grasslands and mammalian abrasion-adapted dentition, consumption.Furthermore,siliconuptakeaffectslitterchemicalprop- noraconsistentorderofevents,aswouldbeexpectedifthetwotraits erties and thus accelerates decomposition rates (Marxen et al., 2015; co-evolvedorifoneevolvedasresultoftheother. Schaller and Struyf, 2013; Schaller et al., 2014). Schaller and Struyf Morerecently,attemptshavebeenmadetotracetheearlyorigins (2013)foundthatPhragmitesaustralislittermasslossafter6weekswas andevolutionofSiaccumulationamongangiosperms,usingmolecular 2%and18%forplantsgrownwithoutandwithSi,respectively.Marxen phylogenies.Strömbergetal.(2016)foundthatemergencedatesofSi- etal.(2015)foundthatricestrawlost60%and68%ofitscarbonafter rich clades do not coalesce with any likely selective force, including 33daysinalitterbag.ThesesuggestthatplantSiuptakeisnotonlyaC herbivory, habitat openness, aridity and atmospheric CO2 decline. 4 O.Katz Flora xxx (xxxx) xxx–xxx Nevertheless, gene divergence times often overestimate clade diver- Acknowledgements gence times and do not reflect trait emergence or ecological success (Katz, 2015, 2018). Taking this into account, Katz (2015) suggested IthankSimchaLev-Yadun(UniversityofHaifa)forencouragingme thattheindependentearlydiversificationofSi-richangiospermclades to write the manuscript. A discussion with Julia Cooke (Open may be dated to the Late Cretaceous and be linked in part to the si- University,UK)contributedtothemanuscript'soutlineandscope.Two multaneous evolution of abrasion-adapted dentition in some dinosaur anonymousreviewersprovidedgoodadvicetoimprovethemanuscript. andearlymammaliangroups.Ancestralgrassphytolithsinacoprolite producedbyanherbivorousdinosaurfromtheLateCretaceous(Prasad References et al., 2005), and more recently and more interestingly the abrasion- adapteddentitionofanEarlyCretaceousdinosaur(Wuetal.,inpress) Alexandre,A.,Meunier,J.D.,Colin,F.,Koud,J.M.,1997.Plantimpactonthebiogeo- fitthishypothesis.ImprovingourunderstandingonhowplantSiuptake chemicalcycleofsiliconandrelatedweatheringprocesses.Geochem.Cosmochem. Acta61,677–682. and accumulation corresponds to environmental variations and affect Alexandre,A.,Bouvet,M.,Abbadie,L.,2011.TherolesofsavannasintheterrestrialSi otherecosystemcomponentswillallowustomorecriticallytestsuch cycle:acase-studyfromLamto,IvoryCoast.Glob.Planet.Change78,162–169. hypothesesusingquantitativedataandmodels. Alexandre,A.,Basile-Doelsch,I.,Delhaye,T.,Borshneck,D.,Mazur,J.C.,Reyerson,P., Santos,G.M.,2015.Newhighlightsofphytolithstructureandoccludedcarbonlo- The evidence for Si:C trade-offs (Cooke and Leishman, 2012; cation:3-DX-raymicroscopyandNanoSIMSresults.Biogeosciences12,863–873. Schalleretal.,2012a,b;Schoelyncketal.,2010),theobservedeffects Alexandre,A.,Balesdent,J.,Cazevieilles,P.,Chevassus-Rosset,C.,Signoret,P.,Mazur, ofatmosphericCO2concentrationsonplantSicontents(Johnsonand J.C.,Harutyunyan,H.,Doelsch,E.,Basile-Doelsch,I.,Miche,H.,Santos,G.M.,2016. Directuptakeoforganicallyderivedcarbonbygrassrootsandallocationinleaves Hartley,inpress)andthatlowatmosphericCO2concentrationremains andphytoliths:13Clabellingevidence.Biogeosicences13,1693–1703. apossibleprerequisiteforgrasslandexpansion(Strömberg,2011)imply Beerling,D.J.,Osborne,C.P.,2006.Theoriginofthesavannabiome.Glob.ChangeBiol. thatSiaccumulationcanconferanadvantagetoSi-richcladeslikethe Bioenergy12,2023–2031. grassesinalowCO2environment.Thisunexploredpossibilitysuggests Bentdoinv,eMrsi.fiJ.c,aEtimonerasocnco,rBd.iCn.g,2to00th7e.Hfooswsildriedcolirfdebaencdommoelseocudlaivreprshey?loTgheenedtyicnsa.micsof thatthecurrentincreaseinatmosphericCO2concentrationsmayimpair Palaeontology50,23–40. thecompetitiveabilityofgrassesandotherSi-richplantsworldwide. Borrelli,N.,Alvarez,M.F.,Osterrieth,M.L.,Marcovecchio,J.E.,2010.Silicacontentin soilsolutionanditsrelationwithphytolithweatheringandsilicabiogeochemical cycleinTypicalArgiudollsofthePampeanPlain,Argentina–apreliminarystudy. 6. Implicationsandfuturedirections Int.J.SoilSedimentWater10,983–994. Bremond,L.,Alexandre,A.,Vela,E.,Guiot,J.,2004.Advantagesanddisadvantagesof The surge of studies of plant Si accumulation has clearly demon- phytolithanalysisforthereconstructionofMediterraneanvegetation:anassessment basedonmodernphytoliths,pollenandbotanicaldata(Luberon,France).Rev. stratedSi'smanyrolesinplantlife–providingthemwithmechanical Palaeobot.Palynol.129,213–228. supportandprotectionformamultitudeofabioticandbioticstresses– Brizuela,M.A.,Detling,J.K.,Cid,M.S.,1986.Siliconconcentrationofgrassesgrowingin and its effects on plant performance, plant community structure and siteswithdifferentgrazinghistories.Ecology67,1098–1101. Cai,K.,Gao,D.,Luo,S.,Zeng,R.,Yang,J.,Zhu,X.,2008.Physiologicalandcytological ecosystem- and global-scale processes. Hidden in plain sight, plant Si mechanismsofsilicon-inducedresistanceinriceagainstblastdisease.Pysiol.Plant. contentisaplantfunctionaltraitlinkingenvironmentalconditionswith 134,324–333. ecological functioning. Achieving a better understanding of the me- Carey,J.C.,Fulweiler,R.W.,2012.Theterrestrialsiliconpump.PLoSOne7,e52932. Carey,J.C.,Fulweiler,R.W.,2016.Humanappropriationofbiogenicsilicon–thein- chanismsbywhichplantSicontentrespondstoenvironmentalchange creasingroleofagriculture.Funct.Ecol.30,1331–1339. and affects ecological functioning at various spatial and temporal Cocker,K.M.,Evans,D.E.,Hodson,M.J.,1998.Theameliorationofaluminiumtoxicityby scales, will surely improve the predictive power of models of climate siliconinwheat(TriticumaestivumL.):malateexudationasevidenceforaninplanta change effects on ecosystem structure and functioning (e.g., Cramer mechanism.Planta204,318–323. Coe,H.H.G.,Souza,R.C.C.L.,Duarte,M.R.,Rickardo,S.D.F.,Mahcado,D.O.B.F.,Macario, etal.,2001). K.C.D.,Silva,E.P.,2017.Characterisationofphytolithsfromthestratigraphiclayers However, since research of plant Si is not yet as developed as re- oftheSambaquidaTarioba(RiodasOstras,RJ,Brazil).Flora236–237,1–8. searchofotherplantfunctionaltraits,sometheoreticalgapsstillhinder Conley,D.J.,Carey,J.C.,2015.Silicacyclingovergeologictime.Nat.Geosci.8,431–432. Cooke,J.,Leishman,M.R.,2011a.Isplantecologymoresiliceousthanwerealise?Trends usfromachievingthisgoal.TherolesofplantSiinplantbiologyarenot PlantSci.16,61–68. fully explored (Cooke and Leishman, 2011a; Katz, 2014, 2015), and Cooke,J.,Leishman,M.R.,2011b.Siliconconcentrationandleaflongevity:issilicona may vary among taxa (Katz, 2014). Although understanding the evo- playerintheleafdrymassspectrum?Funct.Ecol.25,1181–1188. Cooke,J.,Leishman,M.R.,2012.Tradeoffsbetweenfoliarsiliconandcarbon-basedde- lutionary history of this trait may signify a leap forward in the latter fences:evidencefromvegetationcommunitiesofcontrastingsoiltypes.Oikos121, matter,itremainslargelyelusive(Katz,2015;Strömbergetal.,2016). 2052–2060. Possible interactions of plant Si content with other plant functional Cooke,J.,Leishman,M.R.,2016.Consistentalleviationofabioticstresswithsiliconad- dition:ameta-analysis.Funct.Ecol.30,1340–1357. traits have been explored only recently, and their sources and con- Cooke,J.,DeGabriel,J.L.,Hartley,S.E.,2016.Thefunctionalecologyofplantsilicon: sequences are little understood (Cooke and Leishman, 2011a, 2011b, geosciencestogenes.Funct.Ecol.30,1270–1276. 2012; Schaller et al., 2012a, 2012b, 2016a; Schoelynck et al., 2010; Cornelis,J.T.,Delvaux,B.,2016.Soilprocessesdrivethebiologicalsiliconfeedbackloop. Funct.Ecol.30,1298–1310. Songetal.,2014).Thebiologicalmechanismsthatunderlieintra-spe- Cornelis,J.T.,Ranger,J.,Iserentant,A.,Delvaux,B.,2010.Treespeciesimpacttheter- cific variations in plant Si content along environmental gradients are restrialcycleofsiliconthroughvariousuptakes.Biogeochemistry97,231–245. unclear(Katzetal.,2013,2014,inpress;QuigleyandAnderson,2014; Correa,R.S.B.,Moraes,J.C.,Auad,A.M.,Caravalho,G.A.,2005.Siliconandacibenzolar- Soininenetal.,2013),inpartduetodiscrepanciesbetweencontrolled S-methylasresistanceinducersincucumber,againstthewhiteflyBemisiatabaci (Gennadius)(Hemiptera:Aleyrodidae)biotypeB.Neotrop.Entomol.34,429–433. experimentsandfieldstudies(Katzetal.,inpress).Consequently,we Coskun,D.,Britto,D.B.,Huynh,W.Q.,Kronzucker,H.J.,2016.Theroleofsiliconin stillhaverelativelylittleunderstandingofhowplantSicontentsvary higherplantsundersalinityanddroughtstress.Front.PlantSci.7,1072. among ecosystem types and biomes in response to environmental Cramer,W.,Bondeau,A.,Woodward,F.I.,Prentice,I.C.,Betts,R.A.,Brovkin,V.,Cox, P.M.,Fisher,V.,Foley,J.A.,Friend,A.D.,Kucharik,C.,Lomas,M.R.,Ramankutty,N., conditions and how these variations affect variations in ecosystem Sitch,S.,Smith,B.,White,A.,Young-Molling,C.,2001.Globalresponseofterrestrial functioning (Carey and Fulweiler, 2012; Jacobs et al., 2013; Schaller ecosystemstructureandfunctiontoCO2andclimatechange:resultsfromsixdy- etal.,2017).Acquiringsufficientdataandknowledgetofillthesegaps namicglobalvegetationmodels.Glob.ChangeBiol.7,357–373. Crisp,M.D.,Arroyo,M.T.K.,Cook,L.G.,Ganodlfo,M.A.,Jordan,G.J.,McGlone,M.S., willcontributetoourunderstandingofplantcommunityassemblyand Weston,P.H.,Westoby,M.,Wilf,P.,Linder,H.P.,2009.Phylogeneticbiomecon- structure and of ecosystem functioning. Incorporating plant Si into servatismonaglobalscale.Nature458,754–758. models ofecosystems’ and global biogeochemicalcycles’ responsesto Derry,L.A.,Kurtz,A.C.,Ziegler,K.,Chadwick,O.A.,2005.Biologicalcontrolofterrestrial silicacyclingandexportfluxestowatersheds.Nature433,728–731. climatechange,onceappropriatedataexists,isverylikelytoimprove Diaz,S.,Hodgson,J.G.,Thompson,K.,Cabido,M.,Cornelissen,J.H.C.,Jalili,A., such models’ predictive power and hence our ability to predict and Montserrat-Marti,G.,Grime,J.P.,Zarrinkamar,F.,Asri,Y.,Band,S.R.,Vasconcelo, mitigate climate change effects on ecosystems and global biogeo- S.,Castro-Diez,P.,Funes,G.,Hamzehee,B.,Khoshnevi,M.,Perez-Harguindeguy,N., Perez-Rontome,M.C.,Shirvany,F.A.,Vendramini,F.,Yazdani,S.,Abbas-Azimi,R., chemicalcycles. 5 O.Katz Flora xxx (xxxx) xxx–xxx Bogaard,A.,Boustani,S.,Charles,M.,Dehghan,M.,deTorres-Espuny,L.,Falczuk,V., siliconcompositionofplants.Ann.Bot.96,1027–1046. Guerrero-Campo,J.,Hynd,A.,Jones,G.,Kowsary,E.,Kazemi-Saeed,F.,Maestro- Hunt,J.W.,Dean,A.P.,Webster,R.E.,Johnson,G.N.,Ennos,A.R.,2008.Anovelme- Martinez,M.,Romo-Diez,A.,Shaw,S.,Siavash,B.,Villar-Slavador,P.,Zak,M.R., chanismbywhichsilicadefendsgrassesagainstherbivores.Ann.Bot.102,653–656. 2004.Theplanttraitsthatdriveecosystems:evidencefromthreecontinents.J.Veg. Jacobs,S.,Müller,F.,Teuchies,J.,Oosterlee,L.,Struyf,E.,Meire,P.,2013.Thevege- Sci.15,295–304. tationsilicapoolinadevelopingtidalfreshwatermarsh.Silicon5,91–100. Dunn,R.E.,Strömberg,C.A.E.,Madden,R.H.,Kohn,M.J.,Carlini,A.A.,2015.Linked Johnson,S.N.,Hartley,S.E.,2017.Elevatedcarbondioxideandwarmingimpactsilicon canopy,climateandfaunalevolutionintheCenozoicofPatagonia.Science347, andphenolic-baseddefencesdifferentlyinnativeandexoticgrasses. inpress.Glob. 258–261. ChangeBiol.Bioenergy. Edwards,E.J.,Osborne,C.P.,Strömberg,C.A.E.,Smith,S.A.,Bond,W.J.,Christin,P.A., Katz,O.,2014.Beyondgrasses:thepotentialbenefitsofstudyingsiliconaccumulationin Cousins,A.B.,Duvall,M.R.,Fox,D.L.,Freckleton,R.P.,Ghannoum,O.,Hartwell,J., non-grassspecies.Front.PlantSci.5,376. Huang,Y.,Janis,C.M.,Keely,J.E.,Kellogg,E.A.,Knapp,A.K.,Leakey,A.D.B.,Nelson, Katz,O.,2015.Silicaphytolithsinangiosperms:phylogenyandearlyevolutionaryhis- D.M.,Saarela,J.M.,Sage,R.F.,Sala,O.E.,Salamin,N.,Still,C.J.,Tipple,B.,2010. tory.NewPhytol.208,642–646. TheoriginsofC4grasslands:intgratingevolutionaryandecosystemscience.Science Katz,O.,2018.ExtendingthescopeofDarwin’s’abominablemystery’:integrativeap- 328,587–591. proachestounderstandingangiospermoriginsandspeciesrichness.Ann.Bot. Euliss,K.W.,Dorsey,B.L.,Benke,K.C.,Banks,M.K.,Schwab,A.P.,2005.Theuseofplant 121,1–8. tissuesiliconcontentforestimatingtranspiration.Ecol.Eng.25,343–348. Katz,O.,Gilead,I.,Bar(Kutiel),P.,Shahack-Gross,R.,2007.Chalcolithicagriculturallife Exley,C.,1998.Siliconinlife:abioinorganicsolutiontobioorganicessentiality.J.Inorg. atGrar,NorthernNegev,Israel:dryfarmedcerealsanddung-fueledhearts.Paleorient Biochem.69,139–144. 33,101–116. Faisal,S.,Callis,K.L.,Slot,M.,Kitajima,K.,2013.Transpiration-dependentpassivesilica Katz,O.,Lev-Yadun,S.,Bar(Kutiel),P.,2013.Plasticityandvariabilityinthepatternsof accumulationincucumber(Cucumissativus)undervaryingsoilsiliconavailability. phytolithformationinAsteraceaespeciesalongalargerainfallgradientinIsrael. Botany90,1058–1064. Flora208,438–444. Falkowski,P.G.,Katz,M.E.,Knoll,A.H.,Quigg,A.,Raven,J.A.,Schofield,O.,Taylor, Katz,O.,Lev-Yadun,S.,Bar(Kutiel),P.,2014.Dophytolithsplayanantiherbivoryrolein F.J.R.,2004.Theevolutionofmoderneukaryoticphytoplankton.Science305, southwestAsianAsteraceaespeciesandtowhatextent?Flora209,349–358. 354–360. Katz,O.,Lev-Yadun,S.,Bar(Kutiel),P.,2016.Plantsiliconandphytolithcontentsas Farmer,V.C.,Delbos,E.,Miller,J.D.,2005.Theroleofphytolithformationanddis- affectedbywateravailabilityandherbivory:integratinglaboratoryexperimentation solutionincontrollingconcentrationsofsilicainsoilsolutionsandstreams. andnaturalhabitatstudies. inpress.Silicon. Geoderma127,71–79. Klotzbücher,T.,Klotzbücher,A.,Kaiser,K.,Vetterlein,D.,Jahn,R.,Mikutta,R.,2018. Fauteaux,F.,Remus-Borel,W.,Menzies,J.G.,Belanger,R.R.,2005.Siliconandplant Variablesiliconaccumulationinplantsaffectsterrestrialcarboncyclingbycontrol- diseaseresistanceagainstpathogenicfungi.FEMSMicrobiol.Lett.249,1–6. lingligninsynthesis.Glob.ChangeBiol.Bioenergy24,e183–e189. Fauteaux,F.,Chain,F.,Belzile,F.,Menzies,J.G.,Belanger,R.R.,2006.Theprotectiverole Kürschner,W.M.,Kvaček,Z.,Dilcher,D.L.,2008.TheimpactofMioceneatmospheric ofsiliconintheArabidopsis-powderymildewpathosystem.PNAS103,17554–17559. dioxidefluctuationsonclimateandtheevolutionofterrestrialecosystems.Proc.Natl. Feng,Y.,Jie,D.,Guo,M.,Dong,S.,Chen,X.,Liu,H.,Liu,L.,Li,N.,2017.Phytolithloss Acad.Sci.U.S.A.105,449–453. andenrichmentinsoilphytolithassemblagesrevealedbycomparisonsofphytoliths Kvedaras,O.L.,Keeping,M.G.,Goebel,F.R.,Byrne,M.J.,2007.Larvalperformanceofthe invegetationandsurfacesoilsofaltitudinalbeltsintheChangbaiMountains, pyralidborerEldanasaccharinaWalkerandstalkdamageinsugarcane:influenceof NortheastChina.Flora236–237,84–93. plantsilicon,cultivarandfeedingsite.Int.J.PestManage.53,183–194. Fialova,I.,Šimkova,S.,Vaculikova,M.,Luxova,M.,2016.EffectsofSiontheantioxidant Lamsdell,J.C.,Congreve,C.R.,Hopkins,M.J.,Krug,A.Z.,Patzkowsky,M.E.,2017. defenseofyoungmaizerootsunderNaClstress. inpress.Silicon. Phylogeneticpaleoecology:tree-thinkingandecologyindeeptime.TrendsEcol. Franceschi,V.R.,Nakata,P.A.,2005.Calciumoxalateinplants:formationandfunction. Evol.32,452–463. Annu.Rev.PlantBiol.56,41–71. Li,Z.,Song,Z.,Parr,J.F.,Wang,H.,2013.OccludedCinricephytoliths:implicationsto Frew,A.,Powell,J.R.,Sallam,N.,Allsopp,P.J.,Johnson,S.N.,2016.Trade-offsbetween biogeochemicalcarbonsequestration.PlantSoil370,615–623. siliconandphenolicdefensesmayexplainenhancedperformanceofrootherbivores Li,N.,Jie,D.,Ge,Y.,Guo,J.,Liu,H.,Liu,L.,Qiao,Z.,2014.Responseofphytolithsin onphenolic-richplants.J.Chem.Ecol.42,768–771. PhragmitescommunistoelevatedCO2concentrationinSongnenGrassland,China. Frew,A.,Allsopp,P.J.,Gherlenda,A.N.,Johnson,S.N.,2017a.Increasedrootherbivory Quat.Int.321,97–104. underelevatedatmosphericcarbondioxideconcentrationsisreversedbysilicon- Li,D.,Jie,D.,Liu,L.,Liu,H.,Gao,G.,Li,N.,2018.Herbaceousphytolithsfromforestand basedplantdefences.J.Appl.Ecol.54,1310–1319. grasslandinNortheastChina:potentialsignificancefordeterminingpastforest–- Frew,A.,Powell,J.R.,Hiltpold,I.,Allsopp,P.J.,Sallam,N.,Johnson,S.N.,2017b.Host grasslandboundaries.Flora243,19–31. plantcolonisationbyarbuscularmycorrhizalfungistimulatesimmunefunction Ma,J.F.,Takahashi,E.,1990.Effectofsilicononthegrowthandphosphorusuptakeof whereashighrootsiliconconcentrationsdiminishgrowthinasoil-dwellingherbi- rice.PlantSoil126,115–119. vore.SoilBiol.Biochem.112,117–126. Ma,J.,Cai,H.,He,C.,Zhang,W.,Wang,L.,2015.Ahemicellulose-boundformofsilicon Fulweiler,R.W.,Maguire,T.J.,Carey,J.C.,Finzi,A.C.,2015.DoeselevatedCO2alter inhibitscadmiumionuptakeinrice(Oryzasativa)cells.NewPhytol.206, silicauptakeintrees?Front.PlantSci.5,793. 1063–1074. Funk,J.L.,Larson,J.E.,Ames,G.M.,Butterfield,B.J.,Cavender-Bares,J.,Firn,J., MacFadden,B.J.,1997.OriginandevolutionofthegrazingguildinNewWorldterrestrial Laughlin,D.C.,Sutton-Grier,A.E.,Williams,L.,Wright,J.,2017.RevisitingtheHoly mammals.TrendsEcol.Evol.12,182–187. Grail:usingplantfunctionaltraitstounderstandecologicalprocesses.Biol.Rev.92, Marxen,A.,Klotzbücher,T.,Jahn,R.,Kaiser,K.,Nguyen,V.S.,Schmidt,A.,Schädler,M., 1156–1173. Vetterlein,D.,2015.Interactionbetweensiliconcyclingandstrawdecompositionin Gao,D.,Cai,K.,Chen,J.,Luo,S.,Zeng,R.,Yang,J.,Zhu,X.,2011.Siliconenhances asilicondeficientriceproductionsystem.PlantSoil398,153–163. photochemicalefficiencyandadjustsmineralnutrientabsorptioninMagnaporthe Massey,F.P.,Hartley,S.E.,2006.Experimentaldemonstrationoftheantiherbivoreeffects oryzaeinfectedriceplants.ActaPhysiol.Plant.33,675–682. ofsilicaingrasses:impactsonfoliagedigestibilityandvolegrowthrates.Proc.Roy. Garbuzov,M.,Reidinger,S.,Hartley,S.E.,2011.Interactiveeffectsofplant-availablesoil Soc.LondonB273,2299–2304. siliconandherbivoryoncompetitionbetweentwograssspecies.Ann.Bot.108, Massey,F.P.,Hartley,S.E.,2009.Physicaldefenceswearyoudown:progressiveandir- 1355–1363. reversibleimpactsofsilicaoninsectherbivores.J.Appl.Ecol.78,281–291. Garnier,E.,Navas,M.L.,Grigulis,K.,2016.PlantFunctionalDiversity:OrganismTraits, Massey,F.P.,Ennos,A.R.,Hartley,S.E.,2006.Silicaingrassesasadefenceagainstinsect CommunityStructure,andEcosystemProperties.OxfordUniversityPress, herbivores:contrastingeffectsonfolivoresandphloemfeeders.J.Anim.Ecol.75, Oxford,UK. 595–603. Gong,H.,Zhu,X.,Chen,K.,Wang,S.,Zhang,C.,2005.Siliconalleviatesoxidativeda- Massey,F.P.,Ennos,A.R.,Hartley,S.E.,2007a.Grassesandtheresourceavailability mageofwheatplantsinpotsunderdrought.PlantSci.169,313–321. hypothesis:theimportanceofsilica-baseddefences.J.Ecol.95,414–424. Goto,M.,Ehara,H.,Karita,S.,Takabe,K.,Ogawa,N.,Yamada,Y.,Ogawa,S.,Yahaya, Massey,F.P.,Ennos,A.R.,Hartley,S.E.,2007b.Herbivorespecificinductionofsilica- M.S.,Morita,O.,2003.Protectiveeffectofsilicononphenolicbiosynthesisandul- basedplantdefences.Oecologia152,677–683. travioletspectralstressinricecrop.PlantSci.164,349–356. Massey,F.P.,Smith,M.J.,Lambin,X.,Hartley,S.E.,2008.Aresilicadefencesingrasses Hartley,S.E.,2015.Roundandroundincycles?Silicon-basedplantdefencesandvole drivingvolepopulationcycles?Biol.Lett.4,419–422. populationdynamics.Funct.Ecol.29,151–153. Mihlbachler,M.C.,Rivals,F.,Solounias,N.,Semprebon,G.N.,2011.Dietarychangeand Hartley,S.E.,DeGabriel,J.L.,2016.Theecologyofherbivore-inducedsilicondefencesin evolutionofhorsesinNorthAmerica.Science331,1178–1181. grasses.Funct.Ecol.30,1311–1322. Neu,S.,Schaller,J.,Dudel,E.G.,2017.Siliconavailabilitymodifiesnutrientuseeffi- Hattori,T.,Inanaga,S.,Araki,H.,An,P.,Morita,S.,Luxova,M.,Lux,A.,2005. ciencyandcontent,C:N:Pstoichiometry,andproductivityofwinterwheat(Triticum ApplicationofsiliconenhancesdroughttoleranceinSorghumbicolor.Physiol.Plant. aestivumL.).Sci.Rep.7,40829. 123,459–466. Perez-Harguindeguy,N.,Diaz,S.,Garnier,E.,Lavorel,S.,Poorter,H.,Jaureguiberry,P., He,Y.,Xiao,H.,Wang,H.,Chen,Y.,Yu,M.,2010.Effectofsilicononchilling-induced Bret-Harte,M.S.,Cornwell,W.K.,Craine,J.M.,Gurvich,D.E.,Urcelay,C.,Veneklaas, changesofsolutes,antioxidants,andmembranestabilityinseashorepaspalum E.J.,Reich,P.B.,Poorter,L.,Wright,I.J.,Ray,P.,Enrico,L.,Pausas,J.G.,deVos, turfgrass.ActaPhysiol.Plant.32,487–494. A.C.,Buchmann,N.,Funes,G.,Quetier,F.,Hodgson,J.G.,Thompson,K.,Morgan, He,C.,Ma,J.,Wang,L.,2015.Ahemicellulose-boundformofsiliconwithpotentialto H.D.,terSteege,H.,vanderHeijden,M.G.A.,Sack,L.,Blonder,B.,Poschlod,P., improvethemechanicalpropertiesandregenerationofthecellwallofrice.New Vaieretti,M.V.,Conti,G.,Staver,A.C.,Aquino,S.,Cornelissen,J.H.C.,2013.New Phytol.206,1051–1062. handbookforstandardisedmeasurementofplantfunctionaltraitsworldwide.Aus.J. Hinsinger,P.,FernandesBarros,O.N.,Benedetti,M.F.,Noack,Y.,Callot,G.,2001.Plant- Bot.61,167–234. inducedweatheringofabasalticrock:experimentalevidence.Geochem. Prasad,V.,Strömberg,C.A.E.,Alimohammadian,H.,Sahni,A.,2005.Dinosaurcoprolites Cosmochem.Acta65,137–152. andtheearlyevolutionofgrassesandgrazers.Science310,1177–1180. Hodson,M.J.,White,P.J.,Mead,A.,Broadley,M.R.,2005.Phylogeneticvariationinthe Prychid,C.J.,Rudall,P.J.,1999.Calciumoxalatecrystalsinmonocotyledons:areviewof 6 O.Katz Flora xxx (xxxx) xxx–xxx theirstructureandsystematics.Ann.Bot.84,725–739. thanherbivory:levelsofsilica-baseddefencesingrassesvarywithplantspecies, Quere,C.,Andrew,R.M.,Canadell,J.P.,Sitch,S.,Korsbakken,J.I.,Peters,G.P.,Manning, genotypeandlocation.Oikos122,30–41. A.C.,Boden,T.A.,Tans,P.P.,Houghton,R.A.,Keeling,R.F.,Alin,S.,Andrews,O.D., Solounias,N.,Semprebon,G.M.,2002.Advancesinthereconstructionofungulateeco- Anthoni,P.,Barbero,L.,Bopp,L.,Chevallier,F.,Chini,L.P.,Clais,P.,Currie,K., morphologywithapplicationtoearlyfossilequids.Am.MuseumNovitates3366, Delire,C.,Doney,S.C.,Frielingstein,P.,Gkritzalis,T.,Harris,I.,Hauck,J.,Haverd, 1–49. V.,Hoppema,M.,Goldewijk,K.K.,Jain,A.K.,Kato,E.,Körtzinger,A.,Landschützer, Song,Z.,Wang,H.,Strong,P.J.,Li,Z.,Jiang,P.,2012.Plantimpactonthecoupled P.,Lefevre,N.,Lenton,A.,Lienert,S.,Lombardozzi,D.,Melton,J.R.,Metzl,N., biogeochemicalcyclesofsiliconandcarbon:implicationsforbiogeochemicalcarbon Millero,F.,Moteiro,P.M.,Munro,D.R.,Nabel,J.E.M.S.,Nakaoka,S.,O’Brien,K., sequestration.EarthSci.Rev.115,319–331. Olsen,A.,Omar,A.M.,Ono,T.,Pierrot,D.,Poulter,B.,Rödenbeck,C.,Salisbury,J., Song,Z.,Liu,H.,Zhao,F.,Xu,C.,2014.EcologicalstoichiometryofN:P:SiinChina’s Schuster,U.,Schwinger,J.,Seferian,R.,Skjelvan,I.,Stocker,B.D.,Sutton,A.J., grasslands.PlantSoil380,165–179. Takahashi,T.,Tian,H.,Tilbrook,B.,vanderLaan-Luijkx,I.T.,vanderWerf,G.R., Song,Z.,Liu,H.,Strömberg,C.A.E.,Yang,X.,Zhang,X.,2017.Phytolithcarbonse- Viovy,N.,Walker,A.P.,Wiltshire,A.J.,Zaehle,S.,2016.Globalcarbonbudget2016. questrationinglobalterrestrialbiomes.Sci.Tot.Environ.603-604,502–509. EarthSyst.Sci.Data8,605–649. Stebbins,G.L.,1981.Coevolutionofgrassesandherbivores.Ann.Mo.Bot.Gard.68, Quigley,K.M.,Anderson,T.M.,2014.LeafsilicaconcentrationinSerengetigrassesin- 75–86. creaseswithwateringbutnotclipping:insightsfromacommongardenstudyand Street-Perrott,F.A.,Barker,P.A.,2008.Biogenicsilica:aneglectedcomponentofthe literaturesurvey.Front.PlantSci.5,568. coupledglobalcontinentalbiogeochemicalcyclesofcarbonandsilicon.EarthSurf. Raven,J.A.,1983.Thetransportandfunctionofsiliconinplants.Biol.Rev.58,179–207. Process.Landforms33,1436–1457. Reyerson,P.E.,Alexandre,A.,Harutyunyan,A.,Corbineau,R.,MartinezdelaTorre,H.A., Strömberg,C.A.E.,2004.Usingphytolithassemblagestoreconstructtheoriginand Badeck,F.,Cattivelli,L.,Santos,G.M.,2016.Unambiguousevidenceofoldsoil spreadofgrass-dominatedhabitatsintheGreatPlainsduringthelateEocenetoearly carboningrassbiosilicaparticles.Biogeosciences13,1269–1286. Miocene.Palaeogeog.Palaeoclimatol.Palaeoecol.207,239–275. Rios,J.J.,Martinez-Ballesta,M.C.,Ruiz,J.M.,Blasco,B.,Carvajal,M.,2017.Silicon- Strömberg,C.A.E.,2005.Decoupledtaxonomicradiationandecologicalexpansionof mediatedimprovementinplantsalinitytolerance:theroleofaquaporins.Front.Plant open-habitatgrassesintheCenozoicofNorthAmerica.PNAS102,11980–11984. Sci.8,948. Strömberg,C.A.E.,2006.Theevolutionofhypsodontyinequids:testingahypothesisof Rivals,F.,Takatsuki,S.,Albert,R.M.,Macia,L.,2014.Bamboofeedingandtoothwearof adaptation.Paleobiology32,236–258. threesikadeer(Cervusnippon)populationsfromnorthernJapan.J.Mammal.95, Strömberg,C.A.E.,2011.Evolutionofgrasslandsandgrasslandecosystems.Annu.Rev. 1043–1053. EarthPlanet.Sci.39,517–544. Ronchi,B.,Clymans,W.,Barão,A.L.P.,Vandevenne,F.,Struyf,E.,Batelaan,O., Strömberg,C.A.E.,Dunn,R.E.,Madden,R.H.,Kohn,M.L.,Carlini,A.A.,2013.Decoupling Dassargues,A.,Govers,G.,2013.TransportofdissolvedSifromsoiltoriver:a thespreadofgrasslandsfromtheevolutionofgrazer-typeherbivoresinSouth conceptualmechanisticmodel.Silicon5,115–133. America.Nat.Commun.4,1478. Sanson,G.D.,Kerr,S.A.,Gross,K.A.,2007.Dosilicaphytolithsreallywearmammalian Strömberg,C.A.E.,DiStilio,V.S.,Song,Z.,2016.Functionsofphytolithsinvascular teeth?J.Archaeol.Sci.34,526–531. plants:anevolutionaryperspective.Funct.Ecol.30,1286–1297. Santos,G.M.,Alexandre,A.,2017.Thephytolithcarbonsequestrationconcept:factof Struyf,E.,Smis,A.,VanDamme,S.,Meire,P.,Conley,D.J.,2009.Theglobalbiogeo- fiction?Acommenton“Occurrence,turnoverandcarbonsequestrationpotentialof chemicalsiliconcycle.Silicon1,207–213. phytolithsinterrestrialecosystems”bySongetal.Earth.Rev.164,251–255.https:// Trembath-Reichert,E.,Wilson,J.P.,McGlynn,S.E.,Fischer,W.W.,2015.Fourhundred doi.org/10.1016/j.earscirev.2016.04.007. millionyearsofsilicabiomineralizationinlandplants.PNAS112,5449–5454. Schaller,J.,Struyf,E.,2013.Siliconcontrolsmicrobialdecayandnutrientreleaseofgrass Tsartsidou,G.,Lev-Yadun,S.,Efstratiou,N.,Weiner,S.,2008.Ethnoarchaeologicalstudy litterduringaquaticdecomposition.Hydrobiologia709,201–212. ofphytolithassemblagesfromanagro-pastoralvillageinnorthernGreece(Sarakini): Schaller,J.,Brackhage,C.,Dudel,E.G.,2012a.Siliconavailabilitychangesstructural developmentandapplicationofaphytolithdifferenceindex.J.Archaeol.Sci.35, carbonratioandphenolcontentofgrasses.Environ.Exp.Bot.77,283–287. 600–613. Schaller,J.,Brackhage,C.,Gessner,M.O.,Bäuker,E.,Dudel,E.G.,2012b.Siliconsupply VanBockhaven,J.,DeVleesschauwer,D.,Höfte,M.,2013.Towardsestablishingbroad- modifiesC:N:PstoichiometryandgrowthofPhragmitesaustralis.PlantBiol.14, spectrumdiseaseresistanceinplants:siliconleadstheway.J.Exp.Bot.64, 392–396. 1281–1293. Schaller,J.,Brackhage,C.,Bäucker,E.,Dudel,E.G.,2013.UV-screeningofgrassesby Vandevenne,F.I.,Barão,A.L.,Schoelynck,J.,Smis,A.,Ryken,N.,VanDamme,S.,Meire, plantsilicalayer?J.Biosci.38,413–416. P.,Struyf,E.,2013.Grazers:biocatalystsofterrestrialsilicacycling.Proc.Roy.Soc. Schaller,J.,Hines,J.,Brackhage,C.,Bäucker,E.,Gessner,M.O.,2014.Silicadecouples LondonB280(2013),2083. fungalgrowthandlitterdecompositionwithoutchangingresponsestoclimate Violle,C.,Reich,P.B.,Pacala,S.W.,Enquist,B.J.,Kattge,J.,2014.Theemergenceand warmingandNenrichment.Ecology95,3181–3189. promiseoffunctionalbiogeography.PNAS111,13690–13696. Schaller,J.,Shcoelynck,J.,Struyf,E.,Meire,P.,2016a.Siliconaffectsnutrientcontent Wang,Y.,Stass,A.,Horst,W.J.,2004.Apoplasticbindingofaluminumisinvolvedin andratiosofwetlandplants.Silicon8,479. silicon-inducedameliorationofaluminumtoxicityinmaize.PlantPhysiol.136, Schaller,J.,Roscher,C.,Hildebrand,H.,Weigelt,A.,Oelmann,Y.,Wilcke,W.,Ebeling, 3762–3770. A.,Weisser,W.W.,2016b.PlantdiversityandfunctionalgroupsaffectSiandCapools Wang,L.,Nie,Q.,Li,M.,Zhang,F.,Zhuang,J.,Yang,W.,Li,T.,Wang,Y.,2005. inabovegroundbiomassofgrasslandsystems.Oecologia182,277–286. Biosilicifiedstructuresforcoolingplantleaves:amechanismofhighlyefficient Schaller,J.,Hodson,M.J.,Struyf,E.,2017.IsrelativeSi/Caavailabilitycrucialtothe midinfraredthermalemission.Appl.Physic.Lett.87,194105. performanceofgrasslandecosystems?Ecosphere8,e01726. Wieczorek,M.,Szafrańska,P.A.,Labecka,A.M.,Lazaro,J.,Konarzewski,M.,2015a. Schoelynck,J.,Struyf,E.,2016.Siliconinaquaticvegetation.Funct.Ecol.30, Effectsofabrasivepropertiesofsedgesontheintestinalabsorptivesurfaceand 1323–1330. restingmetabolicrateofrootvole.J.Exp.Biol.218,309–315. Schoelynck,J.,Bal,K.,Backx,H.,Okruszko,T.,Meire,P.,Struyf,E.,2010.Silicauptake Wieczorek,M.,Zub,K.,Szafrańska,P.A.,Książek,A.,Konarzewski,M.,2015b.Plant- inaquaticandwetlandmacrophytes:astrategicchoicebetweensilica,ligninand herbivoreinteractions:siliconconcentrationintussocksedgesandpopulationdy- cellulose?NewPhytol.186,385–391. namicsofrootvoles.Funct.Ecol.29,187–194. Schoelynck,J.,Müller,F.,Vandevenne,F.,Bal,K.,Barão,A.L.,Smis,A.,Opdekamp,W., Wiens,J.J.,Donoghue,M.J.,2004.Historicalbiogeography,ecologyandspeciesrichness. Meire,P.,Struyf,E.,2014.Silicon–vegetationinteractioninmultipleecosystems:a TrendsEcol.Evol.19,639–644. review.J.Veg.Sci.25,301–313. Wu,Y.,You,H.L.,Li,X.Q.,2017.Dinosaur-associatedPoaceaeepidermisandphytoliths Schuiling,R.D.,Krijgsman,P.,2006.Enhancedweathering:aneffectiveandcheaptoolto fromtheEarlyCretaceousofChina. inpress.Natl.Sci.Rev. sequesterCO2.Clim.Change74,349–354. Zhu,Y.,Gong,H.,2014.Beneficialeffectsofsilicononsaltanddroughttolerancein Soininen,E.M.,Bråthen,K.A.,Jusdado,J.G.H.,Reidinger,S.,Hartley,S.E.,2013.More plants.Agron.Sustain.Develop.34,455–472. 7

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.