Signal Processing for Airborne Bistatic Radar Kian Pin Ong N I V U E R E S I H T T Y H O G F R E U DI N B AthesissubmittedforthedegreeofDoctorofPhilosophy. TheUniversityofEdinburgh. -June2003- Abstract The major problem encountered by an airborne bistatic radar is the suppression of bistatic clutter. Unlikeclutterechoesforasidelookingairbornemonostaticradar,bistaticclutterechoes arerangedependent. Usingtrainingdatafromnearbyrangegateswillresultinwideningofthe clutternotchofSTAP(space-timeadaptiveprocessing)processor.Thiswillcausetargetreturns from slow relative velocity aircraft to be suppressed or even go undetected. Some means of Dopplercompensationformitigatingtheclutterrangedependencymustbecarriedout. This thesis investigates the nature of the clutter echoes with differentradar configurations. A novelDopplercompensationmethodusingDopplerinterpolationintheangle-Dopplerdomain and power correction for a JDL (joint domain localized) processor is proposed. Performing DopplercompensationintheDopplerdomain,allowsseveraldifferentDopplercompensations to be carried out at the same time, using separate Doppler bins compensation. When using a JDL processor, a 2-D Fourier transformation is required to transform space-time domain training data into angular-Doppler domain. Performing Doppler compensation in the space- time domainrequires Fourier transformationsof the Doppler compensatedtraining data to be carried out for every training range gate. The whole process is then repeated for every range gate under test. On the other hand, Fourier transformations of the training data are required onlyonceforallrangegatesundertest,whenusingDopplerinterpolation. Beforecarryingout anyDopplercompensation,thepeakclutterDopplerfrequencydifferencebetweenthetraining rangegateandtherangegateundertest,needstobedetermined.Anovelwayofcalculatingthe Dopplerfrequencydifferencethatisrobusttoerrorinpre-knownparametersisalsoproposed. Reducing the computational cost of the STAP processor has always been the desire of any reduced dimension processors such as the JDL processor. Two methods of further reducing the computationalcost of the JDL processor are proposed. A tuned DFT algorithmallow the size of the clutter sample covariance matrix of the JDL processor to be reduced by a factor proportionaltothenumberof arrayelements,withoutlossesinprocessorperformance. Using alternate Doppler bins selection allows computational cost reduction, but with performance lossoutsidetheclutternotchregion. Differentsystemsparametersarealsousedtoevaluatethe performance of the Doppler interpolation process and the JDL processor. Both clutter range and Dopplerambiguity exist in radar systemsoperating in mediumpulse repetitivefrequency mode. When suppressingrange ambiguous clutterechoes, performingDoppler compensation fortheclutterechoesarrivingfromthenearestambiguousrangealone,appeartobesufficient. Clutter sample covariance matrix is estimated using training data from the range or time or both dimension. Investigationsonthenumberof range andtimetrainingdata requiredfor the estimation process in both space-time and angular-Doppler domain are carried out. Due to error in the Doppler compensationprocess, a method of using the minimumamount of range training data is proposed. The number of training data required for different clutter sample covariancematrixsizesisalsoevaluated. ForDopplerinterpolationandpowercorrectionJDL processor,thenumberofDopplerbinsusedcanbeincreased,toreducetheamountoftraining datarequired,whilemaintainingcertaindesirableprocessorperformancecharacteristics. Declaration of originality Iherebydeclarethattheresearchrecordedinthisthesisandthethesisitselfwascomposedand originatedentirelybymyselfintheSchoolofEngineeringandElectronicsattheUniversityof Edinburgh,exceptFigure1.5andFigure4.17. KianPinOng June2003 iii Acknowledgements Iwouldliketoextendmysincerethankstothefollowingpeoplefortheirinvaluableassistance duringthecourseofthisPhD: * ProfessorBernardMulgrew,mysupervisor,forhiscontinuoussupport,guidanceandin- valuableadvice. Alsoforreadingandcheckingthisthesisduringtimewhenhisattention isgreatlydemandedbysomanyotherpeople. * My2(cid:0)(cid:2)(cid:1) supervisorProfessorSteveMcLaughlinforhissupportandguidance,aswellas forhisconstructivecommentsonthewritingforthisthesis. * BAESystemsEdinburghforprovidingfundingandsupportforthiswork. * MyparentsfortheirfinancialandemotionalsupportduringmyPhD,withoutthem,com- pletionofthisworkwouldnotbepossible. * My brother - Ben Ong, sisters: Hui Pin Ong and Mariette Ong, and brothers-in-law: SamFooandJefferyTan foralwaysbetheretogivemesupportandadvice. Constantly receiving photographs and stories about my nieces: Glenda Foo, Callista Foo and Ava Tan,neverfailstowarmmyheart. * MycolleaguesandacademicstaffsintheformerSignalsandSystemGroup,nowknown asInstituteofDigitalCommunicationsfortheirassistanceinonewayoranotherduring thelastthreeyears. SpecialthankstoDr. MartinLuna-Rivera,MichaelBennettandMoti Tabuloforprovidingadvice,readingandcorrectingthisthesis. * The staff of the Institute of Digital Communications, particularly Dr. John Thompson, Dr. DaveLaurensonandDr. JimmyDripps,whohaveatsomestageoranotherprovided valuableassistance. * David Stewart, MichaelGordon, Chris Rudd and Bryan Tierney for their instantaneous computersupportandtolerancetowardsmyhighcomputingusage. * MyfriendsfromCanadianRendez-Vous2002,forkeepsendingtheirencouragementand thoughtsfromaroundtheworld. iv Acknowledgements * JamieChan,forherloveandsupportduringthefirst2(cid:0) yearsofthisdegree. (cid:1) * Victoria Di(cid:3)(cid:2)guez and others who have one time or another lived in Kitchener House, makingitsuchaninterestingplacetolivein. * Special thanks to J(cid:5)(cid:4) rgen Kruse, EADS, Bremen, Germany for the kind permission to reproduceFigure1.5. v Contents Declarationoforiginality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi Listoffigures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix Listoftables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii Acronymsandabbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv 1 Introduction 1 1.1 RADAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Motivationofthiswork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 AntennaRCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.2 LowProbabilityofIntercept . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.3 Radarabsorbingmaterial(RAM) . . . . . . . . . . . . . . . . . . . . 6 1.2.4 Surfacefacetshaping . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Aimsofthiswork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5 ThesisorganisationandOriginalcontributionstoknowledge . . . . . . . . . . 10 2 Clutternature ofairbornebistaticradar 13 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Anairbornemonostaticradar . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.1 Sidelookingarrayconfiguration . . . . . . . . . . . . . . . . . . . . . 16 2.2.2 Forwardlookingarrayconfiguration . . . . . . . . . . . . . . . . . . . 20 2.3 Anairbornebistaticradar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.1 TransmitterandReceiverAligned . . . . . . . . . . . . . . . . . . . . 23 2.3.2 TransmitterandReceiveronParallelFlightPaths . . . . . . . . . . . . 25 2.3.3 TransmitterandReceiveronOrthogonalFlightPaths . . . . . . . . . . 26 2.4 SpaceTimeAdaptiveProcessing(STAP). . . . . . . . . . . . . . . . . . . . . 32 2.4.1 EffectsonSTAPprocessorcausedbyclutterDopplerrangedependency 38 2.5 PerformanceMetric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.5.1 ImprovementFactor . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.5.2 Improvementfactorloss(IFloss) . . . . . . . . . . . . . . . . . . . . 40 2.5.3 MeanIFloss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.5.4 Signal-to-interference+noisepowerratio . . . . . . . . . . . . . . . . 41 2.6 MitigatingclutterDopplerrangedependency . . . . . . . . . . . . . . . . . . 41 2.6.1 IncreasingtheDegrees-of-Freedom . . . . . . . . . . . . . . . . . . . 43 2.6.2 Variablerangedimensiontrainingdatasize . . . . . . . . . . . . . . . 43 2.6.3 MultiplePRF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.6.4 Reduceddimensionprocessing . . . . . . . . . . . . . . . . . . . . . . 44 2.6.5 Derivative-basedupdating . . . . . . . . . . . . . . . . . . . . . . . . 46 2.6.6 Dopplerwarping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 vi Contents 2.6.7 Two-dimensionalangle-Dopplercompensation(ADC) . . . . . . . . . 49 2.6.8 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.7 DiscussiononmitigatingclutterDopplerrangedependencyinairbornebistatic radar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3 DopplerandPowercompensationforJDLprocessor 55 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.2 Jointdomainlocalizedprocessor . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.3 ClutterDopplerfrequencydifferencebetweenrangegates. . . . . . . . . . . . 58 3.4 InterpolationofDopplerdomaindataandDopplerbinsshifting . . . . . . . . . 62 3.5 Powercorrection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.6 SimulationResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.6.1 Powercorrection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.7 Comparisonwithothercompensationmethods. . . . . . . . . . . . . . . . . . 68 3.7.1 Dopplerwarping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.7.2 Two-dimensionalangle-Dopplercompensation(ADC) . . . . . . . . . 72 3.7.3 Processorperformanceatdifferentlookangles . . . . . . . . . . . . . 74 3.8 SeparateDopplerbinscompensation . . . . . . . . . . . . . . . . . . . . . . . 75 3.9 TunedDFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.9.1 SimulationResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4 Systemperformanceanalysis 87 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.2 Dopplerbins, (cid:0)(cid:2)(cid:1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.3 AlternateDopplerbinsselection . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.4 Spatialbins, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 (cid:3)(cid:5)(cid:4) 4.5 SizeofDFTprocessor, (cid:1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 (cid:6) 4.6 Errorsinestimatedparameters . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.7 Diagonalloading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.8 RadarAmbiguities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.8.1 Angleambiguity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.8.2 Rangeambiguity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.8.3 Dopplerambiguity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.8.4 AmbiguityinMPRFairbornebistaticradar . . . . . . . . . . . . . . . 100 4.9 Samplesupportforcluttersamplecovariancematrixestimation . . . . . . . . . 102 4.9.1 DwellTime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.9.2 SamplesrequirementforSTAPprocessor . . . . . . . . . . . . . . . . 105 4.9.3 SamplessupportforDopplerwarpingJDLprocessor(usingi.i.d.samples)110 4.9.4 Samples support for Angle-Doppler compensation (ADC) - JDL pro- cessor(usingi.i.d. samples) . . . . . . . . . . . . . . . . . . . . . . . 112 4.9.5 SamplessupportforDopplerinterpolationprocessor(usingi.i.d.samples)113 4.9.6 SamplessupportforDopplerinterpolationprocessor(usingnon-independent data). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 4.9.7 Discussiononsamplessupport . . . . . . . . . . . . . . . . . . . . . . 115 4.10 Computationalcost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 vii Contents 4.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 5 Conclusion 120 5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 5.2 Suggestiononfutureresearchoptions . . . . . . . . . . . . . . . . . . . . . . 123 A Minimumvarianceestimator(MVE) 126 B RelativeDopplerfrequency, ,intermofthelookdirectionofthearray, 129 (cid:0)(cid:2)(cid:1) (cid:3)(cid:5)(cid:4)(cid:7)(cid:6)(cid:9)(cid:8) C ClutterModel 131 D Dopplerfrequencydifferencebetweenrangegates 133 E Errors in pre-known parameters for calculation of Doppler frequency difference betweenrangegates 134 F Derivationof 138 (cid:10)(cid:12)(cid:11)(cid:14)(cid:13)(cid:16)(cid:15)(cid:18)(cid:17) G Publications 140 References 150 viii List of figures 1.1 DifferenttypesofRadarSystems. . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Anairbornebistaticradarsystem. . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Fourbasiccomponentsofbackscatterfromaplanararrayantenna. . . . . . . . 5 1.4 Antennastructuralreflection. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.5 K-planeRCSofF117-liketarget(courtesyofEADS,Bremen). . . . . . . . . . 8 2.1 Geometryofanairbornemonostaticradar. . . . . . . . . . . . . . . . . . . . . 14 2.2 Isodopsandisorangesforanairbornemonostaticradar. . . . . . . . . . . . . . 15 2.3 Geometryofalinearairbornearray. . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 Clutterspectrumofasidelookingairbornemonostaticradar. . . . . . . . . . . 17 2.5 Rangedependencyofasidelookingairbornemonostaticradar. . . . . . . . . . 18 2.6 Clutterspectrumofaforwardlookingairbornemonostaticradar. . . . . . . . . 20 2.7 Rangedependencyofaforwardlookingairbornemonostaticradar. . . . . . . . 21 2.8 Geometryofanairbornebistaticradar. . . . . . . . . . . . . . . . . . . . . . . 22 2.9 Clutterisodopsandisorangespatternwithtransmitterandreceiveraligned. . . 24 2.10 Range dependency for a transmitter ahead of receiver with a forwardlooking array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.11 Rangedependencyfortransmitterbehindthereceiverwithforwardlookingarray. 26 2.12 Isodopsandisorangesfor transmitterandreceiveronparallelflightpathswith forwardlookingarray. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.13 Rangedependencyfortransmitterandreceiveronparallelflightpathswithfor- wardlookingarray. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.14 Isodops and isoranges for transmitter and receiver on orthogonal flight paths withforwardlookingarray. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.15 Rangedependencyfortransmitterandreceiveronorthogonalflightpathswith forwardlookingarray. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.16 Clutterpower spectrum for transmitterandreceiver onorthogonalflight paths withforwardlookingarrayfromrangegate27. . . . . . . . . . . . . . . . . . 29 2.17 Clutterpower spectrum for transmitterandreceiver onorthogonalflight paths withforwardlookingarrayfromrangegate25. . . . . . . . . . . . . . . . . . 30 2.18 Clutterpower spectrum for transmitterandreceiver onorthogonalflight paths withforwardlookingarrayfromrangegate29. . . . . . . . . . . . . . . . . . 31 2.19 MVEpowerspectrumvarieswithrangegate. . . . . . . . . . . . . . . . . . . 31 2.20 Illustrationofspatialandspectralfilteringforasidelookingairbornemonostatic radar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.21 Illustrationofsnapshotscollectedintherangedomain. . . . . . . . . . . . . . 36 2.22 Illustrationofsnapshotscollectedinthetimedomain. . . . . . . . . . . . . . . 36 2.23 STAP processor performance without compensation, using training data from neighbourrange gates 25& 29(a) Improvementfactorplot, and(b) Improve- mentfactorlossplot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.1 Anexampleoflocalisedprocessingregions. . . . . . . . . . . . . . . . . . . . 56 ix Listoffigures 3.2 Formingofalocalisedprocessingregion. . . . . . . . . . . . . . . . . . . . . 58 3.3 ErrorinestimationofDopplerfrequencydifferencebetweenrangegates and (cid:0) ,duetoerrorintransmittervelocity. . . . . . . . . . . . . . . . . . . . . . . . 61 (cid:1) 3.4 Illustrationoffrequencyshiftingatoneoftheangularbins. . . . . . . . . . . . 64 3.5 BlockdiagramofDopplerandpowercorrectionforJDLprocessor.. . . . . . . 67 3.6 JDLprocessorperformance(a)withimprovementfactor(b)Improvementfactor loss. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.7 Doppler interpolation processor performance with and without power correc- tion, using (a) training data from range gate 29, (b) training data from range gate25,and(c)trainingdatafromrangegates25&29. . . . . . . . . . . . . . 69 3.8 Dopplerinterpolationand JDLDopplerwarpingprocessors’performance, us- ing trainingdatafrom(a)rangegate29, (b)rangegate25, and(c)rangegates 25&29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.9 Full dimension Doppler interpolation processor performance and STAP pro- cessor performance with Doppler warping compensation, using training data from(a)rangegate29,(b)rangegate25,and(c)rangegates25&29. . . . . . 72 3.10 Comparison between JDL processor performance with Doppler interpolation, DopplerwarpingandADC,usingtrainingdatafrom(a)rangegate29,(b)range gate25,and(c)rangegates25&29. . . . . . . . . . . . . . . . . . . . . . . . 73 3.11 JDLprocessorperformancewith =-33.48 ,using(a)Narrowbeam-4 (b) (cid:2) (cid:1) (cid:3) (cid:3) Widebeam-16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 (cid:3) 3.12 IllustrationoftheseparateDopplerfrequencyshifting. . . . . . . . . . . . . . 78 3.13 JDLprocessorwithbeamwidth=16 anddifferentamountof . . . . . . 78 (cid:3) (cid:4) (cid:0)(cid:6)(cid:5)(cid:8)(cid:7) 3.14 JDLprocessorperformancewithseparatebinscompensation,using(a)Narrow beam-4 (b)Widebeam-16 . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 (cid:3) (cid:3) 3.15 OutputofDFTwithvariesangleofarrival. . . . . . . . . . . . . . . . . . . . 81 3.16 Performanceofangularbinreductionprocessorwith .. . . . . . . . . 84 (cid:2) (cid:1)(cid:10)(cid:9)(cid:12)(cid:11)(cid:13)(cid:11) (cid:3) 3.17 Performanceofangularbinreductionprocessorwith .. . . . . . . . . 85 (cid:2) (cid:1)(cid:10)(cid:9)(cid:15)(cid:14)(cid:16)(cid:11) (cid:3) 4.1 Dopplerinterpolationprocessorperformancevarieswith (cid:0) (cid:1) . . . . . . . . . . . 88 4.2 Dopplerinterpolationprocessorperformance(IFlossmean)varieswith (cid:0) (cid:1) . . . 89 4.3 DopplerinterpolationprocessorperformanceusingalternateDopplerbins. . . . 90 4.4 Dopplerinterpolationprocessorperformance(IFlossmean)varieswith ,at (cid:3) (cid:4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 (cid:2) (cid:1) (cid:9)(cid:17)(cid:14)(cid:16)(cid:11) (cid:3)(cid:19)(cid:18) 4.5 DopplercompensationwithdifferentDopplerdomainFFTsizes. . . . . . . . . 93 4.6 JDLprocessorperformance(IFlossmean)withvariousdifferenterrors. . . . . 94 4.7 IdealJDLprocessorperformancewithvariousLCNR(a)fullscale(b)zoomin. 95 4.8 Ideal JDL processor performance with various LCNR (a) uncompensated (b) compensated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.9 UnambiguousrangeversePRF. . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.10 Isodopspatternofairbornebistaticradar(a)forselectedrangegates(b)zoomed version. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.11 JDLprocessor performanceusingDopplerinterpolation,in situation with and without range ambiguity, (a) Ideal processor, (b) Doppler Interpolation using trainingdatafromrangegates25&29,(c)Dopplerwarpingusingtrainingdata fromrangegates25&29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.12 Datasamplesfromoneofthetrainingrangegates.. . . . . . . . . . . . . . . . 107 x
Description: