ebook img

Short-term microbial effects of a large-scale mine-tailing storage facility collapse on the local PDF

25 Pages·2017·9.14 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Short-term microbial effects of a large-scale mine-tailing storage facility collapse on the local

RESEARCHARTICLE Short-term microbial effects of a large-scale mine-tailing storage facility collapse on the local natural environment HeathW.Garris1¤*,SusanA.Baldwin2,JonTaylor2,DavidB.Gurr2,DanielR.Denesiuk1, JonathanD.VanHamme1,LauchlanH.Fraser1 1 DepartmentsofNaturalResourceSciences&BiologicalSciences,ThompsonRiversUniversity, Kamloops,BritishColumbia,Canada,2 DepartmentofChemicalandBiologicalEngineering,Universityof BritishColumbia,Vancouver,BritishColumbia,Canada a1111111111 a1111111111 ¤ Currentaddress:DepartmentofBiology,CovenantCollege,LookoutMountain,Georgia,UnitedStatesof a1111111111 America a1111111111 *[email protected] a1111111111 Abstract WeinvestigatedtheimpactsoftheMountPolleytailingsimpoundmentfailureonchemical, OPENACCESS physical,andmicrobialpropertiesofsubstrateswithintheaffectedwatershed,comprisedof Citation:GarrisHW,BaldwinSA,TaylorJ,Gurr 70hectaresofriparianwetlandsand40kmofstreamandlakeshore.Weestablishedabio- DB,DenesiukDR,VanHammeJD,etal.(2018) monitoringnetworkinOctoberof2014,twomonthsfollowingthedisturbance,andevaluated Short-termmicrobialeffectsofalarge-scalemine- tailingstoragefacilitycollapseonthelocalnatural riparianandwetlandsubstratesformicrobialcommunitycompositionandfunctionvia16S environment.PLoSONE13(4):e0196032.https:// andfullmetagenomesequencing.Atotalof234sampleswerecollectedfromsubstratesat doi.org/10.1371/journal.pone.0196032 3depthsand1,650,752sequenceswererecordedinageodatabaseframework.These Editor:AndreaFranzetti,UniversitadegliStudidi datarevealedawealthofinformationregardingwatershed-scaledistributionofmicrobial Milano-Bicocca,ITALY communitymembers,aswellascommunitycomposition,structure,andresponsetodistur- Received:October10,2017 bance.Substratesassociatedwiththeimpactzoneweredistinctchemicallyasindicatedby Accepted:April5,2018 elevatedpH,nitrate,andsulphate.Themicrobialcommunityexhibitedelevatedmetabolic capacityforselenateandsulfatereductionandanabundanceofchemolithoautotrophsin Published:April25,2018 theThiobacillusthiophilus/T.denitrificans/T.thioparuscladethatmaycontributetonitrate Copyright:©2018Garrisetal.Thisisanopen attenuationwithintheaffectedwatershed.Themostimpactedarea(a6kmstreamconnect- accessarticledistributedunderthetermsofthe CreativeCommonsAttributionLicense,which ingtwolakes)exhibited30%lowermicrobialdiversityrelativetotheremainingsites.The permitsunrestricteduse,distribution,and tailingsimpoundmentfailureatMountPolleyMinehasprovidedauniqueopportunityto reproductioninanymedium,providedtheoriginal evaluatefunctionalandcompositionaldiversitysoonafteramajorcatastrophicdisturbance authorandsourcearecredited. toassessmetabolicpotentialforecosystemrecovery. DataAvailabilityStatement:Allsequencedataare availableathttps://www.ncbi.nlm.nih.gov/,project numberPRJNA433688.Metadataareavailableat http://www.datadryad.org/,accessionDOI:https:// doi.org/10.5061/dryad.d52df21. Introduction Funding:ThisprojectwassupportedbyaMitacs Accelerate/ElevatePost-doctoralFellowshipfor Miningproduceslargequantitiesofwastematerialannually,andcontainmentfailurespresent HeathGarris,whereprofessionaldevelopment challengestowaterqualityandwildlife.Contemporarymininginvolvesextensiverestructur- seminars/trainingwereprovidedwithlittle/noinput ingoflandscapeswherevegetationandnaturally-accretedsoilsareremoved,andcontiguous intothecontentoftheresearchproposal/ execution.Thisprogramwasco-fundedbya bedrockisexposedandpartiallyconvertedtocoarseandfinewastes.Dependingontheparent PLOSONE|https://doi.org/10.1371/journal.pone.0196032 April25,2018 1/25 Watershed-scalemicrobialmonitoring partnerindustry(MountPolleyMiningCorp)that materialcomposition,thesewastesarepronetoacceleratedchemicalweathering,constituting contributedsubstantiallytothedevelopmentofthe afundamentallyalteredbiogeochemicalsettingbycomparisonwiththepre-existingecosystem project(intheformofsiteaccess,feasibility [1,2].Finewastes(oftentermed‘tailings’)typicallypresentthegreatestchallengesforcontain- assessment,materialsupport,andmanuscript mentastheyhavethegreatestpotentialforleaching(duetohighsurfaceareaforchemical review).AdditionalfundingfromNSERCwas weathering)andmobilityasdustorinfluidsuspensions.Forthisreason,currentbestpractices awardedtosupportaninitial(pre-breach)water qualityproject.NSERCmonitoredchangesinthe ofminingoperationsworldwidemanagetailingstobephysicallyandmetabolicallyisolated proposedprojectscopebyrequestingreports,but fromthesurroundingwatershedthroughcontainmentinwasteimpoundments,suchastail- didnotcontributetothecontentofthestudy ingsstoragefacilities[3].Overthedurationofamine’sactivelifetime,thequantityofmine directly.Finally,GenomeBCandGenomeCanada wastesaccumulatedonsitecanbecomeimmense.Forexample,beforetheimpoundmentfail- supportedtheprojectthroughfundingand ureattheMountPolleyMine(“theMine”),BritishColumbia,Canada,in2014,theMine’stail- consultationonprojectscope/applicability/ suitabilitywithrespecttotheuseofgenomics ingsstoragefacilityhadthecapacitytocontain74millioncubicmetersofhydratedtailings technologiesandaccomplishmentofprojectgoals, withinanimpoundmentoccupying2km2[4]. whichservedtoimproveprojectprecisions/ Despitebestpracticesforconstruction,inspectionandmaintenanceoftailingstoragefacili- outcomes.Projectfundingwebreferences:Mitacs ties,containmentfailureshaveoccurred[5].Underthesecircumstances,uncontrolleddeposi- (https://www.mitacs.ca/en/impact/postdoctoral- tionintopreviouslyprotectedsurroundingsdisturbsphysicalandchemicalproperties,and fellows-share-program-benefits-mitacs-elevate- theirassociatedabove-andbelow-groundecosystemswithinthesurroundinglandscape. retreat);GenomeBC(https://www.genomecanada. ca/en/metagenomics-assess-impacts-mount- Whilesurfaceerosionanddepositionareclearlyobserved,sub-surfacedisruptionsaremore polley-mine-taillings-dam-breach-associated- challengingtoobserveand/orquantify.Suddenmajordisturbancesinthephysical,chemical ecosystems);GenomeCanada(https://www. andbiologicalstructuresofnaturalsoilsandsedimentsarelikelytoimpactessentialecosystem genomecanada.ca/en/metagenomics-assess- functionssuchasnutrienttransport[6],weatheringanderosion,chemicaldetoxification, impacts-mount-polley-mine-taillings-dam-breach- waterqualitypreservation[7],supportofprimaryproductivity[8]andresiliencetoperturba- associated-ecosystems);MountPolleyMine (https://www.imperialmetals.com/assets/docs/mt- tions[9].Theseprocesseswilldeterminethepotentialforrecoveryinimpactedareas.Itfollows polley/2015-02-23_MPFN.pdf). thatassessmentoftheaffectedsoilsandsedimentssoonafterthedisturbanceisrequiredto evaluatethedegreetowhichtheseareasresistedtheimpactandinwhatwaystheirecosystem Competinginterests:MountPolleyMineInc providedmatchingfunds,siteaccess, functionsmayhavebeenaltered. transportation,andmaterialassistancein Duetotheirtopographicpositionwithinlandscapes,wetlandsandriparianareasareoften completingthisresearchproject(including thefirstrecipientsofminedsubstratesandchemicalswhencontainmentfailuresoccur.Owing protectiveequipment,boatrentalandaccess, totheirrelativelyhighbiologicalproductivityandaccumulationofsoilorganicmatter,these SONDEwaterqualityprobes,andaccesstodata/ systemsarenotedfortheircapacitytoresisttoxicinputsandhaveevenbeenusedforpassive schematicscollectedbymineemployees).This remediationofmineeffluents[10,11].Minetailingsconsistofmineralsthatmightbecome doesnotalterouradherencetoPLOSONEpolicies onsharingdataandmaterials. sourcesofmetalandmetalloidcontaminantsdependingonthemineralogyoftheorebody, mineralprocessingproceduresandenvironmentalconditionsinsidethetailings.Sequestration anddetoxificationofmetalsandmetalloidsisfacilitatedthroughmetabolicprocessescarried outbyspecifictypesofmicrobesthatinhabitnichesfoundinorganic-richsoilsandsediments. Manymineremediationapproachescapitalizeonthesenaturalmetalsequestrationprocesses byengenderingenvironmentalconditionsconducivetogrowthofbeneficialmicrobes,suchas sulphate-reducingbacteria,Rhizobiaandmanyothermicrobeswiththecapacityformetal immobilization[12–16]. Duringacatastrophicdisturbance,suchasaminetailingsimpoundmentfailure,theafore- mentionedecosystemfunctionsofsoilandsedimentmicrobiomesarechallenged.Fewstudies haveevaluatedtherolesoilmicrobialcommunitycompositionandalpha/betadiversityplayin resiliencetodisturbance[17–20].Microbialcommunitiesmayrespondtosuddendisturbances byexhibitingresilienceenablingrapidrecoverybacktopre-existingecosystemfunctions[21]. Theymaypersistinaperpetuallysuppressedstate,orexhibitshiftstoalternate,lessdesirable statesthatprohibitrestorationorreducethebeneficialrelationshipsbetweenmicrobialdiver- sity,soilandplantquality,andecosystemsustainability[22].Itisalsopossiblethatmicrobial communitiesmayshiftinresponsetosuddenenvironmentalchangestowardsestablishment ofalternatestructuralandfunctionalstatesthatpromoterestoration,toalbeitalternatebutsta- bleecosystems[23].Depositionoftailingsmightresultinchronicdisturbancetosoiland PLOSONE|https://doi.org/10.1371/journal.pone.0196032 April25,2018 2/25 Watershed-scalemicrobialmonitoring sedimentmicrobiomes,whichisthoughttoleadtoreducedecosystemresiliencyshouldsub- stratesbesubjectedtolargerstressorsinthefuture[24]. Forthisstudy,weaddresseddisturbanceofthestructureandfunctionofripariansoiland sedimentmicrobialcommunitiesinthepathofdispersedtailingsandinnon-impactedsites twomonthsfollowingthefailureofatailingsstoragefacilityatMountPolleyMine,(Likely, BCCanada).Theimpoundmentfailureproducedawatershed-scaledisturbancegradient, wheresoilswereerodedtobedrockandreplacedwithtailings(characteristicofHazeltine Creek),whileothersexhibitedvaryingdegreesofmixingandburial(characteristicofPolley Lake).Asaresult,MountPolleyisuniqueinthetimelinessofbaselinedatacollectedfollowing thedisturbance,butsharesthedisadvantageofmanymajordisturbancestudiesinthelackof dataquantifyingheterogeneityinsystemparametersbeforethedisturbanceoccurred. TheMountPolleyMinetailingsstoragefacilityexperiencedafailureoffoundationmaterial andsubsequentbreachatapproximately2:00am,Monday,August4,2014incentralBritish Columbia,Canada[25].Foundationfailuresrepresent~6%ofthe147tailingsimpoundment failuresreportedglobally[26].Overthefollowing2–3daysapproximately10.6millionm3of mine-influenced,untreatedwaterandsedimentescapedintothenaturalwatershed[27],dis- persingoverapproximately25hectaresoflake-associatedwetlandand45hectaresofriparian area,anddepositingtogetherwithscourednaturalmaterialintoPolleyLakeandQuesnelLake withtheriskoffurthertransportationdownstreamintotheQuesnelRiver[4].Impactsofthis disturbanceonsoilandsedimentmicrobialpopulationsoftheaffectedriparianareaandlake- associatedwetlandsweredeterminedthroughametagenomicsurveyalongthegradientoftail- ingsdepositionawayfromtheimpoundmentfailureorigin.Thesemetagenomicrecordswere combinedwithphysicalandchemicalcharacteristicsofthecollectedsubstratesandanalyzed withinageodatabaseframeworktoassessmicrobialcommunityconnectionstoenvironmental variablesincludingsoil,nutrient,andwaterstatus,andpassiveuptakeofcontaminants. Materials&methods Samplesitelocations FieldsamplingwasconductedwithpermissionfromMountPolleyMineCorporation.Suitable locationsforsamplecollectionweredeterminedbyperformingasurveyoftheaffectedwater- shedviahighresolutionaerialphotographyandLandsatThematicMapperImagery[28].Sam- plingconsistedof60establishedfieldsitesdistributedwithintheHazeltineCreekfloodplain (19),PolleyLakefloodplain(20),QuesnelLakeFloodplain(9),andtheBootjackLakeFlood- plain(12)(Fig1). Shorelineecosystemsweretargetedsinceprimarymacrophyteproductivityishighestin theseregionsandconsequentlytheyarelikelytoharbourdiversebelow-groundmicrobial communitiesimportantforecosystemfunction.Forstreamandlakesidesamplesites,abase- pointwasestablished(markedviaGPS(S1Table),surveyflagging,andaburiedgalvanized steelpin). Samplecollection MonitoringsitesweresampledbetweenOctober7thand23rd,2014.Twotothreehundred gramsofsubstratewereremovedfrom6locationsateachsiteandplacedintosterileWhirl- Pak1bags.Sampleswerecollectedfromthreedistincthabitats(Fig3). TheriparianandlakeareasaffectedbythetailingsimpoundmentfailureincludedHazeltine Creek,PolleyLakeandQuesnelLake(Fig1).Theextentandamountoftailingsdepositedter- restriallyandintothelakeshavebeenreportedindetailinthePostEventEnvironmental ImpactAssessmentReportpublishedaftermuchsurveyworkwasconductedinthemonths PLOSONE|https://doi.org/10.1371/journal.pone.0196032 April25,2018 3/25 Watershed-scalemicrobialmonitoring Fig1.Biomonitoringnetworksamplesites.Sitesarelocatedwithintheaffectedwatershed,inhydricsoilsassociatedwithexistingwaterbodies.With theexceptionofBootjackLake(referencearea)theselectedsitesreflectacontinuumofphysicalandchemicalimpactsfromtheevent.SubstrateCode coloursreflectdesignationsdetailedinFig2. https://doi.org/10.1371/journal.pone.0196032.g001 followingtheevent[4].Lessthan48hoursafterthefailure,short-waveinfraredreflectance fromBootjackandPolleyLakeswasrecordedbyLandsat[28](USGS2011)andusedtodetect solidssuspendedinPolleyLake(Fig4). IncomparisontoBootjackLake,whichwasnotinthepathofthedepositedtailingssinceit islocatedwestoftheminesite,higherloadingsofsuspendedsolidswereclearlyvisibleinPol- leyLake.Basedontheintensityofthereflectance,theamountofsedimentattenuationinto PolleyLakewasestimatedtofollowalogarithmicratelawwithdistanceawayfromthesouth- eastshoreofPolleyLakewherethedepositedtailingsenteredtheLake(Fig4).Spacingofsam- plinglocationsalongtheshoresofPolleyLakewasbasedonthisrelationship(Fig1). Twosamplesweretakenfromthesurficiallayerofterrestrialsubstrate(0–5cmdepth)3m apart1mparalleltothewater’sedge.Twosampleswerecollectedfromthemid-depthterres- triallayer(25–30cmdepth)atthesamelocationsusingasoilprobeorEdelmanauger.For BootjackandPolleyLakestheselattersamplesconstitutedclay-richhorizons.Twoadditional sampleswereremovedfromthesub-aqueoussedimentlayerwithinthepermanentlysub- mergedareaofthelittoralzone.Poreandsurfacewatersampleswerecollectedinseparate bagsfromthesedimentlayer.Samplesforsulphateandsulfideanalysiswerepreservedin0.5% zincacetate.Sampleswerefrozenondryiceimmediatelyaftersamplingandthenstoredat -80˚Cuntilprocessing.PlotphotosweretakenforeachofthesamplelocationsusingaNikon D300digitalSLRandincludedameterstickand1mX1mgridplacedinviewforreference. Thesephotoswereusedtoqualitativelydescribesurfacemineralcomposition/grain-sizeand amount/compositionofvegetationcover(Fig2).Habitatsvariedintheirestimateddegreeof PLOSONE|https://doi.org/10.1371/journal.pone.0196032 April25,2018 4/25 Watershed-scalemicrobialmonitoring Fig2.Sampleswerecollectedtorepresentthetypesofhabitatsaffectedbythespillincluding.(A)organic-richsoil supportingadiversewetlandcommunityincludingliving,senescedanddecayedvegetation,(B)organic-dominated lakeshorelackingextensivelivingvegetation,(C)minerallakeshoreincludingexposednativebedrock,cobbles,claysor sands,(D)nativesubstrateswithevidenceoftailingsdeposition(visibleaccretionsoftailingssedimentsintermingled withnativesubstrateorcoatingofplantstems/leaveswithfinetailings),(E)burialofnativesubstrateincoarsetailings sands,(F)replacementofnativesubstratewithamixtureoffinetailingsandsands.Thetabletotherightpresents meansurfacematerialestimates(n=5,1m2quadrats)forsamplesiteswithhabitatclassification(matchingcolors fromfiguretotheleft). https://doi.org/10.1371/journal.pone.0196032.g002 disturbancefromnovisibleimpactcharacteristicofBootjackLaketoerosionofallnativesub- stratesandreplacementwithmaterialfromthetailingsimpoundment(characteristicofHazel- tineCreek).Multiplequantitativeapproacheswereappliedtodeterminedistinctionsbetween majorsubstratetypes(includingprevailingsurficialgrainsizesandorganiccontent).Inprac- tice,freshlydepositedtailingswereeasilydistinguishedfromnativesubstratesbytheirlight colorandmixtureofreddish-greysandsandfine,greysediments. Physicalandchemicalparameters Waterqualityparameters,pH,temperature,conductivity,dissolvedoxygen(DO),oxidation- reductionpotential(ORP),andturbiditywererecordedinthefieldusingaYSIEXO2Multipa- rameterWaterQualitySONDE(YSIInternational)forsurfacewaters(33 cmdepthdraft), ±3 adjacenttotheshorelinewhereterrestrialsampleswerecollectedandforporewaterimmedi- atelyfollowingextractionfromauguredholes.Later,inthelaboratory,poreandsurfacewater sampleswerethawedandanalyzedforsulphate(APHA[29]turbidimetricmethod4500-SO 2- 4 E),sulfide(methylenebluemethod4500-S2-D),ammonium(phenatemethod4500-NH F), 3 phosphate(ascorbicacidmethod4500-PE)andtotalnitrite/nitrate-N(cadmiumreduction method4500-NO -Efollowedbycolorimetricmethod4500-NO -B).Physicalandchemical 3 2 metadataareavailablethroughDRYAD(datadryad.org;doi:10.5061/dryad.d52df21). PLOSONE|https://doi.org/10.1371/journal.pone.0196032 April25,2018 5/25 Watershed-scalemicrobialmonitoring Fig3.Cartooncross-sectionofanidealizedhydrosphererepresentinglayersthatweresampled. https://doi.org/10.1371/journal.pone.0196032.g003 Microbialcommunityquantification DNAextraction. JustpriortoDNAextraction,samplebagswithsolidssampleswere thawedandthecontentshomogenizedmanually.Three250mgsubsamplesfromeachbag weretakenforgenomicDNA(gDNA)extractionusingtheMoBioPowerSoil1DNAIsolation kit(MoBioLaboratoriesInc.,CarlsbadCA,USA).ThethreegDNAextractionswerecom- binedintoasingletube.TheconcentrationwasdeterminedusingaQubit13.0highsensitivity fluorometricdoublestrandedDNAassay(ThermoFisherScientific,Waltham,MA,USA). AmpliconPCR,librarypreparation,andsequencing. Smallsub-unitribosomalDNA (SSUrDNA)ampliconswerepreparedforsequencingusingproceduresintheIllumina“16S Fig4.Comparisonofshort-waveinfraredreflectance(representedinyellow-green)measuredinPolleyand BootjackLakes48hourspost-damfailurevisually(inset)andasafunctionofdistanceawayfromthe impoundmentfailure. https://doi.org/10.1371/journal.pone.0196032.g004 PLOSONE|https://doi.org/10.1371/journal.pone.0196032 April25,2018 6/25 Watershed-scalemicrobialmonitoring MetagenomicSequencingLibraryPreparationGuide”[30]withthefollowingmodifications: PCRreactionsusedtheSsoFast™EvaGreen1Supermix(Bio-RadLaboratories(Canada)Ltd., Mississauga,ON,Canada),andprimersfortheV6-V8regionwereused:926f5’ AAACTYAA AKGAATTGRCGGand1392r5’ ACGGGCGGTGTGTRC 3’.Afterrecordingtheconcentra- tionineachindexed16SrDNAampliconpool,samplesweredilutedtoobtain4nMDNAin 20μLofDIH O.Paired-end300bpsequencingwasperformedonanIlluminaMiSeqatthe 2 UniversityofBritishColumbiaSequencingCentreintheFacultyofPharmaceuticalSciences usingtheIlluminaMS-102-3003-MiSeqReagentKitv3(600cycles)andPhiXControlKitv3. DNAformetagenomicwholegenomesequencingwaspurifiedfromthehighmolecular weightbandon1%agarosegelusingexcisionandtheQIAquickGelExtractionKit(Qiagen) andtheextractedgenomicDNAwasquantifiedusingQubitHSDNAassay(Thermo-Fisher Scientific).Approximately1ngtotalDNAwasusedforlibrarypreparation.ADNAfragment librarywithanindexateachendwasgeneratedforallsamplesusingtheNexteraXTDNA samplepreparationkit(Illuminacatalogno.GA09115).Forqualitycontrolandsizeevalua- tion,thesequencinglibrarywasanalyzedonaBioanalyzer2100(AgilentTechnologies). Paired-endsequencingwasperformedasfortheampliconsequencing.Rawsequencefiles frombothampliconandwholegenomesequencingweredepositedinthesequenceread archive(SRA)onhttp://www.ncbi.nlm.nih.govunderprojectaccessionnumber PRJNA433688. Bioinformatics. SequencequalitywasinspectedusingFastQCversion0.10.1[31].Since thequalityoftheforwardreadswasfarsuperiortothatforthereversereads,onlytheforward readswereusedforfurtheranalysis.Therawforwardreadswerequalityfilteredusingthe usearch[32]functionfastq_filtertotruncatetotheendsequencesifthePhredqualityscore waslessthan15,removesequenceslessthan150basesinlength,andtodiscardreadswith expectederrorsgreaterthan0.5andthosereadswithambiguousbasecalls.Highquality sequenceswereclusteredinto97%sequencesimilaritycut-offoperationaltaxonomicunits (OTUs)usingtheusearchfunctioncluster_otus.Taxonomicassignmenttorepresentative sequencesfromeachOTUwasperformedwithMOTHURversion1.36.1[33]functionclas- sify.seqsusingasthereferencetheSILVASSUdatabaseversion123[34]. WholegenomesequencereadswerepreprocessedtoremoveIlluminaandNexteraadapt- ers,lowquality(Q<25)andshort(length<100bases)readsusingTrimGalore0.4.1(http:// www.bioinformatics.babraham.ac.uk/projects/trim_galore/).Highqualityreadswereassem- bledwithvelvetandmeta-velvet[35].Openreadingframes(ORFs)werepredictedfromthe assembledcontigsusingProdigalversion1.0.1,translatedtoaminoacidsequencesandanno- tatedusingcustomdatabasesforrespiratorydenitrificationproteins(nitratereductase(NarG, NapA),nitritereductasetoNO(NirK,NirS),nitritereductasetoammonia(NrfH)andnitrous oxidereductase(NosZ)),selenatereductases(SerABC,SrdAandYgfK),dimethylsulfoxide (DMSO)reductases[36],dissimilatorysulfitereductase(DsrAB)andtheproteindatabase Uniref90.Allaminoacidsequencesforthecustomdatabases,excludingtheDMSOreductases, weredownloadedfromtheUniprotrepository(http://www.uniprot.org/,accessed3July 2017).OpenreadingframepredictionandannotationwerecarriedoutusingtheMetapath- waysversion2.5.1pipeline[37].Onlyhitswithbitscoresequaltoorgreaterthan80weretaken intoconsideration.Consistencybetweenfunctionalannotationusingthedenitrification,sele- natereductaseandsulfatereductasedatabasesandtheUniref90databasewasconfirmed.Since selenatereductasesSerABandSrdAfromThaueraselenatisandBacillusselenatarsenatis, respectively,belongtotheDMSOreductasefamilyofmolybdopterinoxidoreductases,ORFs withhitstoSerABandSrdAaminoacidsequenceswerealsoqueriedagainstacustomDMSO database[36]toconfirmtheirannotationtoselenatereductasewiththehighestbitscore. PLOSONE|https://doi.org/10.1371/journal.pone.0196032 April25,2018 7/25 Watershed-scalemicrobialmonitoring Microbialpopulationdiversity(richnessandevenness)ineachsamplewasassessedin termsoftaxonomicrichness(#ofdetectedOTUs)andSimpson’sDiversity(1-D).TheOTU tablewassubsampledwithMOTHURfunctionsub.sampleto3,000readspersampleandsplit intothreeOTUtablesforeachlayerorhydrozone:surficial(0–5cm),deep(25–30)cmand theaquaticsediments. Beta-diversityofsampleswasexploredonnon-metricmultidimensionalscaling(NMDS) ordinationplotsproducedusingBray-CurtisdissimilaritywiththeveganpackageoftoolsinR version3.3.1.Statisticalcomparisonsofmicrobialpopulationcompositionswerecarriedout usingUniFracdistances[38]withMOTHURfunctionsunifrac_weightedandunifrac_un- weighted.Indicatorspeciesforeachbiome(BootjackLake,PolleyLake,QuesnelLakeand HazeltonCreek)weredeterminedusingthemethodinDufrêneandLegendre[39]foreach hydrozonelayer. Results&discussion Sitecharacteristics&chemistry Siteswereclassifiedintodifferenthabitatsaccordingtothesurficialsubstrateappearance(Fig 2).HabitatsAtoCexhibitedanarrayofmacrophytes,organicdepositsandmineralsandlittle tonoevidenceofthepresenceoftailings.Greytailingsandmagnetitesandspresentedadis- tinctvisualcontrasttothedarkernativesubstrates,makingthemeasytodistinguishonthe ground.TailingsatMountPolleyarederivedfromanalkalicporphyrycoppergolddeposit wherecopperandcoppersulphidesareremovedpriortostorageinthetailingsimpoundment [40].HabitatDexhibitedamixtureofdepositedtailingsandintactnativesubstrateswhilehab- itatsEandFexhibitedextensivedepositedtailingsanddistinctionsweremadebasedonmate- rialtexture(HabitatFexhibitingprimarilyfinegreytailings).Habitattypeswereassociated closelywiththefourmajorwaterbodiesidentifiedinthisstudy.HazeltineCreekexhibitedthe greatestimpactfromthedisturbance,withthedepthoferosionofsoilandparentmaterial exceeding7minsomeareas,exposingbedrockanddepositingthick(~1-3m)tailingsand associatedsandsinacorridorrangingfrom40–250meterswide. TheshorelineofBootjackLakeconsistedofmostlyhabitatsAandBandlackeddeposited tailings.TheLakeexhibitedextensivebackwaterdepressionsinitsterrestrialshorelinethat wereorganicrich,under-layedwithanocclusivelayerofhighlyreducedclaybasedonclear gleyingandlackofoxidizedrootingzones.Asaresult,BootjackLakesamplelayersweredis- tinctlydifferentincomposition,wheresurficialsampleswerelargelycomprisedoforganic material,andwiththeexceptionoftheoutlettoBootjackCreek,deepsampleswerecomposed ofreducedclays.BootjackLakesedimentdepositswereprimarilyfinesedimentsimbeddedin rockycobbles.HazeltineCreek,themainflowpathofthereleasedtailings,wasscouredand almostentirelyreplacedbysedimentdepositedfromthetailingsoutwash(habitatF).Forboth PolleyandQuesnelLakes,somesitesclosetothedepositionpathwerereplacedbytailings. EventhoughalargeamountoftailingswaspushedintoPolleyLakeatthesouthend[4],there werestillsomesiteswherenaturaldiversewetlandcommunitieswereintact.TheQuesnel LakeshorelinesadjacenttotheHazeltineCreekdeltawheretailingsenteredthelakecontained littlevegetationandcomprisedmostlydeepsanddepositswithexposedweatheredcobbles (habitatsC&D).Onlysites20Aand21AonQuesnelLakewerevegetated,thoughonlythe mostproximalsitestotheHazeltineoutflowexhibitedevidenceofimpactsfromthebreach (depositedtailingsand/ordisplacedsediment).Themarkedlydifferentphysicalfeaturesofthe QuesnelLakeshorelineversusthoseinBootjackLakeandatthenorthernendofPolleyLake reflectconditiondifferencesthatexistedbeforethespill.QuesnelLake’sshorelineischaracter- izedbyextensivewave-washedcobblesandlittlevegetationwithin10mofthelakeedge,even PLOSONE|https://doi.org/10.1371/journal.pone.0196032 April25,2018 8/25 Watershed-scalemicrobialmonitoring insitessampledatgreaterdistancesfromtheHazeltineCreekoutflow(site14Ais2.5kmfrom theHazeltineCreekoutflowandexhibitedlittlevegetationcoverandnoevidenceofdeposited tailings). Soilmoistureandorganicmatter(SOM)contentsofthesamplescollectedasdetermined byovendryingandloss-on-ignitiontestsvariedfrom1.7%to91.1%,and0to854g/Kgrespec- tively,withSOMsignificantlyassociatedwithmoisturecontent(R2=0.74,F=401,P<0.001) (S1Fig).Althoughtherewerenostatisticallysignificantdifferencesinmoisturecontentand SOMbetweenlayersandhabitats,habitatAcontainedhigherSOMthantheotherhabitats, withhabitatFsampleshavingthelowestamountsofSOM(S2Fig).WhencomparingSOMby lake/stream,HazeltineCreeksurficialsamplescontainedsignificantlylowerSOMrelativeto allPolleyLakesamplelayers(p =0.02,p =0.01,p =0.04)andBootjacksurficialsam- surf deep sed ples(p=0.02)basedonBonferroni-correctedMann-Whitneypairwisecomparisons(Kruskal- WallisH=46.15,p<0.0001)(S3Fig).DeepsamplescollectedfromHazeltineCreekcontained significantlylowerSOMthanPolleyLakedeep(p=0.02)andsurficialsamples(p=0.01).All othercomparisonswerenotsignificant. Pore-waterchemistrypropertiesweremeasuredinlakeshoresub-aqueoussediments(S2 TableandS4Fig).Temperaturevariationswereduetothetwodifferentsamplingperiods,6–8 and21–23October2014,duringwhichtheaverageporewatertemperatureswere13and9˚C, respectively.PolleyandQuesnelLakesedimentshadsimilarcircum-neutralpHs(7.3 and ±0.7 7.8 ,respectively),whereasthepHinpore-waterfromBootjackLakewaslower(average ±0.3 6.5 ,p<0.01)andHazeltineCreekhigher(averageof8.9 ,p<0.001).Thesediments ±0.4 ±0.3 withinQuesnelLakewerethemostaerated(DO=7.7 mg/L)withthoseinBootjackLake ±1.4 havingthelowestoxygenconcentrations(DO=2.2 mg/L,p<0.001).Awiderangeofdis- ±0.8 solvedoxygenconcentrationsweremeasuredintheHazeltineCreekpore-waters.Conductivity wasslightlyhigherinPolleyLakesedimentpore-waterscomparedwithBootjackandQuesnel Lakes(p<0.05).NoconductivitydatawereobtainedforHazeltineCreek(sensormalfunction). Theammonium-N,nitrate-NandphosphateconcentrationsinBootjackLakesediment porewatersampleswereallbelow1mg/L(S2Table).Therewasmorenitrate-NintheQuesnel Lakesediments(1.35 mg/L)withthehighestconcentrationfoundatsite12A(4.11 CI=0–2.92 mg/L),whichwasasitewheretailingsweredeposited.Nitrate-Nconcentrationswerealso higherinHazeltineCreekthanintheotherlocations(averageof2.34 mg/L)withthe CI=0–5.75 highestconcentrationfoundatsite36A(8.24mg/L). InHazeltineCreek,theaveragesulphateconcentrationofthosesitesfromwhichpore watercouldberecoveredwas251 mg/L.Onesitehadasulphateconcentrationas CI=0–258 highas940mg/L(site36A)(S3Table),whichwasalsowherethehighestnitrate-Nconcentra- tionwasmeasured.AtthePolleyLakesites,sulphateconcentrationswerehigherthanthosein theotherLakes(BootjackandQuesnel),butnotashighinHazeltineCreek(averageof125 ±56 mg/L).Siteswiththehighestsulphateconcentrationswereatlocationscontainingtailings (sites58Aand60A).However,onefarsitethatwashighlyvegetated(site53A)alsohadahigh sulphateconcentration.Sulphateconcentrationswerenotmeasuredintheporewaterssam- pledfromBootjackLakeandQuesnelLake.SamplestakenfromQuesnelLakesincethe impoundmentfailurefoundsulphatetobelessthan15mg/L[4].Takentogethersoilandpore watercharacterizationtestsrevealedthatthedepositedtailingscreateddistincthabitatsand environmentscomparedwithunaffectedsites. Microbialcomposition Diversityanddistribution. Atotalof1,650,752highqualitysequenceswithamean lengthof227 baseswereobtainedfrom234sampleswithanaveragereadcountpersample ±40 PLOSONE|https://doi.org/10.1371/journal.pone.0196032 April25,2018 9/25 Watershed-scalemicrobialmonitoring Fig5.Speciesrichness(sobs)anddiversity(Simpson’s1-D)ofmicrobialcommunitiesinthesurficial,deepandsedimentlayersinBootjackLake (BJL),HazeltineCreek(HAZ),PolleyLake(POL)andQuesnelLake(QUE).Comparisonsarealsoshownforthesixhabitattypes(A-F)identifiedin Fig2.ErrorBarsrepresentstandarderrorofthemean. https://doi.org/10.1371/journal.pone.0196032.g005 of5,630 .Aftersubsamplingto3,000readspersample,15sampleswererejecteddueto ±2,839 insufficientsequencingdepth.Theimpactofthetailingsdepositionwasmostapparentfor HazeltineCreekwherespeciesrichnesswasapproximatelyonethirdlessthanthatobserved foralltheothersites.AlthoughHazeltineCreekwasscouredandmuchofitfilledwithtailings, microorganismswerestilldetectedinalllayersofthosesitesthatyieldedenoughDNAfor sequencing.Asexpected,theun-impactedreferencesite,BootjackLakehadthegreatestspe- ciesrichness(observednumberofspecies(sobs)inFig5),especiallyinthesurficiallayers thoughitonlydifferedsignificantlyfromHazeltineCreek(F =9.3,F =49.0, 3,21Sed 3,29Surf F =17,p<0.0005).Aspre-eventmicrobialcommunitydataarenotavailable,the 3,26Deep heighteneddiversityinBootjackLakemaybetheresultofpre-existingdifferencesamong waterbodiesasBootjackexhibitedhighersoilorganicmatterreflectiveofelevated productivity. PLOSONE|https://doi.org/10.1371/journal.pone.0196032 April25,2018 10/25

Description:
Tailings at Mount Polley are derived from an alkalic porphyry copper gold deposit where copper and copper .. deeper terrestrial layers of Bootjack Lake are Archaea about which little is known as these spe- cies are difficult to grow
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.