ebook img

Silica Aerogel Composites: Novel Fabrication Methods PDF

149 Pages·2016·6.815 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Silica Aerogel Composites: Novel Fabrication Methods

Engineering Materials Mahesh Sachithanadam Sunil Chandrakant Joshi Silica Aerogel Composites Novel Fabrication Methods Engineering Materials More information about this series at http://www.springer.com/series/4288 Mahesh Sachithanadam Sunil Chandrakant Joshi Silica Aerogel Composites Novel Fabrication Methods 123 MaheshSachithanadam Sunil Chandrakant Joshi NanyangTechnological University NanyangTechnological University Singapore Singapore Singapore Singapore ISSN 1612-1317 ISSN 1868-1212 (electronic) Engineering Materials ISBN978-981-10-0438-4 ISBN978-981-10-0440-7 (eBook) DOI 10.1007/978-981-10-0440-7 LibraryofCongressControlNumber:2015960417 ©SpringerScience+BusinessMediaSingapore2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerScience+BusinessMediaSingaporePteLtd. Preface The proposed monograph is about silica aerogel composites. Silica aerogels are known for their excellent thermal insulation properties in many industrial appli- cations. This monograph explores novel but practical approach to fabrication of silicaaerogelcompositessoastopushtheirapplicationboundariesbeyondthermal insulation. Protein-based silica aerogel composites are fabricated via inexpensive and fea- sible methodologies. These products exhibit polymeric foam-like behavior con- sisting of high compressibility, superhydrophobicity, and excellent strain recovery in addition to the low thermal conductivity and density. The fabrication method- ologiesare explained indetail and comprehended asflowcharts for reference. This monograph will give readers another perspective to composite fabrication other than the known traditional ones and explore the endless ways of altering the compositionstomodifythepropertiesofthesilicaaerogelcomposites.Applications ofthesenewandnovelcompositescouldbediverseandrangefrompharmaceutical to aerospace to oil and gas industries. This monograph comes with detailed schematic illustrations, experimental techniquesemployed,andresultsandpredictivemodelstotailoraspecificproperty for the composites. Detailed analysis of experimental results with theoretical models and numerical simulations are one of the features of this monograph. Schematic diagrams on the ductile ‘phenomenon’; not usually associated with brittle silica aerogels are explained providing details on the mechanism and ratio- naleforsuchmaterialbehavior.Themonographendsaptlywiththestudyonsound absorption quality of the novel composites. Mahesh Sachithanadam Sunil Chandrakant Joshi v Contents 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 What Is Aerogel??? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 How It All Started… . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Uniqueness of the Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Aerogels Today . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Aerogels Today. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Market Outlook. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.4 Silica Aerogels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.5 Evolution of Silica Aerogels . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.5.1 Formation of Wet Gel . . . . . . . . . . . . . . . . . . . . . . . . 8 2.5.2 Aging and Fluid Exchange of Wet Gel. . . . . . . . . . . . . 9 2.5.3 Drying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3 Fabrication Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Silica Aerogel ‘Hybrid’ Composites—Developments and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3 Silica Aerogel Binder Composites . . . . . . . . . . . . . . . . . . . . . 17 3.3.1 Associated Problems . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.4 Surface Chemistry of Silica Aerogel Granules . . . . . . . . . . . . . 18 3.5 Possible Routes of Binder Composite Fabrication. . . . . . . . . . . 20 3.5.1 Route 1—Resin Binders. . . . . . . . . . . . . . . . . . . . . . . 20 3.5.2 Route 2—De-Methylation of Hydrophobic Groups. . . . . 20 3.5.3 Route 3—Water Soluble Materials. . . . . . . . . . . . . . . . 21 3.6 Possible Binder Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.6.1 Gelatin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.6.2 Additives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 vii viii Contents 3.7 Materials’ Property and Data. . . . . . . . . . . . . . . . . . . . . . . . . 28 3.8 Fabrication Methodologies of GSA Composites. . . . . . . . . . . . 29 3.8.1 FM Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.8.2 FD Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.9 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4 Microstructural Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2 Hypothesis on Binder Concept. . . . . . . . . . . . . . . . . . . . . . . . 37 4.3 Chemical Analysis of Gelatin Films . . . . . . . . . . . . . . . . . . . . 38 4.4 Microstructural Examination of Silica Aerogels and Their Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.4.1 SEM/EDX Characterization. . . . . . . . . . . . . . . . . . . . . 43 4.4.2 XPS/ESCA Surface Characterization . . . . . . . . . . . . . . 46 4.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5 A New Phenomenon—Brittle to Ductile Transition . . . . . . . . . . . . 51 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.1.1 Parametric Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.1.2 Direct Experimental Measurements . . . . . . . . . . . . . . . 55 5.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.3 GSA and GSA–SDS Composites (FM Method). . . . . . . . . . . . 57 5.3.1 Compressive Stress–Strain Behavior (FM Composites). . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.3.2 Unusual Phenomenon—Brittle to Ductile Behavior . . . . 59 5.3.3 Influence of SDS on Composite Properties from ANOVA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.3.4 Strain Recovery Optimization via Empirical Models. . . . 64 5.4 Validation of Optimal Properties with GSA–SDS Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.4.1 Influence of Silica Aerogel Granules on Mechanical Properties of GSA–SDS Composites . . . . . . . . . . . . . . 69 5.5 FMWNT-Doped GSA and GSA–SDS Composites (FM). . . . . . 72 5.5.1 Influence of FMWNT on Composites. . . . . . . . . . . . . . 72 5.5.2 Experimental Result—General Trend of Stress–Strain Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.5.3 Empirical Analysis of Various Properties . . . . . . . . . . . 75 5.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Appendix 5A—Failed Specimen Analysis (FM Method). . . . . . . . . . . 79 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Contents ix 6 Superhydrophobic and Ultralow Thermal Insulation . . . . . . . . . . . 81 6.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.1.1 Hydrophobicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.2 Thermal Conductivity Measurements . . . . . . . . . . . . . . . . . . . 84 6.3 Operating Temperature of GSA–SDS Composites . . . . . . . . . . 87 6.4 Silica Aerogel Granule Size Distribution. . . . . . . . . . . . . . . . . 88 6.5 Thermal Conductivity of Silica Aerogel Granules. . . . . . . . . . . 89 6.6 Thermal Conductivity of GSA–SDS Composites . . . . . . . . . . . 91 6.6.1 Influence of Silica Aerogel Granules on the Thermal Conductivity of GSA–SDS (FD) Composites. . . . . . . . . 93 6.7 Thermal Conductivity of GSA–SDS/FMWNT Composites . . . . 94 6.7.1 Optimization and Validation . . . . . . . . . . . . . . . . . . . . 97 6.8 Thermal Transport Phenomenon in GSA–SDS/FMWNT Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.9 Superhydrophobicity of FMWNT doped GSA–SDS Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.10 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Appendix 6A—Granule Size Distribution. . . . . . . . . . . . . . . . . . . . . 105 Appendix 6B—Optimization of Coupled Function. . . . . . . . . . . . . . . 106 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 7 Acoustic Performance of Silica Aerogel Composites. . . . . . . . . . . . 109 7.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 7.2 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 7.2.1 Transfer Function Method (2-microphone) . . . . . . . . . . 111 7.2.2 Inferential Transmission Loss (InTLM). . . . . . . . . . . . . 113 7.2.3 Sound Meter Measurements . . . . . . . . . . . . . . . . . . . . 115 7.3 Silica Aerogel Granules Optimization. . . . . . . . . . . . . . . . . . . 115 7.3.1 Transmission Loss of Silica Aerogel Granules. . . . . . . . 118 7.4 Acoustic Performance GSA–SDS Composites and Other Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 7.4.1 GSA–SDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 7.4.2 GSA–SDS/FMWNT Composites . . . . . . . . . . . . . . . . . 125 7.4.3 ‘InTLM’ and Sound Meter . . . . . . . . . . . . . . . . . . . . . 127 7.5 Comparative Analysis with Other Traditional Materials. . . . . . . 128 7.5.1 Acoustic Activity. . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 7.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Appendix: Useful MATLAB Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Abbreviations and Symbols Abbreviations ANOVA Analysis of variance APD Ambient pressure drying CS Compressive strain CNT Carbon nanotubes EDX Energy dispersive X-ray spectrometer EVA Ethylene-vinyl acetate FD Freeze drying FESEM Field emission scanning electron microscopy FM Froth and mix FMWNTs COOH functionalized multiwall carbon nanotubes FTIR Fourier transform infrared spectroscopy GF Gelatin film GSA Gelatin–silica aerogel HMWSP Hydrophobic-modified water-soluble polymers HSZ High-strain zone LSZ Low-strain zone PG Porous gelatin SA Silica aerogel SCD Supercritical drying SDS Sodium dodecyl sulfate SR Strain recovery Srate Strain rate STP Standard temperature and pressure TMS Trimethylsilyl XPS/ESCA X-ray photoelectron spectroscopy/electron spectroscopy for chemical analysis xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.