Chen-42037 book January13,2004 14:22 SIGNALS AND SYSTEMS THIRD EDITION Chi-Tsong Chen StateUniversityofNewYorkatStonyBrook New York Oxford OXFORD UNIVERSITY PRESS 2004 Chen-42037 book January13,2004 14:22 OxfordUniversityPress Oxford NewYork Auckland Bangkok BuenosAires CapeTown Chennai DaresSalaam Delhi HongKong Istanbul Karachi Kolkata KualaLumpur Madrid Melbourne MexicoCity Mumbai Nairobi Sa˜oPaulo Shanghai Taipei Tokyo Toronto Copyright©2004byOxfordUniversityPress,Inc. PublishedbyOxfordUniversityPress,Inc. 198MadisonAvenue,NewYork,NewYork10016 www.oup.com OxfordisaregisteredtrademarkofOxfordUniversityPress Allrightsreserved.Nopartofthispublicationmaybereproduced, storedinaretrievalsystem,ortransmitted,inanyformorbyanymeans, electronic,mechanical,photocopying,recording,orotherwise, withoutthepriorpermissionofOxfordUniversityPress. LibraryofCongressCataloging-in-PublicationData Chen,Chi-Tsong. Signalsandsystems/Chi-TsongChen.—3rded. p.cm. Rev.ed.of:Systemandsignalanalysis.2nded.c1994. Includesbibliographicalreferencesandindex. ISBN0-19-515661-7(acid-freepaper) 1.Systemanalysis.2.Signaltheory(Telecommunication) I.Chen,Chi-Tsong.System andsignalanalysis.II.Title. QA402.C44232004 003—dc22 2003064970 Printingnumber:9 8 7 6 5 4 3 2 1 PrintedintheUnitedStatesofAmerica onacid-freepaper Chen-42037 book January13,2004 14:22 Tomygrandchildren Jordan,Lauren,Leo, andthoseyettocome Chen-42037 book January13,2004 14:22 PREFACE Thistextintroducesbasicconceptsinsignalsandsystemsandtheirassociatedmathematicaland computationaltools.Itspurposeistoprovideacommonbackgroundforsubsequentcoursesin electricalengineering:communications,control,electroniccircuits,filterdesign,anddigitalsig- nalprocessing.Itisalsousefulinthestudyofvibrationsandcontrolinmechanicalengineering. The reader is assumed to have knowledge of general physics (including simple circuit analy- sis),simplematrixoperations,andbasiccalculus.Someknowledgeofdifferentialequationsis helpfulbutnotessential. This text is a revision of System and Signal Analysis, 2nd edition, which was published in 1994. It differs considerably in presentation and emphasis from the second edition and from othertextsonsignalsandsystems: 1. Most texts on signals and systems prepare students for subsequent courses in commu- nications, control, and signal processing. Some lean more heavily on communications, some more on control. The course on signals and systems at Stony Brook was changed in the mid-1990s from an elective to a required course for all students in the electrical engineeringandcomputerengineeringprograms.Toreflectthischange,thistextuses(in additiontopassiveRLCnetworksandsimplemechanicalsystems)operationalamplifiers (opamps)asexamplestodiscusssystemconcepts,introducesop-ampcircuitimplementa- tion,anddiscussesfeedbackdesign.Thus,thistextalsopreparesstudentsforsubsequent electronicscourses. 2. Most texts on signals and systems give a fairly complete treatment of transform theory and then discuss engineering applications. This revision, in response to feedback from alumniworkinginindustry,introducesengineeringconceptsattheearliestpossiblestage and then introduces transform theory only as needed. Thus, the discussion of transform theoryisnotexhaustive.Weskipmanytopicsthatareonlyofacademicinterestorrarely ariseinpractice.Instead,wefocusonconcepts(suchasspeedsofresponseandoperational frequencyrangesofdevices)thatarerelevanttoengineering.Wealsoincludeengineering constraints when discussing mathematics, such as in the feedback implementation of inverse systems. Otherwise, a design may become simply a mathematical exercise with noengineeringbearing. 3. Thisrevisionstressescomputercomputation.ItintroducesthefastFouriertransform(FFT) to compute frequency spectra. We discuss its actual employment rather than its internal xiii Chen-42037 book January13,2004 14:22 xiv PREFACE programming.Becausemost,ifnotall,systemresponsesinMATLAB1arecomputedfrom state-space(ss)equations,wedevelopssequationsanddiscusstheircomputercomputation andtheirop-ampcircuitimplementations. 4. Mathematicaltrainingisimportantinengineering,webelieve,notinitsabstractconcepts andtheoreticalresultsbutinitsrigorousmethodology.Thus,wedefineeverytermcarefully and develop every topic logically. For example, we define λ as a zero of the rational function H(s)= N(s)/D(s)if H(λ)=0.Manyengineeringtextsdefineλasazeroof H(s)if N(λ)=0.Thisiscorrectonlyif D(λ)=(cid:2) 0or N(s)and D(s)havenocommon factor at λ. This leads to the concepts of coprimeness and degree. These concepts are important in engineering, because they are used in minimal realizations and in optimal andpole-placementdesignsincontrol,yettheyarenotdiscussedinmostothertexts.We also distinguish between magnitudes and amplitudes and between lumped systems and distributedsystems.Notethattheresultsinlumpedsystemsarenotnecessarilyapplicable todistributedsystems.Foreverypositiveresult,weshowanegativeresulttoillustratethe importanceoftheconditioninvolved. 5. This revision tries to present every topic in the simplest possible way. For example, the discussionleadingtotheFFTisself-containedevenwithoutdevelopingthediscreteFourier transform(DFT).ThepresentationoftheRouthtestforcheckingstabilityisbelievedto besimplerthantheconventionalcross-productmethod.Wealsosimplifytheconceptsof controllabilityandobservabilityinssequationstotheconceptsofcoprimenessanddegree intransferfunctionsandusethemtodiscusstheredundancyofsystems. The following is a brief description of each chapter. It also provides a global view and introduceskeyterminologyofthesubjectarea: 1. Signals:Weintroducecontinuous-time(CT),discrete-time(DT),anddigitalsignals.We give reasons for not studying digital signals even though they are used in all computer computationanddigitalsignalprocessing.WethenintroducesomesimpleCTsignals,dis- cusstheirvariousmanipulations,andgivereasonsforusingcomplexexponentialfunctions todefinefrequencycomponentsofCTsinusoids.UnlikeCTsignals,DTsignalscanbe plottedagainsttimeinstantsortimeindex(withoutspecifyingthesamplingperiod).The latterisusedintheirmanipulations,2andtheformerisusedindiscussingtheirfrequency content.WeshowthatthefrequencyofDTsinusoidscannotbedirectlydefined.Wethen defineitformallyfromthefrequencyofCTsinusoidsandjustifyitphysically.Thisleads totheconceptsofNyquistfrequencyrangeforDTsignalsandfrequencyaliasingdueto timesampling. 2. Systems:Wemodelasystemasablackboxwhoseeveryinput,asignal,excitesaunique output, another signal. We then introduce systems with and without memory. For sys- temswithmemory,weintroducetheconceptsofcausality,state(setofinitialconditions), lumpedness, zero-state (forced) responses, and zero-input (natural) responses. Wethen 1MATLABisaregisteredtrademarkofTheMathWorks,Inc. 2Theyinvolvemanipulationsofstreamsofnumbers.Theproceduresarethesameforanysamplingperiod T and,consequently,areindependentofT. Chen-42037 book January13,2004 14:22 PREFACE xv introducetheconceptsoflinearity(L)andtimeinvariance(TI).Wediscusstheirimplica- tionsandexplainwhythestudyofLTIsystemsisrelativelysimple.Wethenuseexamples, includingopamps,toshowthatLTIlumpedsystemsareobtainedinpracticebymodeling, approximation,andsimplificationandarevalidonlyforlimitedinputsignalranges. 3. Mathematicaldescriptionsofsystems:Weusetheconceptsoflinearityandtimeinvariance todevelopdiscreteandintegralconvolutionsforLTIsystemsanddifferenceanddifferential equationsforLTIandlumpedsystems.Thedevelopmentisgenericandisapplicableto anysystem,beitelectrical,mechanical,chemical,orbiomedical. 4. CTsignalanalysis:WeusetheFourierseriesandFouriertransformtodevelopfrequency spectra for CT signals. We discuss several sufficient conditions for signals to have fre- quencyspectraandarguethatfrequencyspectraofmostpracticalsignalsarewell-defined, bounded,andcontinuous.Weshowthatfrequencyspectraofsignalsrevealexplicitlythe distributionofenergyinfrequencies.Theconceptisessentialindiscussingmanytopics inlaterchapters. 5. The sampling theorem and spectral computation: Frequency spectra of most, if not all, practicalsignalscannotbeexpressedinclosedformandcannotbecomputedanalytically. Theonlywaytocomputethemisnumericallyfromtheirtimesamples.Thus,weestablish the relationship between the frequency spectra of a CT signal and its sampled DT se- quenceandthenpresenttheNyquistsamplingtheorem.Wethenintroducethe fastFourier transform(FFT)tocomputefrequencyspectraofDTandCTsignals. 6. CTsystemqualitativeanalysis:WeintroducetransferfunctionsthroughtheLaplacetrans- formandgivereasonsforstudyingonlyproperrationaltransferfunctions.Weintroduce polesandzerosandusethemtodevelopgeneralresponsesofsystems.Wethenintroduce theconceptsoffrequencyresponseandstability3forsystemsandestablishtheequation Y(jω)= H(jω)U(jω) (P.1) whereY(jω)istheoutput’sfrequencyspectrum,U(jω)istheinput’sfrequencyspectrum, and H(jω) is a system’s frequency response. We show that the equation has physical meaning only if the system is stable. We discuss how to compute the Fourier transform usingtheLaplacetransformandshowthatthephasoranalysisdiscussedinmostnetwork textsisapplicableonlytostablesystems.Wegivereasonsfornotdiscussinginthistext the Fourier analysis of systems even though it is discussed in most other texts. We also givereasonsfornotusingtransferfunctionsincomputercomputation. 7. CTsystemquantitativeanalysis:Forcomputercomputation,wetransformtransferfunc- tionsintostate-space(ss)equations,calledtherealizationproblem.Thename“realization” isjustifiedbythefactthateveryssequationcanbereadilysimulatedonacomputerand implementedusinganop-ampcircuit.Thusssequationsaremoreconvenientforcomputer computationandsynthesis,whereastransferfunctionsaremoreconvenientforqualitative 3EverypassiveRLCnetworkisstable,anditsstabilitystudyisunnecessary.However,acircuitthatcontains activeelementssuchasopampsoracomputerprogramcaneasilybecomeunstable.Thusitsstability studyisimperative. Chen-42037 book January13,2004 14:22 xvi PREFACE analysisanddesign.Theanalyticalstudyofssequationsisnotdiscussedbecauseitplays noroleintheapplicationsmentionedabove.Wealsocomparethetwodescriptionsand justifytheuseoftransferfunctionsindisregardingzero-inputresponsesofsystems.We thendiscussanidentificationschemetodevelopamorerealisticmodelforopampsand cautiontheuseoflinearsweepsinusoidsinidentification. 8. Applications:Thischapterintroducesthreeindependenttopics.Thefirsttopicisbasicin allengineeringdisciplines,thesecondtopicisbasicincontrolandelectronics,andthe lasttopicisbasicincommunication: (a) Model reductions: Amplifiers, seismometers, and accelerometers are all based on reducedmodels.Thus,modelreductioniswidelyusedinpractice.Weuse(P.1)to developoperationalfrequencyrangesfordevicesanddemonstratethatadevicewill yieldtheintendedresultonlyifthefrequencyspectraofinputsignalslieinsidethe operationalfrequencyrangeofthedevice.Notethatseismometersandaccelerom- eters have transfer functions of the same form, but they have different operational frequencyrangesand,consequently,differentreducedmodelsanddifferentdesign requirements.Wealsoshowthattheaccelerometersusedinautomobilestotrigger airbagsaremuchmorecomplexthanthesimplemodeldiscussedinthisoranyother similar text and cannot be easily analyzed. Thus engineering is more than math- ematics and physics; it needs innovation, the construction of prototypes and their repetitivetestingsandimprovements,andyearsofdevelopment. (b) Feedback:Wediscusstheloadingprobleminconnectingtwosystems.Wethenuse an example to demonstrate the main reason for using feedback: reduction of the effectsofparametervariations.Feedback,however,introducesthestabilityproblem. Weshowthatthestabilityofanegativeorpositivefeedbacksystemisindependent ofthestabilityofitssubsystems.Wealsousefeedbacktoimplementinversesystems anddiscussitslimitations.WethendesignWien-bridgeoscillators—directlyandby usingafeedbackmodel—andrelatetheBarkhausencriteriontothepolecondition. (c) Modulations:Weintroducetwomodulationschemesandshowtheroleof(P.1)in theirdemodulations. 9. DT system qualitative analysis: We introduce the z-transform, DT transfer functions, stability,andfrequencyresponses. 10. DT system quantitative analysis: We develop DT state-space equations directly from high-orderdifferenceequations.TheprocedurehasnoCTcounterpart.Theremainderof thischaptercloselyfollowstheCTcase. MostresultsinthistextcanbeobtainedbytypingasmallnumberofMATLABfunctions.4 Thus,itismoreimportantthanevertounderstandbasicideasandprocedures.Mostexercisesin thetextaredesignedtocheckunderstandingofthetopicinvolvedandrequireminimalnumerical computation. Thus the reader should solve the exercises before proceeding to the next topic. Wealsosuggestthatthereadersolvetheproblemsattheendofeachchapterbyhandandthen 4AllresultsinthistextareobtainedusingMATLAB5.3StudentVersion. Chen-42037 book January13,2004 14:22 PREFACE xvii verifytheresultsusingacomputer.Inaddition,werecommendthatthereaderrepeatallofthe programsinthetext.Theprogramswillyieldonlyessentialresultsbecausetheprogramsskip nonessentialfunctionssuchasthesizingoffiguresandthedrawingofcoordinates. Thelogicalsequenceofthechaptersisasfollows: Sections5.1–5.3CSe⇒hcatpiSoteenrcst7i8o.n1s–85..34–5.6 (cid:5) Chapters1–4⇒ Chapter6⇒ Section8.4 SSeeccttiioonn88..75–8.8⇒Section8.6 Chapter9⇒Chapter10 Thistextcontainsmorematerialthancanbecoveredinonesemester.Aone-semestersopho- more/juniorcourseatStonyBrookcovers(skippingtheasteriskedsections)Chapters1through4, Sections5.1through5.3,Chapters6and7,andpartsofChapter8.Clearly,otherarrangements arealsopossible.Asolutionsmanualisavailablefromthepublisher. Many people helped me in writing this text. Mr. Anthony Olivo performed many op-amp circuitexperimentsforme.IconsultedProfessorsArmenZemanianandJohnMurraywhenever I had any questions or doubts. The first draft of this revision was reviewed by a number of reviewers.Theircommentspromptedmetorearrangeandrewritemanysections.Manypeople atOxfordUniversityPress,includingPeterC.Gordon,DanielleChristensen,BarbaraBrown, TrentHaywood,MaryHopkins,andBrianKinsey,weremosthelpfulinthisundertaking.Ithank themall.Finally,Ithankmywife,Bih-Jau,forhersupport. A NOTE TO THE READER WhenIwasanundergraduatestudentaboutforty-fiveyearsago,Idideverysingleoneofthe assigned problems and was an “A” student. I believed that I understood most subjects well. This belief was reinforced by my passing a competitive entrance exam to a master’s-degree programinTaiwan.AgainIcompletedthedegreewithflyingcolorsandwasconfidentformy nextchallenge. MyconfidencewascompletelyshatteredwhenIstartedtodoresearchunderProfessorCharles A.DesoerattheUniversityofCalifornia,Berkeley.Underhiscriticalandconstantquestioning, IrealizedthatIdidnotunderstandthesubjectofstudyatall.Moreimportant,Idiscoveredthat my method of studying had been incorrect: learning only the mechanics of solving problems withoutlearningtheunderlyingconcepts.Fromthattimeon,wheneverIstudiedatopic,Iwould pondereverystatementcarefullyandthenstudyitsimplications.Aretheimplicationsstillvalid ifsomewordinthestatementismissing?Why?Aftersomethought,Iwouldre-readthetopic orarticle.Itoftentookmeseveraliterationsofponderingandre-readingtofullygraspcertain ideasandresults.Ialsolearnedtoconstructsimpleexamplestogaininsightand,bykeepingin mindthegoalsofastudy,todifferentiatebetweenwhatisessentialandwhatissecondaryor notimportant.Ittakesagreatdealoftimeandthoughttoreallyunderstandasubject. Chen-42037 book January13,2004 14:22 xviii PREFACE AsaconsequenceofmyPh.D.training,Ibecamefascinatedbymathematicsforitsabsolute correctnessandrigorousdevelopment—noambiguityandnoapproximation.Thusintheearly partofmyteachingcareer,Itendedtoteachmoremathematicsthanengineering,asisevident inthefactthatIexpandedthebookLinearSystemTheoryandDesignfrom431to662pages betweenitsfirstandsecondeditions.Withtheinformationexplosion,awideninggapbetween theory and practice, less-prepared students, and our limited time and energy, I realized in the middleofmyteachingcareerthatitisunnecessarytoburdenengineeringstudents,especially non-Ph.D.students,withtoomuchmathematics.ThusIcutthethirdeditionoftheaforemen- tionedbookinhalf,from662to334pages,bydeletingthosetopicsthatweremostlyofacademic interestandseemedtohavenopracticalapplication.Inthesamespirit,myintentionwithSignals andSystems,3rdedition,hasbeentodevelopafocusedandconcisetextonsignalsandsystems that still contains all material that an undergraduate student or a practicing engineer needs to know.IhopeIhavesucceededinthisendeavor. Studentstakingacourseonsignalsandsystemsusuallytakethreeorfourothercoursesatthe sametime.Theymayalsohavemanydistractions:part-timejobs,relationships,ortheInternet. Theysimplydonothavethetimetoreallyponderatopic.ThusIfullysympathizewiththeir lackofunderstanding.Whenstudentscometomyofficetoaskquestions,Ialwaysinsistthat theytrytosolvetheproblemsthemselvesbygoingbacktotheoriginaldefinitionsandthenby developingtheanswersstepbystep.Mostofthetime,thestudentsdiscoverthatthequestions were not difficult at all. Thus if the reader finds a topic difficult, he or she should go back to thinkaboutthebasicdefinitionsandthenfollowthestepslogically.Donotgetdiscouraged.We suggestthatthereaderreferoccasionallytotheprefacetokeepinmindthegoalsofthestudy. It is hoped that after finishing this book, the reader will be comfortable with all the italicized termsinthepreface. Chi-TsongChen October2003 Chen-42037 book January13,2004 14:22 CONTENTS Preface xiii 1 Signals 1 1.1 Introduction 1 1.2 Continuous-Time(CT),Discrete-Time(DT),andDigitalSignals 1 1.3 ElementaryCTSignals 7 1.4 ManipulationsofCTSignals 10 1.4.1 ShiftingandFlipping 10 1.4.2 MultiplicationandAddition 12 1.4.3 Modulation 13 1.4.4 WindowsandPulses 14 1.5 Impulse 16 1.5.1 Piecewise-ConstantApproximationofCTSignals 20 1.6 ElementaryDTSignalsandTheirManipulation 21 1.7 CTSinusoidalSignals 26 1.7.1 FrequencyComponents 27 1.7.2 ComplexExponentials—PositiveandNegativeFrequencies 28 1.7.3 MagnitudesandPhases;EvenandOdd 29 1.8 DTSinusoidalSequencesandNyquistFrequencyRange 34 1.9 SamplingandFrequencyAliasing 40 Problems 44 2 Systems 49 2.1 Introduction 49 2.2 CTSystemswithandwithoutMemory 50 vii