RESEARCHARTICLE Short-term microbial effects of a large-scale mine-tailing storage facility collapse on the local natural environment HeathW.Garris1¤*,SusanA.Baldwin2,JonTaylor2,DavidB.Gurr2,DanielR.Denesiuk1, JonathanD.VanHamme1,LauchlanH.Fraser1 1 DepartmentsofNaturalResourceSciences&BiologicalSciences,ThompsonRiversUniversity, Kamloops,BritishColumbia,Canada,2 DepartmentofChemicalandBiologicalEngineering,Universityof BritishColumbia,Vancouver,BritishColumbia,Canada a1111111111 a1111111111 ¤ Currentaddress:DepartmentofBiology,CovenantCollege,LookoutMountain,Georgia,UnitedStatesof a1111111111 America a1111111111 *[email protected] a1111111111 Abstract WeinvestigatedtheimpactsoftheMountPolleytailingsimpoundmentfailureonchemical, OPENACCESS physical,andmicrobialpropertiesofsubstrateswithintheaffectedwatershed,comprisedof Citation:GarrisHW,BaldwinSA,TaylorJ,Gurr 70hectaresofriparianwetlandsand40kmofstreamandlakeshore.Weestablishedabio- DB,DenesiukDR,VanHammeJD,etal.(2018) monitoringnetworkinOctoberof2014,twomonthsfollowingthedisturbance,andevaluated Short-termmicrobialeffectsofalarge-scalemine- tailingstoragefacilitycollapseonthelocalnatural riparianandwetlandsubstratesformicrobialcommunitycompositionandfunctionvia16S environment.PLoSONE13(4):e0196032.https:// andfullmetagenomesequencing.Atotalof234sampleswerecollectedfromsubstratesat doi.org/10.1371/journal.pone.0196032 3depthsand1,650,752sequenceswererecordedinageodatabaseframework.These Editor:AndreaFranzetti,UniversitadegliStudidi datarevealedawealthofinformationregardingwatershed-scaledistributionofmicrobial Milano-Bicocca,ITALY communitymembers,aswellascommunitycomposition,structure,andresponsetodistur- Received:October10,2017 bance.Substratesassociatedwiththeimpactzoneweredistinctchemicallyasindicatedby Accepted:April5,2018 elevatedpH,nitrate,andsulphate.Themicrobialcommunityexhibitedelevatedmetabolic capacityforselenateandsulfatereductionandanabundanceofchemolithoautotrophsin Published:April25,2018 theThiobacillusthiophilus/T.denitrificans/T.thioparuscladethatmaycontributetonitrate Copyright:©2018Garrisetal.Thisisanopen attenuationwithintheaffectedwatershed.Themostimpactedarea(a6kmstreamconnect- accessarticledistributedunderthetermsofthe CreativeCommonsAttributionLicense,which ingtwolakes)exhibited30%lowermicrobialdiversityrelativetotheremainingsites.The permitsunrestricteduse,distribution,and tailingsimpoundmentfailureatMountPolleyMinehasprovidedauniqueopportunityto reproductioninanymedium,providedtheoriginal evaluatefunctionalandcompositionaldiversitysoonafteramajorcatastrophicdisturbance authorandsourcearecredited. toassessmetabolicpotentialforecosystemrecovery. DataAvailabilityStatement:Allsequencedataare availableathttps://www.ncbi.nlm.nih.gov/,project numberPRJNA433688.Metadataareavailableat http://www.datadryad.org/,accessionDOI:https:// doi.org/10.5061/dryad.d52df21. Introduction Funding:ThisprojectwassupportedbyaMitacs Accelerate/ElevatePost-doctoralFellowshipfor Miningproduceslargequantitiesofwastematerialannually,andcontainmentfailurespresent HeathGarris,whereprofessionaldevelopment challengestowaterqualityandwildlife.Contemporarymininginvolvesextensiverestructur- seminars/trainingwereprovidedwithlittle/noinput ingoflandscapeswherevegetationandnaturally-accretedsoilsareremoved,andcontiguous intothecontentoftheresearchproposal/ execution.Thisprogramwasco-fundedbya bedrockisexposedandpartiallyconvertedtocoarseandfinewastes.Dependingontheparent PLOSONE|https://doi.org/10.1371/journal.pone.0196032 April25,2018 1/25 Watershed-scalemicrobialmonitoring partnerindustry(MountPolleyMiningCorp)that materialcomposition,thesewastesarepronetoacceleratedchemicalweathering,constituting contributedsubstantiallytothedevelopmentofthe afundamentallyalteredbiogeochemicalsettingbycomparisonwiththepre-existingecosystem project(intheformofsiteaccess,feasibility [1,2].Finewastes(oftentermed‘tailings’)typicallypresentthegreatestchallengesforcontain- assessment,materialsupport,andmanuscript mentastheyhavethegreatestpotentialforleaching(duetohighsurfaceareaforchemical review).AdditionalfundingfromNSERCwas weathering)andmobilityasdustorinfluidsuspensions.Forthisreason,currentbestpractices awardedtosupportaninitial(pre-breach)water qualityproject.NSERCmonitoredchangesinthe ofminingoperationsworldwidemanagetailingstobephysicallyandmetabolicallyisolated proposedprojectscopebyrequestingreports,but fromthesurroundingwatershedthroughcontainmentinwasteimpoundments,suchastail- didnotcontributetothecontentofthestudy ingsstoragefacilities[3].Overthedurationofamine’sactivelifetime,thequantityofmine directly.Finally,GenomeBCandGenomeCanada wastesaccumulatedonsitecanbecomeimmense.Forexample,beforetheimpoundmentfail- supportedtheprojectthroughfundingand ureattheMountPolleyMine(“theMine”),BritishColumbia,Canada,in2014,theMine’stail- consultationonprojectscope/applicability/ suitabilitywithrespecttotheuseofgenomics ingsstoragefacilityhadthecapacitytocontain74millioncubicmetersofhydratedtailings technologiesandaccomplishmentofprojectgoals, withinanimpoundmentoccupying2km2[4]. whichservedtoimproveprojectprecisions/ Despitebestpracticesforconstruction,inspectionandmaintenanceoftailingstoragefacili- outcomes.Projectfundingwebreferences:Mitacs ties,containmentfailureshaveoccurred[5].Underthesecircumstances,uncontrolleddeposi- (https://www.mitacs.ca/en/impact/postdoctoral- tionintopreviouslyprotectedsurroundingsdisturbsphysicalandchemicalproperties,and fellows-share-program-benefits-mitacs-elevate- theirassociatedabove-andbelow-groundecosystemswithinthesurroundinglandscape. retreat);GenomeBC(https://www.genomecanada. ca/en/metagenomics-assess-impacts-mount- Whilesurfaceerosionanddepositionareclearlyobserved,sub-surfacedisruptionsaremore polley-mine-taillings-dam-breach-associated- challengingtoobserveand/orquantify.Suddenmajordisturbancesinthephysical,chemical ecosystems);GenomeCanada(https://www. andbiologicalstructuresofnaturalsoilsandsedimentsarelikelytoimpactessentialecosystem genomecanada.ca/en/metagenomics-assess- functionssuchasnutrienttransport[6],weatheringanderosion,chemicaldetoxification, impacts-mount-polley-mine-taillings-dam-breach- waterqualitypreservation[7],supportofprimaryproductivity[8]andresiliencetoperturba- associated-ecosystems);MountPolleyMine (https://www.imperialmetals.com/assets/docs/mt- tions[9].Theseprocesseswilldeterminethepotentialforrecoveryinimpactedareas.Itfollows polley/2015-02-23_MPFN.pdf). thatassessmentoftheaffectedsoilsandsedimentssoonafterthedisturbanceisrequiredto evaluatethedegreetowhichtheseareasresistedtheimpactandinwhatwaystheirecosystem Competinginterests:MountPolleyMineInc providedmatchingfunds,siteaccess, functionsmayhavebeenaltered. transportation,andmaterialassistancein Duetotheirtopographicpositionwithinlandscapes,wetlandsandriparianareasareoften completingthisresearchproject(including thefirstrecipientsofminedsubstratesandchemicalswhencontainmentfailuresoccur.Owing protectiveequipment,boatrentalandaccess, totheirrelativelyhighbiologicalproductivityandaccumulationofsoilorganicmatter,these SONDEwaterqualityprobes,andaccesstodata/ systemsarenotedfortheircapacitytoresisttoxicinputsandhaveevenbeenusedforpassive schematicscollectedbymineemployees).This remediationofmineeffluents[10,11].Minetailingsconsistofmineralsthatmightbecome doesnotalterouradherencetoPLOSONEpolicies onsharingdataandmaterials. sourcesofmetalandmetalloidcontaminantsdependingonthemineralogyoftheorebody, mineralprocessingproceduresandenvironmentalconditionsinsidethetailings.Sequestration anddetoxificationofmetalsandmetalloidsisfacilitatedthroughmetabolicprocessescarried outbyspecifictypesofmicrobesthatinhabitnichesfoundinorganic-richsoilsandsediments. Manymineremediationapproachescapitalizeonthesenaturalmetalsequestrationprocesses byengenderingenvironmentalconditionsconducivetogrowthofbeneficialmicrobes,suchas sulphate-reducingbacteria,Rhizobiaandmanyothermicrobeswiththecapacityformetal immobilization[12–16]. Duringacatastrophicdisturbance,suchasaminetailingsimpoundmentfailure,theafore- mentionedecosystemfunctionsofsoilandsedimentmicrobiomesarechallenged.Fewstudies haveevaluatedtherolesoilmicrobialcommunitycompositionandalpha/betadiversityplayin resiliencetodisturbance[17–20].Microbialcommunitiesmayrespondtosuddendisturbances byexhibitingresilienceenablingrapidrecoverybacktopre-existingecosystemfunctions[21]. Theymaypersistinaperpetuallysuppressedstate,orexhibitshiftstoalternate,lessdesirable statesthatprohibitrestorationorreducethebeneficialrelationshipsbetweenmicrobialdiver- sity,soilandplantquality,andecosystemsustainability[22].Itisalsopossiblethatmicrobial communitiesmayshiftinresponsetosuddenenvironmentalchangestowardsestablishment ofalternatestructuralandfunctionalstatesthatpromoterestoration,toalbeitalternatebutsta- bleecosystems[23].Depositionoftailingsmightresultinchronicdisturbancetosoiland PLOSONE|https://doi.org/10.1371/journal.pone.0196032 April25,2018 2/25 Watershed-scalemicrobialmonitoring sedimentmicrobiomes,whichisthoughttoleadtoreducedecosystemresiliencyshouldsub- stratesbesubjectedtolargerstressorsinthefuture[24]. Forthisstudy,weaddresseddisturbanceofthestructureandfunctionofripariansoiland sedimentmicrobialcommunitiesinthepathofdispersedtailingsandinnon-impactedsites twomonthsfollowingthefailureofatailingsstoragefacilityatMountPolleyMine,(Likely, BCCanada).Theimpoundmentfailureproducedawatershed-scaledisturbancegradient, wheresoilswereerodedtobedrockandreplacedwithtailings(characteristicofHazeltine Creek),whileothersexhibitedvaryingdegreesofmixingandburial(characteristicofPolley Lake).Asaresult,MountPolleyisuniqueinthetimelinessofbaselinedatacollectedfollowing thedisturbance,butsharesthedisadvantageofmanymajordisturbancestudiesinthelackof dataquantifyingheterogeneityinsystemparametersbeforethedisturbanceoccurred. TheMountPolleyMinetailingsstoragefacilityexperiencedafailureoffoundationmaterial andsubsequentbreachatapproximately2:00am,Monday,August4,2014incentralBritish Columbia,Canada[25].Foundationfailuresrepresent~6%ofthe147tailingsimpoundment failuresreportedglobally[26].Overthefollowing2–3daysapproximately10.6millionm3of mine-influenced,untreatedwaterandsedimentescapedintothenaturalwatershed[27],dis- persingoverapproximately25hectaresoflake-associatedwetlandand45hectaresofriparian area,anddepositingtogetherwithscourednaturalmaterialintoPolleyLakeandQuesnelLake withtheriskoffurthertransportationdownstreamintotheQuesnelRiver[4].Impactsofthis disturbanceonsoilandsedimentmicrobialpopulationsoftheaffectedriparianareaandlake- associatedwetlandsweredeterminedthroughametagenomicsurveyalongthegradientoftail- ingsdepositionawayfromtheimpoundmentfailureorigin.Thesemetagenomicrecordswere combinedwithphysicalandchemicalcharacteristicsofthecollectedsubstratesandanalyzed withinageodatabaseframeworktoassessmicrobialcommunityconnectionstoenvironmental variablesincludingsoil,nutrient,andwaterstatus,andpassiveuptakeofcontaminants. Materials&methods Samplesitelocations FieldsamplingwasconductedwithpermissionfromMountPolleyMineCorporation.Suitable locationsforsamplecollectionweredeterminedbyperformingasurveyoftheaffectedwater- shedviahighresolutionaerialphotographyandLandsatThematicMapperImagery[28].Sam- plingconsistedof60establishedfieldsitesdistributedwithintheHazeltineCreekfloodplain (19),PolleyLakefloodplain(20),QuesnelLakeFloodplain(9),andtheBootjackLakeFlood- plain(12)(Fig1). Shorelineecosystemsweretargetedsinceprimarymacrophyteproductivityishighestin theseregionsandconsequentlytheyarelikelytoharbourdiversebelow-groundmicrobial communitiesimportantforecosystemfunction.Forstreamandlakesidesamplesites,abase- pointwasestablished(markedviaGPS(S1Table),surveyflagging,andaburiedgalvanized steelpin). Samplecollection MonitoringsitesweresampledbetweenOctober7thand23rd,2014.Twotothreehundred gramsofsubstratewereremovedfrom6locationsateachsiteandplacedintosterileWhirl- Pak1bags.Sampleswerecollectedfromthreedistincthabitats(Fig3). TheriparianandlakeareasaffectedbythetailingsimpoundmentfailureincludedHazeltine Creek,PolleyLakeandQuesnelLake(Fig1).Theextentandamountoftailingsdepositedter- restriallyandintothelakeshavebeenreportedindetailinthePostEventEnvironmental ImpactAssessmentReportpublishedaftermuchsurveyworkwasconductedinthemonths PLOSONE|https://doi.org/10.1371/journal.pone.0196032 April25,2018 3/25 Watershed-scalemicrobialmonitoring Fig1.Biomonitoringnetworksamplesites.Sitesarelocatedwithintheaffectedwatershed,inhydricsoilsassociatedwithexistingwaterbodies.With theexceptionofBootjackLake(referencearea)theselectedsitesreflectacontinuumofphysicalandchemicalimpactsfromtheevent.SubstrateCode coloursreflectdesignationsdetailedinFig2. https://doi.org/10.1371/journal.pone.0196032.g001 followingtheevent[4].Lessthan48hoursafterthefailure,short-waveinfraredreflectance fromBootjackandPolleyLakeswasrecordedbyLandsat[28](USGS2011)andusedtodetect solidssuspendedinPolleyLake(Fig4). IncomparisontoBootjackLake,whichwasnotinthepathofthedepositedtailingssinceit islocatedwestoftheminesite,higherloadingsofsuspendedsolidswereclearlyvisibleinPol- leyLake.Basedontheintensityofthereflectance,theamountofsedimentattenuationinto PolleyLakewasestimatedtofollowalogarithmicratelawwithdistanceawayfromthesouth- eastshoreofPolleyLakewherethedepositedtailingsenteredtheLake(Fig4).Spacingofsam- plinglocationsalongtheshoresofPolleyLakewasbasedonthisrelationship(Fig1). Twosamplesweretakenfromthesurficiallayerofterrestrialsubstrate(0–5cmdepth)3m apart1mparalleltothewater’sedge.Twosampleswerecollectedfromthemid-depthterres- triallayer(25–30cmdepth)atthesamelocationsusingasoilprobeorEdelmanauger.For BootjackandPolleyLakestheselattersamplesconstitutedclay-richhorizons.Twoadditional sampleswereremovedfromthesub-aqueoussedimentlayerwithinthepermanentlysub- mergedareaofthelittoralzone.Poreandsurfacewatersampleswerecollectedinseparate bagsfromthesedimentlayer.Samplesforsulphateandsulfideanalysiswerepreservedin0.5% zincacetate.Sampleswerefrozenondryiceimmediatelyaftersamplingandthenstoredat -80˚Cuntilprocessing.PlotphotosweretakenforeachofthesamplelocationsusingaNikon D300digitalSLRandincludedameterstickand1mX1mgridplacedinviewforreference. Thesephotoswereusedtoqualitativelydescribesurfacemineralcomposition/grain-sizeand amount/compositionofvegetationcover(Fig2).Habitatsvariedintheirestimateddegreeof PLOSONE|https://doi.org/10.1371/journal.pone.0196032 April25,2018 4/25 Watershed-scalemicrobialmonitoring Fig2.Sampleswerecollectedtorepresentthetypesofhabitatsaffectedbythespillincluding.(A)organic-richsoil supportingadiversewetlandcommunityincludingliving,senescedanddecayedvegetation,(B)organic-dominated lakeshorelackingextensivelivingvegetation,(C)minerallakeshoreincludingexposednativebedrock,cobbles,claysor sands,(D)nativesubstrateswithevidenceoftailingsdeposition(visibleaccretionsoftailingssedimentsintermingled withnativesubstrateorcoatingofplantstems/leaveswithfinetailings),(E)burialofnativesubstrateincoarsetailings sands,(F)replacementofnativesubstratewithamixtureoffinetailingsandsands.Thetabletotherightpresents meansurfacematerialestimates(n=5,1m2quadrats)forsamplesiteswithhabitatclassification(matchingcolors fromfiguretotheleft). https://doi.org/10.1371/journal.pone.0196032.g002 disturbancefromnovisibleimpactcharacteristicofBootjackLaketoerosionofallnativesub- stratesandreplacementwithmaterialfromthetailingsimpoundment(characteristicofHazel- tineCreek).Multiplequantitativeapproacheswereappliedtodeterminedistinctionsbetween majorsubstratetypes(includingprevailingsurficialgrainsizesandorganiccontent).Inprac- tice,freshlydepositedtailingswereeasilydistinguishedfromnativesubstratesbytheirlight colorandmixtureofreddish-greysandsandfine,greysediments. Physicalandchemicalparameters Waterqualityparameters,pH,temperature,conductivity,dissolvedoxygen(DO),oxidation- reductionpotential(ORP),andturbiditywererecordedinthefieldusingaYSIEXO2Multipa- rameterWaterQualitySONDE(YSIInternational)forsurfacewaters(33 cmdepthdraft), ±3 adjacenttotheshorelinewhereterrestrialsampleswerecollectedandforporewaterimmedi- atelyfollowingextractionfromauguredholes.Later,inthelaboratory,poreandsurfacewater sampleswerethawedandanalyzedforsulphate(APHA[29]turbidimetricmethod4500-SO 2- 4 E),sulfide(methylenebluemethod4500-S2-D),ammonium(phenatemethod4500-NH F), 3 phosphate(ascorbicacidmethod4500-PE)andtotalnitrite/nitrate-N(cadmiumreduction method4500-NO -Efollowedbycolorimetricmethod4500-NO -B).Physicalandchemical 3 2 metadataareavailablethroughDRYAD(datadryad.org;doi:10.5061/dryad.d52df21). PLOSONE|https://doi.org/10.1371/journal.pone.0196032 April25,2018 5/25 Watershed-scalemicrobialmonitoring Fig3.Cartooncross-sectionofanidealizedhydrosphererepresentinglayersthatweresampled. https://doi.org/10.1371/journal.pone.0196032.g003 Microbialcommunityquantification DNAextraction. JustpriortoDNAextraction,samplebagswithsolidssampleswere thawedandthecontentshomogenizedmanually.Three250mgsubsamplesfromeachbag weretakenforgenomicDNA(gDNA)extractionusingtheMoBioPowerSoil1DNAIsolation kit(MoBioLaboratoriesInc.,CarlsbadCA,USA).ThethreegDNAextractionswerecom- binedintoasingletube.TheconcentrationwasdeterminedusingaQubit13.0highsensitivity fluorometricdoublestrandedDNAassay(ThermoFisherScientific,Waltham,MA,USA). AmpliconPCR,librarypreparation,andsequencing. Smallsub-unitribosomalDNA (SSUrDNA)ampliconswerepreparedforsequencingusingproceduresintheIllumina“16S Fig4.Comparisonofshort-waveinfraredreflectance(representedinyellow-green)measuredinPolleyand BootjackLakes48hourspost-damfailurevisually(inset)andasafunctionofdistanceawayfromthe impoundmentfailure. https://doi.org/10.1371/journal.pone.0196032.g004 PLOSONE|https://doi.org/10.1371/journal.pone.0196032 April25,2018 6/25 Watershed-scalemicrobialmonitoring MetagenomicSequencingLibraryPreparationGuide”[30]withthefollowingmodifications: PCRreactionsusedtheSsoFast™EvaGreen1Supermix(Bio-RadLaboratories(Canada)Ltd., Mississauga,ON,Canada),andprimersfortheV6-V8regionwereused:926f5’ AAACTYAA AKGAATTGRCGGand1392r5’ ACGGGCGGTGTGTRC 3’.Afterrecordingtheconcentra- tionineachindexed16SrDNAampliconpool,samplesweredilutedtoobtain4nMDNAin 20μLofDIH O.Paired-end300bpsequencingwasperformedonanIlluminaMiSeqatthe 2 UniversityofBritishColumbiaSequencingCentreintheFacultyofPharmaceuticalSciences usingtheIlluminaMS-102-3003-MiSeqReagentKitv3(600cycles)andPhiXControlKitv3. DNAformetagenomicwholegenomesequencingwaspurifiedfromthehighmolecular weightbandon1%agarosegelusingexcisionandtheQIAquickGelExtractionKit(Qiagen) andtheextractedgenomicDNAwasquantifiedusingQubitHSDNAassay(Thermo-Fisher Scientific).Approximately1ngtotalDNAwasusedforlibrarypreparation.ADNAfragment librarywithanindexateachendwasgeneratedforallsamplesusingtheNexteraXTDNA samplepreparationkit(Illuminacatalogno.GA09115).Forqualitycontrolandsizeevalua- tion,thesequencinglibrarywasanalyzedonaBioanalyzer2100(AgilentTechnologies). Paired-endsequencingwasperformedasfortheampliconsequencing.Rawsequencefiles frombothampliconandwholegenomesequencingweredepositedinthesequenceread archive(SRA)onhttp://www.ncbi.nlm.nih.govunderprojectaccessionnumber PRJNA433688. Bioinformatics. SequencequalitywasinspectedusingFastQCversion0.10.1[31].Since thequalityoftheforwardreadswasfarsuperiortothatforthereversereads,onlytheforward readswereusedforfurtheranalysis.Therawforwardreadswerequalityfilteredusingthe usearch[32]functionfastq_filtertotruncatetotheendsequencesifthePhredqualityscore waslessthan15,removesequenceslessthan150basesinlength,andtodiscardreadswith expectederrorsgreaterthan0.5andthosereadswithambiguousbasecalls.Highquality sequenceswereclusteredinto97%sequencesimilaritycut-offoperationaltaxonomicunits (OTUs)usingtheusearchfunctioncluster_otus.Taxonomicassignmenttorepresentative sequencesfromeachOTUwasperformedwithMOTHURversion1.36.1[33]functionclas- sify.seqsusingasthereferencetheSILVASSUdatabaseversion123[34]. WholegenomesequencereadswerepreprocessedtoremoveIlluminaandNexteraadapt- ers,lowquality(Q<25)andshort(length<100bases)readsusingTrimGalore0.4.1(http:// www.bioinformatics.babraham.ac.uk/projects/trim_galore/).Highqualityreadswereassem- bledwithvelvetandmeta-velvet[35].Openreadingframes(ORFs)werepredictedfromthe assembledcontigsusingProdigalversion1.0.1,translatedtoaminoacidsequencesandanno- tatedusingcustomdatabasesforrespiratorydenitrificationproteins(nitratereductase(NarG, NapA),nitritereductasetoNO(NirK,NirS),nitritereductasetoammonia(NrfH)andnitrous oxidereductase(NosZ)),selenatereductases(SerABC,SrdAandYgfK),dimethylsulfoxide (DMSO)reductases[36],dissimilatorysulfitereductase(DsrAB)andtheproteindatabase Uniref90.Allaminoacidsequencesforthecustomdatabases,excludingtheDMSOreductases, weredownloadedfromtheUniprotrepository(http://www.uniprot.org/,accessed3July 2017).OpenreadingframepredictionandannotationwerecarriedoutusingtheMetapath- waysversion2.5.1pipeline[37].Onlyhitswithbitscoresequaltoorgreaterthan80weretaken intoconsideration.Consistencybetweenfunctionalannotationusingthedenitrification,sele- natereductaseandsulfatereductasedatabasesandtheUniref90databasewasconfirmed.Since selenatereductasesSerABandSrdAfromThaueraselenatisandBacillusselenatarsenatis, respectively,belongtotheDMSOreductasefamilyofmolybdopterinoxidoreductases,ORFs withhitstoSerABandSrdAaminoacidsequenceswerealsoqueriedagainstacustomDMSO database[36]toconfirmtheirannotationtoselenatereductasewiththehighestbitscore. PLOSONE|https://doi.org/10.1371/journal.pone.0196032 April25,2018 7/25 Watershed-scalemicrobialmonitoring Microbialpopulationdiversity(richnessandevenness)ineachsamplewasassessedin termsoftaxonomicrichness(#ofdetectedOTUs)andSimpson’sDiversity(1-D).TheOTU tablewassubsampledwithMOTHURfunctionsub.sampleto3,000readspersampleandsplit intothreeOTUtablesforeachlayerorhydrozone:surficial(0–5cm),deep(25–30)cmand theaquaticsediments. Beta-diversityofsampleswasexploredonnon-metricmultidimensionalscaling(NMDS) ordinationplotsproducedusingBray-CurtisdissimilaritywiththeveganpackageoftoolsinR version3.3.1.Statisticalcomparisonsofmicrobialpopulationcompositionswerecarriedout usingUniFracdistances[38]withMOTHURfunctionsunifrac_weightedandunifrac_un- weighted.Indicatorspeciesforeachbiome(BootjackLake,PolleyLake,QuesnelLakeand HazeltonCreek)weredeterminedusingthemethodinDufrêneandLegendre[39]foreach hydrozonelayer. Results&discussion Sitecharacteristics&chemistry Siteswereclassifiedintodifferenthabitatsaccordingtothesurficialsubstrateappearance(Fig 2).HabitatsAtoCexhibitedanarrayofmacrophytes,organicdepositsandmineralsandlittle tonoevidenceofthepresenceoftailings.Greytailingsandmagnetitesandspresentedadis- tinctvisualcontrasttothedarkernativesubstrates,makingthemeasytodistinguishonthe ground.TailingsatMountPolleyarederivedfromanalkalicporphyrycoppergolddeposit wherecopperandcoppersulphidesareremovedpriortostorageinthetailingsimpoundment [40].HabitatDexhibitedamixtureofdepositedtailingsandintactnativesubstrateswhilehab- itatsEandFexhibitedextensivedepositedtailingsanddistinctionsweremadebasedonmate- rialtexture(HabitatFexhibitingprimarilyfinegreytailings).Habitattypeswereassociated closelywiththefourmajorwaterbodiesidentifiedinthisstudy.HazeltineCreekexhibitedthe greatestimpactfromthedisturbance,withthedepthoferosionofsoilandparentmaterial exceeding7minsomeareas,exposingbedrockanddepositingthick(~1-3m)tailingsand associatedsandsinacorridorrangingfrom40–250meterswide. TheshorelineofBootjackLakeconsistedofmostlyhabitatsAandBandlackeddeposited tailings.TheLakeexhibitedextensivebackwaterdepressionsinitsterrestrialshorelinethat wereorganicrich,under-layedwithanocclusivelayerofhighlyreducedclaybasedonclear gleyingandlackofoxidizedrootingzones.Asaresult,BootjackLakesamplelayersweredis- tinctlydifferentincomposition,wheresurficialsampleswerelargelycomprisedoforganic material,andwiththeexceptionoftheoutlettoBootjackCreek,deepsampleswerecomposed ofreducedclays.BootjackLakesedimentdepositswereprimarilyfinesedimentsimbeddedin rockycobbles.HazeltineCreek,themainflowpathofthereleasedtailings,wasscouredand almostentirelyreplacedbysedimentdepositedfromthetailingsoutwash(habitatF).Forboth PolleyandQuesnelLakes,somesitesclosetothedepositionpathwerereplacedbytailings. EventhoughalargeamountoftailingswaspushedintoPolleyLakeatthesouthend[4],there werestillsomesiteswherenaturaldiversewetlandcommunitieswereintact.TheQuesnel LakeshorelinesadjacenttotheHazeltineCreekdeltawheretailingsenteredthelakecontained littlevegetationandcomprisedmostlydeepsanddepositswithexposedweatheredcobbles (habitatsC&D).Onlysites20Aand21AonQuesnelLakewerevegetated,thoughonlythe mostproximalsitestotheHazeltineoutflowexhibitedevidenceofimpactsfromthebreach (depositedtailingsand/ordisplacedsediment).Themarkedlydifferentphysicalfeaturesofthe QuesnelLakeshorelineversusthoseinBootjackLakeandatthenorthernendofPolleyLake reflectconditiondifferencesthatexistedbeforethespill.QuesnelLake’sshorelineischaracter- izedbyextensivewave-washedcobblesandlittlevegetationwithin10mofthelakeedge,even PLOSONE|https://doi.org/10.1371/journal.pone.0196032 April25,2018 8/25 Watershed-scalemicrobialmonitoring insitessampledatgreaterdistancesfromtheHazeltineCreekoutflow(site14Ais2.5kmfrom theHazeltineCreekoutflowandexhibitedlittlevegetationcoverandnoevidenceofdeposited tailings). Soilmoistureandorganicmatter(SOM)contentsofthesamplescollectedasdetermined byovendryingandloss-on-ignitiontestsvariedfrom1.7%to91.1%,and0to854g/Kgrespec- tively,withSOMsignificantlyassociatedwithmoisturecontent(R2=0.74,F=401,P<0.001) (S1Fig).Althoughtherewerenostatisticallysignificantdifferencesinmoisturecontentand SOMbetweenlayersandhabitats,habitatAcontainedhigherSOMthantheotherhabitats, withhabitatFsampleshavingthelowestamountsofSOM(S2Fig).WhencomparingSOMby lake/stream,HazeltineCreeksurficialsamplescontainedsignificantlylowerSOMrelativeto allPolleyLakesamplelayers(p =0.02,p =0.01,p =0.04)andBootjacksurficialsam- surf deep sed ples(p=0.02)basedonBonferroni-correctedMann-Whitneypairwisecomparisons(Kruskal- WallisH=46.15,p<0.0001)(S3Fig).DeepsamplescollectedfromHazeltineCreekcontained significantlylowerSOMthanPolleyLakedeep(p=0.02)andsurficialsamples(p=0.01).All othercomparisonswerenotsignificant. Pore-waterchemistrypropertiesweremeasuredinlakeshoresub-aqueoussediments(S2 TableandS4Fig).Temperaturevariationswereduetothetwodifferentsamplingperiods,6–8 and21–23October2014,duringwhichtheaverageporewatertemperatureswere13and9˚C, respectively.PolleyandQuesnelLakesedimentshadsimilarcircum-neutralpHs(7.3 and ±0.7 7.8 ,respectively),whereasthepHinpore-waterfromBootjackLakewaslower(average ±0.3 6.5 ,p<0.01)andHazeltineCreekhigher(averageof8.9 ,p<0.001).Thesediments ±0.4 ±0.3 withinQuesnelLakewerethemostaerated(DO=7.7 mg/L)withthoseinBootjackLake ±1.4 havingthelowestoxygenconcentrations(DO=2.2 mg/L,p<0.001).Awiderangeofdis- ±0.8 solvedoxygenconcentrationsweremeasuredintheHazeltineCreekpore-waters.Conductivity wasslightlyhigherinPolleyLakesedimentpore-waterscomparedwithBootjackandQuesnel Lakes(p<0.05).NoconductivitydatawereobtainedforHazeltineCreek(sensormalfunction). Theammonium-N,nitrate-NandphosphateconcentrationsinBootjackLakesediment porewatersampleswereallbelow1mg/L(S2Table).Therewasmorenitrate-NintheQuesnel Lakesediments(1.35 mg/L)withthehighestconcentrationfoundatsite12A(4.11 CI=0–2.92 mg/L),whichwasasitewheretailingsweredeposited.Nitrate-Nconcentrationswerealso higherinHazeltineCreekthanintheotherlocations(averageof2.34 mg/L)withthe CI=0–5.75 highestconcentrationfoundatsite36A(8.24mg/L). InHazeltineCreek,theaveragesulphateconcentrationofthosesitesfromwhichpore watercouldberecoveredwas251 mg/L.Onesitehadasulphateconcentrationas CI=0–258 highas940mg/L(site36A)(S3Table),whichwasalsowherethehighestnitrate-Nconcentra- tionwasmeasured.AtthePolleyLakesites,sulphateconcentrationswerehigherthanthosein theotherLakes(BootjackandQuesnel),butnotashighinHazeltineCreek(averageof125 ±56 mg/L).Siteswiththehighestsulphateconcentrationswereatlocationscontainingtailings (sites58Aand60A).However,onefarsitethatwashighlyvegetated(site53A)alsohadahigh sulphateconcentration.Sulphateconcentrationswerenotmeasuredintheporewaterssam- pledfromBootjackLakeandQuesnelLake.SamplestakenfromQuesnelLakesincethe impoundmentfailurefoundsulphatetobelessthan15mg/L[4].Takentogethersoilandpore watercharacterizationtestsrevealedthatthedepositedtailingscreateddistincthabitatsand environmentscomparedwithunaffectedsites. Microbialcomposition Diversityanddistribution. Atotalof1,650,752highqualitysequenceswithamean lengthof227 baseswereobtainedfrom234sampleswithanaveragereadcountpersample ±40 PLOSONE|https://doi.org/10.1371/journal.pone.0196032 April25,2018 9/25 Watershed-scalemicrobialmonitoring Fig5.Speciesrichness(sobs)anddiversity(Simpson’s1-D)ofmicrobialcommunitiesinthesurficial,deepandsedimentlayersinBootjackLake (BJL),HazeltineCreek(HAZ),PolleyLake(POL)andQuesnelLake(QUE).Comparisonsarealsoshownforthesixhabitattypes(A-F)identifiedin Fig2.ErrorBarsrepresentstandarderrorofthemean. https://doi.org/10.1371/journal.pone.0196032.g005 of5,630 .Aftersubsamplingto3,000readspersample,15sampleswererejecteddueto ±2,839 insufficientsequencingdepth.Theimpactofthetailingsdepositionwasmostapparentfor HazeltineCreekwherespeciesrichnesswasapproximatelyonethirdlessthanthatobserved foralltheothersites.AlthoughHazeltineCreekwasscouredandmuchofitfilledwithtailings, microorganismswerestilldetectedinalllayersofthosesitesthatyieldedenoughDNAfor sequencing.Asexpected,theun-impactedreferencesite,BootjackLakehadthegreatestspe- ciesrichness(observednumberofspecies(sobs)inFig5),especiallyinthesurficiallayers thoughitonlydifferedsignificantlyfromHazeltineCreek(F =9.3,F =49.0, 3,21Sed 3,29Surf F =17,p<0.0005).Aspre-eventmicrobialcommunitydataarenotavailable,the 3,26Deep heighteneddiversityinBootjackLakemaybetheresultofpre-existingdifferencesamong waterbodiesasBootjackexhibitedhighersoilorganicmatterreflectiveofelevated productivity. PLOSONE|https://doi.org/10.1371/journal.pone.0196032 April25,2018 10/25
Description: