SPRINGER BRIEFS IN ELECTRICAL AND COMPUTER ENGINEERING SIGNAL PROCESSING Y.-W. Peter Hong Pang-Chang Lan C.-C. Jay Kuo Signal Processing Approaches to Secure Physical Layer Communications in Multi-Antenna Wireless Systems SpringerBriefs in Electrical and Computer Engineering Signal Processing Series Editors Woon-Seng Gan, Singapore C.-C. Jay Kuo, Los Angeles, USA For furthervolumes: http://www.springer.com/series/11560 Y.-W. Peter Hong Pang-Chang Lan • C.-C. Jay Kuo Signal Processing Approaches to Secure Physical Layer Communications in Multi-Antenna Wireless Systems 123 Y.-W. Peter Hong C.-C.Jay Kuo Department of ElectricalEngineering Department of ElectricalEngineering National TsingHuaUniversity Universityof SouthernCalifornia Hsinchu Los Angeles, CA Taiwan,R.O.C. USA Pang-Chang Lan Department of ElectricalEngineering Universityof SouthernCalifornia Los Angeles, CA USA ISSN 2196-4076 ISSN 2196-4084 (electronic) ISBN 978-981-4560-13-9 ISBN 978-981-4560-14-6 (eBook) DOI 10.1007/978-981-4560-14-6 SpringerSingaporeHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2013944087 (cid:2)TheAuthor(s)2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the CopyrightClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) To my beloved family —Peter Dedicated to my parents —Pang-Chang In memory of my beloved father —Jay Preface Physical layer secrecy has received much attention in recent years, especially in wireless communications, due to the rapidly increasing data traffic and high demand for ubiquitous connectivity. Different from conventional cryptographic approachesusedtoaddresswirelesssecurityissues,physicallayersecrecyutilizes channelcodingandsignalprocessingtechniquestocommunicatesecretmessages between the source and the destination while maintaining confidentiality against the eavesdropper. These studies originate from the information theory literature, where the focus is often to determine the existence of channel codes that can achievethistaskortoderivethefundamentallimitonthemaximumcoderatethat can beapplied reliably under thesecrecy constraint(i.e.,the secrecy capacity).In particular, information-theoretic results have shown that the secrecy capacity increases with the difference between the reception quality at the destination and that at the eavesdropper. Motivated by this result, signal processing approaches have been developed in both the data transmission and channel estimation phases to maximize the signal quality difference between the destination and the eaves- dropper.Ingeneral,bothcodingandsignalprocessingaspectsoftheproblemmust be taken into consideration in order to achieve the secrecy capacity. However, when the optimal joint design is unknown, signal processing techniques can also beusedtohelpincreasetheachievablesecrecyrateorreducethecomplexityofthe channel coding operations. These approaches are especially interesting in multi- antennawirelesssystems,wherethespatialdegreesoffreedomcanbeexploitedto further enhance secrecy. This book provides an overview of signal processing approaches that can be used to enhance physical layer secrecy in multi-antenna wireless systems. Specifically, in the data transmission phase, we review secrecy beamforming and precoding techniques that can be used to not only strengthen the signal at the destination, but also reduce the information leakage to the eavesdropper. We also consider the use of artificial noise along with the transmission of the information signal to further degrade the reception quality at the eavesdropper. Moreover, we further extend the use of these techniques to distributed antenna or relay systems wherethemultipleantennasmaynotbelocatedatasingleterminal.Theadditional spatialdegreesoffreedomprovidemoredesignflexibilityandperformancegains, but may also increase the security threats due to additional transmission required for coordination among the distributed terminals and also due to the vii viii Preface trustworthinessofsystemmembers.Intermsofchannelestimation,wereviewthe so-called discriminatory channel estimation scheme which utilizes the design of artificial noise aided training signals to increase the difference between the effectivesignalqualityatthedestinationandthatattheeavesdropper.Inthiscase, thedesiredsignalqualitydiscrepancyisenhancedevenbeforethetransmissionof the confidential message and need only be done once every coherence interval (instead of every symbol period). This book is divided into 6 chapters. Chapter 1 introduces the importance and challenge of achieving secrecy in wireless systems, and provides a brief mention of the background on different notions of physical lay secrecy. Chapter 2 briefly summarizes the basic results in information-theoretic secrecy. In Chapter 3, secrecy beamforming and precoding designs along with the use of artificial noise aredescribedaswaystoeffectivelyenhancethedesiredsignalqualitydiscrepancy in the data transmission phase. In Chapter 4, these techniques are extended to distributed antenna or relay systems. In Chapter 5, discriminatory channel esti- mationschemesaredescribedasmethodstoachievesignalqualitydiscrepancyin the channel estimation phase. Finally, in Chapter 6, several applications of physical layer secrecy and their respective research directions are further introduced. The purpose of this book is to highlight the role of signal processing in achieving secrecy in the physical layer, and to provide researchers and graduate students, who are interested in pursuing research in this area, an overview of the standardtechniquesknowntodayandabasicunderstandingofthechallengesthat may arise in this area. We would like to remark that, due to the vast literature in thisarea,itisnotpossibletogiveacomprehensivetreatmentofthematerialinthe literature. However, we hope that the materials included in this book provide a logical treatment of the basic results and allow researchers and graduate students to gain sufficient knowledge to pursue research in this area. Hsinchu, Taiwan, May 2013 Y.-W. Peter Hong Los Angeles, USA, May 2013 Pang-Chang Lan C.-C. Jay Kuo Acknowledgments This work was supported in part by the National Science Council, Taiwan, under grant NSC 100-2628-E-007-025-MY3. The authors would also like to thank Ta-Yuan Liu, Yu-Ching Chen, Li-Ren Chen, and Lin-Ming Huang for extensive proof-reading of the manuscript. ix Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Security in Wireless Communication Systems. . . . . . . . . . . . . . 1 1.2 Background on Physical Layer Secrecy . . . . . . . . . . . . . . . . . . 3 1.2.1 Keyless Physical Layer Secrecy Transmissions. . . . . . . . 4 1.2.2 Channel-Based Secret Key Generation. . . . . . . . . . . . . . 5 1.2.3 Signal Designs with Low Probability of Interception and Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Book Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Background on Information-Theoretic Physical Layer Secrecy . . . 11 2.1 The Basic Wiretap Channel . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Gaussian and MIMO Gaussian Wiretap Channels . . . . . . . . . . . 16 2.3 Compound Wiretap Channel. . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4 Ergodic Secrecy Capacity. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.5 Secrecy Outage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.6 Summary and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3 Secrecy Precoding and Beamforming in Multi-Antenna Wireless Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.1 Secrecy Beamforming and Precoding Schemes. . . . . . . . . . . . . 30 3.1.1 Secrecy Beamforming for the Basic Multi-Antenna Wiretap Channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1.2 Secrecy Precoding for the Basic Multi-Antenna Wiretap Channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2 Secrecy Beamforming for Systems with Multiple Destinations and Eavesdroppers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2.1 Multicast Secrecy Beamforming. . . . . . . . . . . . . . . . . . 38 3.2.2 Broadcast Secrecy Beamforming. . . . . . . . . . . . . . . . . . 40 3.3 Secrecy Beamforming and Precoding with Artificial Noise. . . . . 43 3.3.1 Secrecy Beamforming with Artificial Noise. . . . . . . . . . 44 3.3.2 Power Allocation Between Information Signal and Artificial Noise. . . . . . . . . . . . . . . . . . . . . . . . . . . 48 xi xii Contents 3.3.3 Secrecy Precoding with Artificial Noise. . . . . . . . . . . . . 52 3.4 Secrecy Beamforming with Artificial Noise for Systems with Multiple Destinations and Eavesdroppers . . . . . . . . . . . . . 56 3.5 Summary and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4 Distributed Secrecy Beamforming and Precoding in Multi-Antenna Wireless Relay Systems. . . . . . . . . . . . . . . . . . . 61 4.1 Distributed Secrecy Beamforming and Precoding with Trusted Relays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.1.1 Distributed Secrecy Beamforming and Precoding with Trusted Decode-and-Forward Relays . . . . . . . . . . . 63 4.1.2 Distributed Secrecy Beamforming and Precoding with Trusted Amplify-and-Forward Relays. . . . . . . . . . . 71 4.2 Distributed Secrecy Beamforming and Precoding with Untrusted Relays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.3 Distributed Secrecy Beamforming and Precoding with Artificial Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.3.1 Relays as Pure Cooperative Jammers. . . . . . . . . . . . . . . 83 4.3.2 Relays with Both Information and Artificial Noise Transmissions . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.4 Summary and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5 Secrecy-Enhancing Channel Estimation in Multi-Antenna Wireless Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.1 Feedback-and-Retraining Discriminatory Channel Estimation Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.2 Two-Way Training Discriminatory Channel Estimation Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.2.1 Two-Way DCE Scheme for Reciprocal Channels . . . . . . 108 5.2.2 Two-Way DCE Scheme for Nonreciprocal Channels. . . . 114 5.3 Summary and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 6 Enhancing Physical-Layer Secrecy in Modern Wireless Communication Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 6.1 Secrecy in Cognitive Radio Networks . . . . . . . . . . . . . . . . . . . 125 6.2 Secrecy in OFDM and OFDMA Systems. . . . . . . . . . . . . . . . . 128 6.3 Secrecy in Ad Hoc and Multihop Networks . . . . . . . . . . . . . . . 129 6.4 Secrecy in Cellular Networks . . . . . . . . . . . . . . . . . . . . . . . . . 131 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Description: