ebook img

Silicon and Nano-silicon in Environmental Stress Management and Crop Quality Improvement: Progress and Prospects PDF

398 Pages·2022·7.668 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Silicon and Nano-silicon in Environmental Stress Management and Crop Quality Improvement: Progress and Prospects

- SILICON AND NANO SILICON IN ENVIRONMENTAL STRESS MANAGEMENT AND CROP QUALITY IMPROVEMENT This pageintentionallyleftblank SILICON AND - NANO SILICON IN ENVIRONMENTAL STRESS MANAGEMENT AND CROP QUALITY IMPROVEMENT Progress and Prospects Edited by H E ASSAN TESAMI SoilScienceDepartment,CollegeofAgricultureandNaturalResources,UniversityofTehran,Tehran,Iran A H. A S BDULLAH L AEEDI DepartmentofEnvironmentandNaturalResources,FacultyofAgricultureandFoodScience, KingFaisalUniversity,Al-Hofuf,SaudiArabia H E R ASSAN L- AMADY SoilandWaterDepartment,FacultyofAgriculture,KafrelsheikhUniversity,KafrEl-Sheikh,Egypt M F ASAYUKI UJITA FacultyofAgriculture,KagawaUniversity,Kagawa,Japan M P OHAMMAD ESSARAKLI UniversityofArizona,Tucson,AZ,UnitedStates M A H OHAMMAD NWAR OSSAIN DepartmentofGeneticsandPlantBreeding,BangladeshAgriculturalUniversity,Mymensingh,Bangladesh AcademicPressisanimprintofElsevier 125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1650,SanDiego,CA92101,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom Copyright©2022ElsevierInc.Allrightsreserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical,includingphotocopying, recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission, furtherinformationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearanceCenter andtheCopyrightLicensingAgency,canbefoundatourwebsite:www.elsevier.com/permissions. ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmaybenotedherein). Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenourunderstanding,changesin researchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary. Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusinganyinformation,methods, compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthesafety ofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforanyinjuryand/ordamage topersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods,products, instructions,orideascontainedinthematerialherein. ISBN:978-0-323-91225-9 ForInformationonallAcademicPresspublications visitourwebsiteathttps://www.elsevier.com/books-and-journals Publisher:NikkiLevy AcquisitionsEditor:NancyMaragioglio EditorialProjectManager:MariaElaineDesamero ProductionProjectManager:SruthiSatheesh CoverDesigner:GregHarris TypesetbyMPSLimited,Chennai,India Contents List of contributors xi Conflict ofinterest 31 Acknowledgments 31 About the editors xv References 31 Preface xvii 3. Silicon uptake, acquisition, and accumulation 1. Sources of silicon and nano-silicon in soils and in plants 37 plants 1 SEYEDABDOLLAHHOSSEINI HASSANEL-RAMADY,KRISHANK.VERMA,VISHNUD.RAJPUT, TATIANAMINKINA,FATHYELBEHERY,HEBAELBASIONY, 3.1 Introduction 37 TAMERELSAKHAWY,ALAAEL-DEINOMARAANDMEGAHEDAMER 3.1.1 Siin soiland plant 37 1.1 Introduction 1 3.2 Silicon uptake, acquisition, andaccumulation in 1.2 Sourcesofsiliconand nano-silicon in soils 2 higherplants 37 1.2.1 Siliconin soils and its forms 2 3.2.1 Siuptake byroot system 38 1.2.2 Siliconcyclein soiland its bioavailability 4 3.2.2 Sitransport invasculartissue 39 1.3 Nano-siliconrolein soils 5 3.3 Si accumulationand depositionin different 1.4 Silicon andnano-siliconin plants 6 parts ofplant 40 1.4.1 Siliconroleand its mechanism inplants 6 3.4 Conclusion andfuture perspective 40 1.4.2 Nano-siliconand its role inplants 8 References 40 1.5 Conclusion 10 Acknowledgment 10 References 10 4. Biological function of silicon in a grassland ecosystem 43 DANGHUIXU,MOHAMMADANWARHOSSAINANDROBERTHENRY 2. Silicon and nano-silicon: New frontiers of biostimulants for plant growth and stress 4.1 Introduction 43 amelioration 17 4.2 Silicon distributionin meadow plants 44 4.3 Silicon inrelation to plant community structure MAHIMAMISTISARKAR,PIYUSHMATHURANDSWARNENDUROY in alpine meadow 45 2.1 Introduction 17 4.4 Silicon inrelation to plant carbon, nitrogen and 2.2 Prospect ofsilicon and nano-silicon as phosphorusconcentration 47 biostimulants 18 4.5 Silicon inrelation to plant physiological aspects 2.3 Silicon: anunderestimated elementfor plant in presence of N-fertilization 48 growth 19 4.6 Conclusions and perspective 50 2.3.1 Siliconin plant growth anddevelopment 20 Acknowledgements 51 2.3.2 Role of silicon instress alleviation 21 References 51 2.4 Emergingroleof nano-silicon 24 2.4.1 Nano-siliconin plant growth and development 24 5. Use of silicon and nano-silicon in 2.4.2 Role of nano-silicon instress alleviation 25 agro-biotechnologies 55 2.5 Crosstalkwith phytohormones for the elicitation AMANDACAROLINAPRADODEMORAESAND ofenhanced tolerance 28 PAULOTEIXEIRALACAVA 2.6 Molecular mechanismofthe alleviationof stress by silicon and nano-silicon 30 5.1 Introduction 55 2.7 Conclusions, current status, and future 5.2 Silicon for plant health 55 perspectives 31 5.3 Nano-silicon 56 v vi Contents 5.3.1 Nano-siliconas nanoregulators, 8.3.3 Role ofSiin strengthening antioxidant nanopesticides, and nanofertilizers 57 defense system ofplants 98 5.3.2 Nano-siliconas delivery systems 59 8.4 Conclusion andfuture prospects 99 5.3.3 Nano-siliconassociated with plant References 99 growth-promoting bacteria 60 5.4 Conclusions and perspectives 61 Acknowledgments 61 9. Nanosilicon-mediated salt stress tolerance References 61 in plants 105 MUHAMMADJAFIR,MUHAMMADASHARAYUBAND 6. The genetics of silicon accumulation in plants 67 MUHAMMADZIAURREHMAN LIBIAIRISTREJO-TE´LLEZ,LIBIAFERNANDAGO´MEZ-TREJO, 9.1 Introduction 105 HUGOFERNANDOESCOBAR-SEPU´LVEDAAND FERNANDOCARLOSGO´MEZ-MERINO 9.2 Effect ofsalt stress on plants 105 9.3 Silicon: abeneficial nutrient in saline agriculture 108 6.1 Introduction 67 9.4 Nanosilica: types,sources, synthesis, and uptake 6.2 Geneticand molecular basis of Siuptakeand mechanism 109 movement ofSiwithinplant cells 68 9.4.1 Types ofnanosilica 109 6.3 Distribution ofLsi channelsand Silp1proteins in 9.4.2 Nanosilica, sources, and synthesis 110 plants 70 9.4.3 Absorptionpathways ofnanosilica 110 6.4 Conclusion 71 9.5 Chemistryof nano-Siin salt-contaminated soil 111 References 72 9.5.1 The fate ofSiNPsinsoil 111 9.5.2 Transportation assimilationand intertissue dynamicsof nano-Siinplants 112 7. Silicon-mediated modulations of genes and 9.6 Nano-Si-mediated tolerancein plants under secondary metabolites in plants 77 salinity stress 112 SAADFAROUK 9.6.1 Physiological modulation 112 9.6.2 Biochemical effects 112 7.1 Introduction 77 9.6.3 Gene expression 114 7.2 Overview andassortment ofplant secondary 9.7 Conclusion 114 metabolites 78 9.8 Futuredirection 115 7.3 Stress andprotection reactions inrelation to the References 115 secondary metabolites production 79 7.4 Silicon modulation ofsecondary metabolism within stress condition 80 7.5 Silicon-mediated expressionoftranscription 10. Silicon- and nanosilicon-mediated drought factorsand some associated secondary metabolite and waterlogging stress tolerance in plants 121 responsivegenes 82 ABDULLAHALSAEEDI,MOHAMEDM.ELGARAWANI, 7.6 Conclusion and perspective 84 TAREKALSHAALANDNEVIENELHAWAT References 85 10.1 Introduction 121 10.2 Drought and waterlogging stress definition and 8. Silicon improves salinity tolerance in forms 122 crop plants: Insights into photosynthesis, 10.3 Ecological grouping of plant accordingto defense system, and production of phytohormones 91 drought andwaterlogging stress tolerance 122 FREEHASABIR,SANANOREEN,ZAFFARMALIK, 10.4 Response ofplant physiology, biochemistry, and MUHAMMADKAMRAN,MUHAMMADRIAZ, molecular biology ofdroughtand waterlogging MUHAMMADDAWOOD,AASMAPARVEEN,SOBIAAFZAL, stress tolerance inplants 122 IFTIKHARAHMADANDMUHAMMADALI 10.4.1 Physiologicalresponse todroughtstress 123 8.1 Introduction 91 10.4.2 Molecular response to droughtstress 123 8.2 Salinity-inducedinjuries in plants 92 10.4.3 Waterlogging 123 8.2.1 Osmotic injury in plants 92 10.4.4 Physiologicalresponse towaterlogging 124 8.2.2 Specific iontoxicity 92 10.4.5 Biochemical changesunder 8.3 Regulatory roleof Sitomitigate salt stress 93 waterlogging 124 8.3.1 Silicon-induced salt tolerance and 10.4.6 Molecular response to waterlogging 124 photosynthesis restoration 94 10.5 Effect ofdroughtand waterlogging stress on 8.3.2 Siand enhancement of phytohormones 97 plant and yield components 125 Contents vii 10.5.1 Morphological and anatomical changes 125 12.2.2 Coldstress and ROS metabolism 10.5.2 Morphological and anatomical changes affected by Si 165 to waterlogging stress 126 12.2.3 Accumulation ofthe low-molecular 10.5.3 Effect ofdroughton nutritional status 127 weight compounds under cold stress 10.5.4 Effect ofwaterlogging on nutritional affected by Si 166 status 127 12.2.4 Hormone signaling under cold stress 10.6 Mechanisms of drought and waterlogging stress affected by Si 168 in plants 127 12.2.5 Mineral nutrition ofplantsunder cold 10.6.1 Signaling and stomatal behavior 128 stress affected by Si 169 10.6.2 Mechanisms of droughtresistance 129 12.2.6 Phenolics metabolismunder cold stress 10.6.3 Mechanisms of resistanceto affected by Si 169 waterlogging 130 12.2.7 Modifications incell wallproperties 10.7 Role ofsilicon and nanosilicon in alleviating the under cold stress affected by Si 170 deleterious effect ofdroughtand waterlogging 12.2.8 Lignification under cold stress stress 130 affected by Si 171 10.8 Mechanisms of silicon-and nanosilicon-mediated 12.2.9 Contribution of apoplast to the cold droughtandwaterlogging stress tolerance in tolerance affected bySi 172 plants 132 12.3 Concluding remarks 174 10.9 Conclusion andfuture perspectives 139 Acknowledgment 174 Acknowledgment 139 References 174 References 139 11. Silicon and nanosilicon mediated heat stress 13. Silicon and nano-silicon mediated heavy tolerance in plants 153 metal stress tolerance in plants 181 ABIDAPARVEEN,SAHARMUMTAZ, SEYEDMAJIDMOUSAVI MUHAMMADHAMZAHSALEEM,IQBALHUSSAIN, SHAGUFTAPERVEENANDSUMAIRATHIND 13.1 Introduction 181 11.1 Silicon and plants 153 13.2 Heavymetals:Functions,effects, and classification based on necessity 181 11.2 Silicon dynamicsand distributionin plants 153 11.3 Nanosilicon and plants 153 13.3 Silicon/nano-silicon plays a vital rolein the 11.4 Use ofnanosilicon topromote plant growth alleviation ofheavy metalstoxicity in plants 183 and heat stress tolerance 154 13.3.1 Silicon/nano-silicon mechanisms to 11.5 Role ofsilicon and nanosilicon particles in ameliorate potentiallytoxic metals improving heat stress endurance 154 stress in plants 183 11.6 Regulation ofantioxidant activities bysilicon 13.4 Conclusion 188 in crop plants under heat stress 155 References 188 11.7 Mechanisms of silicon-mediated amelioration ofheat stress inplants 155 11.8 Silicon and nanosilicon against several plant 14. Silicon- and nanosilicon-mediated disease diseases 157 resistance in crop plants 193 Reference 157 KAISARAHMADBHAT,ANEESABATOOL,MADEEHAMANSOOR, MADHIYAMANZOOR,ZAFFARBASHIR,MOMINANAZIRAND 12. Silicon-mediated cold stress tolerance in SAJADMAJEEDZARGAR plants 161 14.1 Introduction 193 ROGHIEHHAJIBOLAND 14.2 Role ofSi andnano-Si inmitigating plant stresses 194 12.1 Introduction 161 14.2.1 Role ofSi inalleviating biotic stress 194 12.1.1 Chilling injury in plants 161 12.1.2 Freezing injury in plants 161 14.2.2 Role ofnano-Si inalleviating biotic stress 196 12.1.3 Cold acclimation 162 12.1.4 Cold sensing and signaling 162 14.3 Disease resistance modulation by Si 196 12.2 Mitigation oflow-temperature stress by Si 164 14.3.1 Physical mechanisms 196 12.2.1 Water relations and photosynthesis 14.3.2 Si-mediated biochemical resistance under cold stress affected by Si 165 mechanism 197 viii Contents 14.3.3 Genealteration(molecularmechanisms) 199 17.2.1 Chemical synthesis 230 14.3.4 Nanosilicon mediatedmechanisms for 17.2.2 Biological synthesis 231 disease resistance 200 17.3 Uptake and depositionofSiNPs 232 14.4 Conclusion andfuture perspective 200 17.4 SiNPsversusconventional insecticides in References 201 insect pest management 232 17.4.1 SiNPsand biocontrolagents 234 15. Silicon and nanosilicon mitigate nutrient 17.5 SiNPsin tri-trophic interactions 234 deficiency under stress for sustainable crop 17.6 SiNPsand genetic engineering 235 17.7 Toxicity ofSiNPs tocrop plants 235 improvement 207 17.8 SiNPs:Advantages anddisadvantages 236 KRISHANK.VERMA,XIU-PENGSONG,ZHONG-LIANGCHEN, 17.9 Conclusions and future line ofwork 236 DAN-DANTIAN,VISHNUD.RAJPUT,MUNNASINGH, TATIANAMINKINAANDYANG-RUILI References 237 15.1 Introduction 207 18. The combined use of silicon/nanosilicon and 15.2 Silicon and nanosilicon application insoil arbuscular mycorrhiza for effective management and plants 208 of stressed agriculture: Action mechanisms and 15.3 Silicon/nano-Siand micronutrients 208 15.3.1 Iron (Fe) 208 future prospects 241 15.3.2 Zinc (Zn) 209 HASSANETESAMI,EHSANSHOKRIANDBYOUNGRYONGJEONG 15.3.3 Manganese (Mn) 210 18.1 Introduction 241 15.3.4 Copper (Cu) 211 18.2 Silicon-mediated plant stress alleviation 242 15.4 Si/nSi-mediated alleviation ofheavy metal 18.3 Nanosilica-mediated plant stress alleviation 244 stress in plants 211 18.4 Arbuscular mycorrhizal fungi-mediated plant 15.5 Conclusion andfuture prospective 213 stress alleviation 246 Acknowledgments 213 18.5 Plant stress alleviation mediated by the combined Conflict of Interest 214 use ofsilicon and arbuscular mycorrhizal fungi 249 References 214 18.6 Conclusions and future perspectives 252 16. Silicon as a natural plant guard against Acknowledgments 253 References 253 insect pests 219 C.M.KALLESHWARASWAMY,M.KANNANANDN.B.PRAKASH 19. Biodissolution of silica by rhizospheric 16.1 Introduction 219 silicate-solubilizing bacteria 265 16.2 Effect ofSion host plant selection for HASSANETESAMIANDBYOUNGRYONGJEONG oviposition and feeding 220 16.3 Si physical defense against herbivores 220 19.1 Introduction 265 16.4 Effect ofSion palatability and digestibility 221 19.2 Plant growth-promotingrhizosphere bacteria 267 16.5 Effect ofSion biology, feeding behavior,and 19.3 Silicate-solubilizing bacteria 267 performance ofinsects 222 19.3.1 Isolating and screening of 16.6 Effect ofSion natural enemiesand tritrophic silicate-solubilizing bacteria 268 interaction 222 19.3.2 Silicate-solubilizing bacteriaaction 16.7 Commercial sources ofSiand their induced mechanisms for the silicon availability resistance against herbivory 223 for plants 269 16.8 Combined effect ofSiwith other amendments 19.4 Plant growth-promotingeffects of and plant growth regulators 224 silicate-solubilizingbacteria 271 16.9 Conclusions and future prospects 224 19.5 Conclusion andfuture perspectives 272 References 224 Acknowledgments 272 References 272 17. Recent developments in silica-nanoparticles 20. Silicon and nano-silicon in plant nutrition mediated insect pest management in agricultural and crop quality 277 crops 229 SAIMARIAZ,IQBALHUSSAIN,ABIDAPARVEEN, MALLIKARJUNAJEER MUHAMMADARSLANARSHRAF,RIZWANRASHEED, SAMANZULFIQAR,SUMAIRATHINDANDSAMIYAREHMAN 17.1 Introduction 229 17.2 Synthesis ofSiNPs 229 20.1 Introduction 277 Contents ix 20.2 Silicon as micronutrient 279 Acknowledgments 321 20.3 Directimpact of Siand Si-NPs on plants 280 References 321 20.4 Si-NPs as a delivering agent for fertilizers 283 20.5 Effectsof Siand Si-NPs on plant nutrient 23. Nanosilica-mediated plant growth and uptake 285 environmental stress tolerance in plants: 20.6 Effectsof Siand Si-NPs fertilizer on protein and mechanisms of action 325 amino acids contents 287 20.7 The roleofSi and Si-NPs in crop quality 288 JONASPEREIRADESOUZAJU´NIOR,RENATODEMELLOPRADO, CIDNAUDISILVACAMPOS,GELZACARLIANEMARQUESTEIXEIRA 20.8 Conclusions and future perspectives 288 ANDPATRI´CIAMESSIASFERREIRA References 288 23.1 Introduction 325 23.2 Nanosilica stability insolution andefficiency in 21. Effect of silicon and nanosilicon application providing Sito crops 326 on rice yield and quality 297 23.3 Effectsof nanosilica on plants grown under environmental stress 328 NOROLLAHKHEYRI 23.3.1 Morphological changes 328 21.1 Introduction 297 23.3.2 Biochemical changes 330 21.2 Impactsof Siand nano-Sion rice yield and 23.3.3 Physiologicalchanges 331 quality 298 23.4 Limitations andfuture perspective 333 21.2.1 Impacts of Siand nano-Sion increasing References 334 growth, agronomic parameters, and Further reading 337 grain yield ofrice 298 21.2.2 Impacts of Siand nano-Sion improving 24. Manipulation of silicon metabolism in nutrient uptakeofrice 302 plants for stress tolerance 339 21.2.3 Impacts of Siand nano-Sion ameliorating yield and quality ofrice ZAHOORAHMAD,ASIMABBASI,SYEDAREFATSULTANA, EJAZAHMADWARAICH,ARKADIUSZARTYSZAK,ADEELAHMAD, under biotic and abioticstresses 303 MUHAMMADAMMIRIQBALANDCELALEDDINBARUTC¸ULAR 21.3 Conclusion andfuture perspective 304 References 305 24.1 Background 339 24.2 Impact ofstresses on plant growth 339 24.3 Metabolic changes under stress 340 22. Biological impacts on silicon availability and 24.4 Agronomic approaches for abioticstress cycling in agricultural plant-soil systems 309 management 340 24.4.1 Planting time 341 DANIELPUPPE,DANUTAKACZOREKANDJO¨RGSCHALLER 24.4.2 Irrigation management 341 22.1 Introduction 309 24.5 Nutrition role instress tolerance 341 22.2 Plantsand phytogenic silica 310 24.5.1 Nitrogen 342 22.2.1 Phytogenic silicainplants—formation 24.5.2 Potassium, magnesium,and zinc 342 and function 310 24.5.3 Calcium 342 22.2.2 Phytogenic silicainsoils—distribution 24.5.4 Salinity 342 and pool quantities 312 24.5.5 Drought 343 22.3 Further organisms and corresponding BSi pools 315 24.6 Impact ofsilicon nutrition under stresses 343 22.3.1 Unicellular organisms insoils—the role 24.7 Role ofsilicon in plant metabolism 343 of protists in terrestrialSi cycling 315 24.8 Conclusions and remarks 344 22.3.2 Sponges, fungi, and bacteria—the References 344 underexplored players in terrestrial Si cycling 317 22.4 Implications for ecosystem functioning and 25. Directions for future research to use silicon services ofagricultural plant-soilsystems 317 and silicon nanoparticles to increase crops 22.4.1 Anthropogenic desilication—how tolerance to stresses and improve their quality 349 humans influence Sicycling 318 HASSANETESAMI,FATEMEHNOORIANDBYOUNGRYONGJEONG 22.4.2 Anthropogenic desilication—strategies for prevention 319 25.1 Introduction 349 22.5 Concluding remarks 320 25.2 Futuredirections ofsilicon/nanosilicon 22.6 Futuredirections 320 application in agriculture 352

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.