ebook img

Shock Absorber Function PDF

51 Pages·2009·2.62 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Shock Absorber Function

Shock Absorber Function Virtually all manufacturing processes involve movement of some kind. In production machinery this can involve linear transfers, rotary index motions, fast feeds etc. At some point these motions change direction or come to a stop. Any moving object possesses kinetic energy as a result of its motion and if the object changes direction or is brought to rest, the dissipation of this kinetic energy can result in destructive impact forces within the structural 9 and operating parts of the machine. Kinetic energy increases as the square of the speed and the heavier the object, or the faster it travels, the more energy it has. An increase in produc- tion rates is only possible by dissipating this kinetic energy smoothly and thereby eliminating destructive deceleration forces. Older methods of energy absorption such as rubber buffers, springs, hydraulic dashpots and cylinder cushions do not provide this required smooth deceleration characteristic – they are non linear and produce high peak forces at some point during their stroke. The optimum solution is achieved by an ACE industrial shock absorber. This utilises a series of metering orifices spaced throughout its stroke length and provides a constant linear deceleration with the lowest possible reaction force in the shortest stopping time. ACE Controlled Linear Deceleration ACE demo showing a wine glass dropping free fall 1.3 m. Decelerated by an ACE shock absorber not a drop of wine is spilled. Stopping with Rubber Buffers, Springs, Dashpots or Cylinder Cushions Result (cid:2) Loss of Production Raw Material Production (cid:2) Machine Damage (cid:2) Increased Maintenance Costs (cid:2) Increased Operating Noise (cid:2) Higher Machine Construction Finished Rubber Buff er Product Costs Scrap e g n a h c Stopping with ACE Shock Absorbers Your Advantages o ct t e bj u s (cid:2) Increased Production s n atio ACE Shock Absorber Finished Product (cid:2) Increased Operating Life c of the Machine cifi e (cid:2) Improved Machine Efficiency p S Production 9 (cid:2) Reduced Construction Costs 0 20 of the Machine 4. Raw Material e (cid:2) Reduced Maintenance Costs u s Is (cid:2) Reduced Noise Pollution ACE Shock Absorber (cid:2) Reduced Energy Costs Stoßdämpfer GmbH · PO Box 1510 · D-40740 Langenfeld · Tel. +49-2173-9226-4100 · Fax +49-2173-9226-89 · E-Mail: [email protected] 9 Comparison of Damping Systems 10 Comparison 1. Hydraulic Dashpot (High stopping force at start of the stroke). With only one metering orifice the moving load is abruptly slowed down at the ce (N) H Dydarsahuplioct PnCeyulimndaetirc- sthtaer st torof kthee ( gstivroinkge .h Tighhe sbhroackkin lgo afodrsc)e a rnisde tsh teon af avlelsr ya whiagyh r papeaidkly a.t the start of For Cushions g pin 2. Springs and Rubber Buffers (High stopping forces at end of stroke). p Sto Springs or At full compression. Also they store energy rather than dissipating it, causing Rubber Buffers the load to rebound back again. ACE Industrial Shock Absorbers 3. Air Buffers, Pneumatic Cylinder Cushions (High stopping force at end of stroke). Due to the compressibility of air these have a sharply rising force characteristic towards the end of the stroke. The majority of the energy is absorbed near the end of the stroke. 4. ACE Industrial Shock Absorbers (Uniform stopping force through the entire stroke). The moving load is smoothly and gently brought to rest by Stopping Stroke a constant resisting force throughout the entire shock absorber stroke. The load is decelerated with the lowest possible force in the shortest possible time eliminating damaging force peaks and shock damage to machines and equipment. This is a linear deceleration force stroke curve and is the curve provided by ACE industrial shock absorbers. In addition they considerably reduce noise pollution. Energy Capacity Reaction Force (Stopping Force) Stopping Time ACE Shock Absorber Hydraulic Dashpot ACE Shock Absorber t Force Force v (N) (N) Q (m/s) t Hydraulic ACE Shock Absorber Dashpot Hydraulic Dashpot Q Stopping Stroke Stopping Stroke Stopping Time e Assumption: Assumption: Assumption: g n a Same maximum reaction force. Same energy absorption Same energy absorption. h c (area under the curve). ct to e bj Result: Result: Result: u s The ACE shock absorber can The reaction force transmitted The ACE shock absorber stops ns o absorb considerably more energy by the ACE shock absorber is the moving load in a much shorter ati c (represented by the area under very much lower. time. cifi the curve). pe S 9 0 Your advantage: Your advantage: Your advantage: 0 2 By installing an ACE shock absorber By installing the ACE shock absorber By installing an ACE shock absorber 4. e production rates can be more than the machine wear and mainte- cycle times are reduced giving su s doubled without increasing nance can be drastically reduced. much higher production rates. I deceleration forces or reaction forces on the machine. 10 Stoßdämpfer GmbH · PO Box 1510 · D-40740 Langenfeld · Tel. +49-2173-9226-4100 · Fax +49-2173-9226-89 · E-Mail: [email protected] Comparison of Design and Function Comparison of Design 11 Piston O-Ring Pressure Chamber Accumulator U-Cup/Rod Wiper Piston Tube Rolling Diaphragm Seal Standard Design of ACE Miniature Shock Absorbers ACE Design for Higher Demands These miniature shock absorbers have a static pressure ACE Piston Tube Technology: chamber. The dynamic piston forces the hydraulic oil to The increased volume of displaced hydraulic oil provides escape through the metering orifices. 200% more energy absorption capacity in comparison The displaced oil is absorbed by the accumulator. with the standard design. The wider effective weight range enables these dampers to cover a much wider range of A static seal system containing a U-cup and a wiper seals applications. The piston and inner tube are combined into the shock absorber internally. a single component. The outer body and the pressure chamber are fully ACE Stretch and Rolling Diaphragm System: machined from solid with closed rear end. By the proven dynamic ACE rolling diaphragm seal system the shock absorber becomes hermetically sealed and provides up to 25 million cycles. The rolling diaphragm seal allows direct installation into the end cover of pneu- matic cylinders (up to 7 bar). These technologies are used separately or combined on the MC150M to MC600M, SC225M to SC2650M, SCS300 to SCS650 and on the models MC30M-Z and MA150M. General Function v = 2 m/s v = 1.5 m/s v = 1 m/s v = 0.5 m/s v = 0 m/s e g n a h c o ct t bje *4 *3 *2 *1 *0 u s s p = 400 bar p = 400 bar p = 400 bar p = 400 bar p = 0 bar n o ati * The load velocity reduces continuously as you travel through the stroke due to the reduction in the number of metering c cifi orifices (*) in action. The internal pressure remains essentially constant and thus the force vs. stroke curve remains linear. e p S 9 F = Force (N) 0 0 p = Internal pressure (bar) 2 4. s = Stroke (m) e su t = Deceleration time (s) s I v = Velocity (m/s) F/p v s/t t Stoßdämpfer GmbH · PO Box 1510 · D-40740 Langenfeld · Tel. +49-2173-9226-4100 · Fax +49-2173-9226-89 · E-Mail: [email protected] 11 Built-in Safety 12 Industrial shock absorbers and automobile braking systems have two crucial functional similarities: 1. Both should bring a moving mass quickly and safely to rest without any recoil or “bounce back”. 2. Both must never suddenly fail without warning. ACE industrial shock absorbers are built to the highest quality. Shock absorber bodies and inner pressure chambers are fully machined from solid high tensile alloy steel. This gives a completely closed end one-piece pressure Piston Rod chamber with no seals or circlips being necessary. high tensile steel hardened and corrosion resistant. The advantage of this design concept is that the ACE shock absorber is able to withstand much higher internal pressures or overload without damage, giving a very high safety margin. The chance of a sudden failure due to overload etc. is effectively ruled out. Bearing maintenance-free, self-lubricating and self-retaining. Seals only one dynamic seal. Hermetically sealed rolling diaphragm sealing system. Piston Tube with integral piston check valve and metering orifi ces. Fully machined from solid with closed rear end to withstand internal pressures up to 1000 bar. Shock Absorber Body heavy construction massively built one-piece body with closed rear end. Fully machined from solid steel to ensure total reliability. Self-Compensating Industrial Shock Absorbers e g are maintenance-free, self-contained hydraulic devices with an h multiple metering orifices which extend through the complete c o stroke length. ct t e bj u After the moving load contacts the shock absorber the piston s s moves back creating an immediate pressure rise in the pres- on sure chamber. The hydraulic oil behind the piston can initially cati escape through all the metering orifices. cifi e p S The number of metering orifi ces in action decreases 09 0 proportionally to the distance travelled through the 2 4. stroke. e u s s I The impact velocity of the moving load is smoothly reduced. The internal pressure and thus the reaction force (Q) remain essentially constant thoughout the complete stroke length providing a constant deceleration rate or: Linear Deceleration 12 Stoßdämpfer GmbH · PO Box 1510 · D-40740 Langenfeld · Tel. +49-2173-9226-4100 · Fax +49-2173-9226-89 · E-Mail: [email protected] Formulae and Calculations ACE shock absorbers provide linear deceleration and are 1. Mass to be decelerated (weight) m (kg) therefore superior to other kinds of damping element. 2. Impact velocity at shock absorber v (m/s) D It is easy to calculate around 90 % of applications knowing 3. Propelling force F (N) only the following 5 parameters: 4. Cycles per hour c (/hr) 5. Number of absorbers in parallel n Verwendete Formelzeichen W Kinetic energy per cycle Nm 3 ST Stall torque factor (normally 2.5) 1 to 3 1 W Propelling force energy per cycle Nm M Propelling torque Nm 13 2 W Total energy per cycle (W + W ) Nm I Moment of inertia kgm2 3 1 2 1 W Total energy per hour (W · c) Nm/hr g Acceleration due to gravity = 9.81 m/s2 4 3 me Eff ective weight kg h Drop height excl. shock absorber stroke m m Mass to be decelerated kg s Shock absorber stroke m n Number of shock absorbers (in parallel) L/R/r Radius m 2 v Velocity of moving mass m/s Q Reaction force N 2 v Impact velocity at shock absorber m/s µ Coeffi cient of friction D ω Angular velocity rads/s t Deceleration time s F Propelling force N a Deceleration m/s2 c Cycles per hour 1/hr α Side load angle ° P Motor power kW β Angle of incline ° 1 All mentioned values of W in the capacity charts are only valid for room temperature. 3 ST =^ relation between starting torque and running torque of the motor 4 There are reduced values at higher temperature ranges. (depending on the design) 2 v or v is the fi nal impact velocity of the mass. With accelerating motion the fi nal In all the following examples the choice of shock absorbers D impact velocity can be 1.5 to 2 times higher than the average. Please take this into made from the capacity chart is based upon the values of (W3), account when calculating kinetic energy. (W ), (me) and the desired shock absorber stroke (s). 4 1 Mass without propelling force Formulae Example W = 100 . 1.52 . 0.5 = 113 Nm 1 W = m . v2 . 0.5 m = 100 kg W2 = 0 W1 = 0 v = 1.5 m/s W3 = 113 + 0 = 113 Nm WW234 == WW13 +. cW2 cs == 05.0005 0 m/h r(chosen) Wme4 == 1m1 3 . 500 == 56 510000 kNgm/hr v = v Chosen from capacity chart: D me = m Model MC3350M-2 self-compensating 2 Mass with propelling force Formulae Example W = 36 . 1.52 . 0.5 = 41 Nm 1 W = m . v2 . 0.5 m = 36 kg W2 = 400 . 0.025 = 10 Nm W1 = F . s 1 v = 1.5 m/s W3 = 41 + 10 = 51 Nm WW234 == WW13 +. cW2 Fc == 4100000 N/h r Wme4 == 251 . .5 110 :0 10. 5 2 == 51 00405 Nkgm/hr v = v s = 0.025 m (chosen) Chosen from capacity chart: D me = 2 . W3 Model MC600M self-compensating vD2 1 v is the fi nal impact velocity of the mass: With pneu- 2.1 for vertical motion upwards W = (F – m . g) . s matically propelled systems this can be 1.5 to 2 times 2.2 for vertical motion downwards W22 = (F + m . g) . s tchaelc auvlaetriangge e vneelorgcyit.y. Please take this into account when 3 Mass with motor drive Formulae Example W = 800 . 1.22 . 0,5 = 576 Nm 1 W = m . v2 . 0.5 m = 800 kg W2 = 1000 . 4 . 2.5 . 0.1 : 1.2 = 834 Nm W12 = 1 0 0 0 . Pv . ST . s vS T == 12..25 m/s WWme34 === 51247 .16 01 +4 .1 81003 :04 1 .22 === 14111 09 4051008 NNkgmm/hr W3 = W1 + W2 P = 4 kW W4 = W3 . c c = 100 /hr Chosen from capacity chart: v = v s = 0.100 m (chosen) Model MC64100M-2 self-compensating D ge me = 2 . W3 Note: Do not forget to include the rotational energy of motor, han vD2 coupling and gearbox into calculation for W1. c pecifications subject to 4 Mass on driven rollers WmFWWvWDoe1234 r======m vmmW2W u 13... +W.lvµ a 2c 3W. e .g 20 .. 5s Emvc(sS xteae====lm /0211S8.5.t05p00e5 e l0el) mkm/µhg /r=(sc 0h.o2sen) WWWWmCMheo1234o ds=====eel 22232nM5580 .fC1006r 3o 4 +...m05 1106 25c8.. 50:52a0 M1 2p . .a .-95 c202.i 8t. s y51e cl .fh -0ca.or0tm:5p en=====s atin5g5 30220287865012 NNkNNgmmmm/hr 9 S vD2 0 20 5 Swinging mass Formulae Example W = 20 . 12 . 0.5 = 10 Nm Issue 4. with propelling torque WW12 == mM R. .v 2s . 0.5 = 0.5 . I . ω2 mvM === 2150 0 kmNgm/s WWWv1234 ==== 5131000 . 6 +.0 . 0.1 5.1.0 82:1 0 02 . 8: 0.5 ==== 16 8010110 ...226 3 NkNNgmmm/hr WW34 == WW13 +. cW2 RL == 00..58 mm mDe = 2 . 11.2 : 0.632 = 56 kg vD = v L. R = ω . R cs == 015.00102 m/h r(chosen) CMhoodseel nM fCro1m50 cMapHa sceitlyf- cchoamrpt:ensating W = 2 . W3 Check the side load angle, tan α = s/R, with regard to “Max. 2 vD2 Side Load Angle” in the capacity chart (see example 6.2) Stoßdämpfer GmbH · PO Box 1510 · D-40740 Langenfeld · Tel. +49-2173-9226-4100 · Fax +49-2173-9226-89 · E-Mail: [email protected] 13 Formulae and Calculations 14 6 Free falling mass Formulae Example W = 30 . 0.5 . 9.81 = 147 Nm 1 W = m . g . h m = 30 kg W2 = 30 . 9.81 . 0.05 = 15 Nm W1 = m . g . s h = 0.5 m W3 = 147 + 15 = 162 Nm W23 = W1 + W2 c = 400 /hr W4 = 162 . 400 = 64 800 Nm/hr W4 = W3 . c s = 0.050 m (chosen) vD = √2 . 9.81 . 0.5 = 3.13 m/s v = √2 . g . h 2 . 162 mDe = 2 . W3 m e = 3.132 = 33 kg vD2 Chosen from capacity chart: Model MC3350M-1 self-compensating 6.1 Mass rolling/sliding down Formulae 6.2 Mass free falling about Side load angle from shock absorber axis incline W = m . g . h = m . v2 . 0.5 a pivot point 1 D W = m . g . sinβ . s s 2 Calculation as tan α = W3 = W1 + W2 per example 6.1 R W WvmDe4 === = W√(2 F 2v3.– D W.. 2 m cg3 .. g h . sinβ) . s eW v Dx 1 c e == p t √m W 2 . 2 .g = g . 0.h h . RL 6.1a propelling force up incline 2 W = (F + m . g . sinβ) . s 6.1b propelling force down incline 2 Check the side load angle, tan α = s/R, with regard to “Max. Side Load Angle” in the capacity chart 7 Rotary index table with Formulae Example W = 1000 . 1.12 . 0.25 = 303 Nm 1 propelling torque W = m . v2 . 0.25 = 0.5 . I . ω2 m = 1000 kg W2 = 300 . 0.025 : 0.8 = 63 Nm Ngvcwwdaiiiieorvstlcitihetgdeur nih u:lbf a tnoaFu rirro tfe tiorao mrobnmnul.e llya e W mWWvDe1234 = = === 2WWv M L..R13 R. W+ . s c3 = W 2ω . R vMsLRc ====== 01110100....102800 55 0 0 mmNmm/hm /r(schosen) WWvCMCmDhheo34 eo dc sk====e etl h 2123nMe78 ..fsC r .+i03od4 17m.e 598 2 l :5 o 0c a00a0dM.p 8a a-n2c3g il etsy,e tclafnh- caαor =tm: sp/R====e,n w si3atht61 ir ne 364gg609a6004rd . 7to “MNNkmagxmm/.s/hr vD2 Side Load Angle” in the capacity chart (see example 6.2) 8 Swinging arm with propelling Formulae Example W = 0.5 . 56 . 12 = 28 Nm 1 torque (uniform weight W = m . v2 . 0.17 = 0.5 . I . ω2 I = 56 kgm2 W2 = 300 . 0.025 : 0.8 = 9 Nm distribution) WWW1234 = == WWM R13 . + . s c W 2 ωMsL ==== 0131. 0.0502 5 mrNmam d(/cshosen) WWvmDe34 ==== 212378 .. .+03 17. 982 : 0 00. 8 2 ==== 44 410317006 . 8 NNmkgmm/s/hr vD = v L. R = ω . R Rc == 012.80 0 m/hr CMhoodseel nM fCro6m0 0cMap saeclift-yc ochmapret:nsating me = 2 . W3 Check the side load angle, tan α = s/R, with regard to “Max. vD2 Side Load Angle” in the capacity chart (see example 6.2) 9 Swinging arm with propelling Formulae Example W = 1000 . 22 . 0,17 = 680 Nm 1 force (uniform weight distri- W = m . v2 . 0.17 = 0.5 . I . ω2 m = 1000 kg W2 = 7000 . 0.6 . 0.05 : 0.8 = 263 Nm bution) W WWvD1234 ==== WFWv L.. 13 RR r+. . c=Ws 2ω = M. RR . s vFMsrR ====== 027400. 02..068005 000 mmNNmmm /(schosen) WWvCMmDheo34 o d s====eel 6229nC8 4 ..fA03r 092o +.m.4x 8293 2 c-0 ::61a 0 131 p s, .a2e3c l3 fi-t2yc ocmhapretn:sa====t i 8ng481 9704063061 . 33 NNkmgmm/s/hr hange m e = 2 v. DW23 Lc == 19.020 m/hr ct to c e bj 1 0 sMpaesesd lowered at controlled WFo r=m mu . lva2 e. 0.5 Em xa=m 60p00le kg WW12 == 66000000 .. 19..5812 .. 00..53 0 5 == 167 975520 NNmm ons su WWW1234 === WmW 13. +.g c W. s2 vsc === 016..035 0 5 mm/h /r(schosen) WWme34 === 26247 .75 20042 7+ .0 12670 :9 15.25 2 === 1 4282412 791205027 NNkgmm/hr Specificati vD = v Chosen from capacity chart: 9 me = 2 . W3 Model CA3x12-2 self-compensating 200 vD2 e 4. u s s I Reaction force Q (N) 1.5 . W Stopping time t (s) 2.6 . s Deceleration rate a (m/s2) 0.75 . v 2 Q = 3 t = a = D s v s D Approximate values assuming correct adjustment. Add safety margin if necessary. (Exact values will depend upon actual application data and can be provided on request.) 14 Stoßdämpfer GmbH · PO Box 1510 · D-40740 Langenfeld · Tel. +49-2173-9226-4100 · Fax +49-2173-9226-89 · E-Mail: [email protected] Formulae and Calculations 19 Wagon against Formulae Example W = 5000 . 22 . 0.25 = 5 000 Nm 1 2 shock absorbers W = m . v2 . 0.25 m = 5000 kg W2 = 3500 . 0.150 = 525 Nm W1 = F . s v = 2 m/s W3 = 5000 + 525 = 5 525 Nm WW234 == WW13 +. cW2 cF == 1305 00 /Nhr WmvDe4 === 225 5..2 055.5 5.2 15 0 : 12 === 5151 2055010 Nmkgm/s/hr v = v. 0.5 s = 0.150 m (chosen) D Chosen from capacity chart: m e = 2 v. DW23 Model CA2x6-2 self-compensating 15 20 Wagon against wagon Formulae Example W = 7000 . 10000 . 1.72 . 0.5 = 5 950 Nm W 1 = ( mm1+. mm2 ) . (v1+v2)2 . 0.5 mv == 710.20 0 kmg/s W12 = (57000000+ .1 000.10207) = 635 Nm W = F 1. s2 c1 = 20 /hr W3 = 5950 + 635 = 6 585 Nm WW234 == WW13 +. cW2 mv22 == 010.50 00 kmg/s WvmDe4 === 6215 ..28 6 5+5 .80 25.50 : 1.72 === 1314 7505107. 7 mNkgm/s/hr F = 5000 N vD = v1 + v2 s = 0.127 m (chosen) Chosen from capacity chart: me = 2 . W3 Model CA3x5-1 self-compensating vD2 21 Wagon against wagon Formulae Example W = 7000 . 10000 . 1.72 . 0.5 = 5 950 Nm 2 shock absorbers W 1 = ( mm1+. mm2 ) . (v1+v2)2 . 0.5 mv == 710.20 0 kmg/s W12 = (57000000+ .1 000.10000) = 500 Nm W = F .1 s2 x1 = 20 /hr W3 = (5950 : 2) + 500 = 3 475 Nm W W 234 == WW213 +. cW2 mFv2 2 === 50100.500 000 Nkmg/s WvmDe4 === 32(14 ..7 235 4+ .7 025.0 :5 )0 .:8 25 2 === 699 5 601009. 85 mNkgm/s/hr v D = v 1 +2 v2 s = 0.100 m (chosen) CMhoodseel nC fAr2omx4 c-2a psaeclfi-tyc ocmhapretn:sating me = 2 . W3 vD2 Note: When using several shock absorbers in parallel, the values (W ), (W ) and (me) are divided according to the number of units used. 3 4 Effective Weight (me) A Mass without propelling force Example B Mass with propelling force Example m = 100 kg m = 100 kg Formula Formula me = m v = v = 2 m/s 2 . W F = 2000 N W = W = 200 Nm me = 3 v = v = 2 m/s 1 3 v 2 D 2 . 200 D s = 0.1 m me = = 100 kg 4 W = 200 Nm 1 ge me = m W2 = 200 Nm n W = 400 Nm a 3 ct to ch m e = 2 . 4400 = 200 kg e ubj C Mass without propelling force D Mass without propelling force s s direct against shock absorber with mechanical advantage n o ati c cifi Example Example e Sp Formula m = 20 kg m = 20 kg 9 me = m v = v = 2 m/s v = 2 m/s 0 D e 4.20 sW 1 == 0W.13 =m 40 Nm vsD == 00..15 mm /s Issu m e = 2 2. 240 = 20 kg Formu 2la . W W1 = W2 3. 4=0 4 0 Nm me = 3 me = = 320 kg v 2 0.52 D The effective weight (me) can either be the same as the actual weight (examples A and C), or it can be an imaginary weight representing a combination of the propelling force or lever action plus the actual weight (examples B and D). Stoßdämpfer GmbH · PO Box 1510 · D-40740 Langenfeld · Tel. +49-2173-9226-4100 · Fax +49-2173-9226-89 · E-Mail: [email protected] 15 Shock Absorber Capacity Chart Self-Compensating Shock Absorbers 16 Capacity Chart Energy Capacity Effective Weight Energy Capacity Effective Weight Self-Compensating Self-Compensating Type Stroke W3 me min. me max. Page Type Stroke W3 me min. me max. Page mm Nm/Cycle kg kg mm Nm/Cycle kg kg Part Number Part Number MC5M-1-B 4 0.68 0.5 4.4 19 MC4525M-0 25 340 7 27 40 MC5M-2-B 4 0.68 3.8 10.8 19 MC4525M-1 25 340 20 90 40 MC5M-3-B 4 0.68 9.7 18.7 19 MC4525M-2 25 340 80 310 40 MC9M-1-B 5 1 0.6 3.2 19 MC4525M-3 25 340 260 1 050 40 MC9M-2-B 5 1 0.8 4.1 19 MC4525M-4 25 340 890 3 540 40 MC10ML-B 5 1.25 0.3 2.7 19 MC4550M-0 50 680 13 54 40 MC10MH-B 5 1.25 0.7 5 19 MC4550M-1 50 680 45 180 40 MC30M-1 8 3.5 0.4 1.9 19 MC4550M-2 50 680 150 620 40 MC30M-2 8 3.5 1.8 5.4 19 MC4550M-3 50 680 520 2 090 40 MC30M-3 8 3.5 5 15 19 MC4550M-4 50 680 1 800 7 100 40 MC25ML 6 2.8 0.7 2.2 19 MC4575M-0 75 1 020 20 80 40 MC25M 6 2.8 1.8 5.4 19 MC4575M-1 75 1 020 70 270 40 MC25MH 6 2.8 4.6 13.6 19 MC4575M-2 75 1 020 230 930 40 MC75M-1 10 9 0.3 1.1 19 MC4575M-3 75 1 020 790 3 140 40 MC75M-2 10 9 0.9 4.8 19 MC4575M-4 75 1 020 2 650 10 600 40 MC75M-3 10 9 2.7 36.2 19 MC6450M-0 50 1 700 35 140 42 MC150M 12 20 0.9 10 21 MC6450M-1 50 1 700 140 540 42 MC150MH 12 20 8.6 86 21 MC6450M-2 50 1 700 460 1 850 42 MC150MH2 12 20 70 200 21 MC6450M-3 50 1 700 1 600 6 300 42 MC150MH3 12 20 181 408 21 MC6450M-4 50 1 700 5 300 21 200 42 MC225M 12 41 2.3 25 21 MC64100M-0 100 3 400 70 280 42 MC225MH 12 41 23 230 21 MC64100M-1 100 3 400 270 1 100 42 MC225MH2 12 41 180 910 21 MC64100M-2 100 3 400 930 3 700 42 MC225MH3 12 41 816 1 814 21 MC64100M-3 100 3 400 3 150 12 600 42 MC600M 25 136 9 136 21 MC64100M-4 100 3 400 10 600 42 500 42 MC600MH 25 136 113 1130 21 MC64150M-0 150 5 100 100 460 42 MC600MH2 25 136 400 2 300 21 MC64150M-1 150 5 100 410 1 640 42 MC600MH3 25 136 2 177 4 536 21 MC64150M-2 150 5 100 1 390 5 600 42 SC25M-5 8 10 1 5 25 MC64150M-3 150 5 100 4 700 18 800 42 SC25M-6 8 10 4 44 25 MC64150M-4 150 5 100 16 000 63 700 42 SC25M-7 8 10 42 500 25 CA2x2-1 50 3 600 700 2 200 53 SC75M-5 10 16 1 8 25 CA2x2-2 50 3 600 1 800 5 400 53 SC75M-6 10 16 7 78 25 CA2x2-3 50 3 600 4 500 13 600 53 SC75M-7 10 16 75 800 25 CA2x2-4 50 3 600 11 300 34 000 53 SC190M-0 16 25 0.7 4 23 CA2x4-1 102 7 200 1 400 4 400 53 SC190M-1 16 25 1.4 7 23 CA2x4-2 102 7 200 3 600 11 000 53 SC190M-2 16 25 3.6 18 23 CA2x4-3 102 7 200 9 100 27 200 53 SC190M-3 16 25 9 45 23 CA2x4-4 102 7 200 22 600 68 000 53 SC190M-4 16 25 23 102 23 CA2x6-1 152 10 800 2 200 6 500 53 SC190M-5 12 31 2 16 25 CA2x6-2 152 10 800 5 400 16 300 53 SC190M-6 12 31 13 140 25 CA2x6-3 152 10 800 13 600 40 800 53 SC190M-7 12 31 136 1 550 25 CA2x6-4 152 10 800 34 000 102 000 53 SC300M-0 19 33 0.7 4 23 CA2x8-1 203 14 500 2 900 8 700 53 SC300M-1 19 33 1.4 8 23 CA2x8-2 203 14 500 7 200 21 700 53 SC300M-2 19 33 4.5 27 23 CA2x8-3 203 14 500 18 100 54 400 53 SC300M-3 19 33 14 82 23 CA2x8-4 203 14 500 45 300 136 000 53 SC300M-4 19 33 32 204 23 CA2x10-1 254 18 000 3 600 11 000 53 SC300M-5 15 73 11 45 25 CA2x10-2 254 18 000 9 100 27 200 53 SC300M-6 15 73 34 136 25 CA2x10-3 254 18 000 22 600 68 000 53 SC300M-7 15 73 91 181 25 CA2x10-4 254 18 000 56 600 170 000 53 SC300M-8 15 73 135 680 25 CA3x5-1 127 14 125 2 900 8 700 54 SC300M-9 15 73 320 1 950 25 CA3x5-2 127 14 125 7 250 21 700 54 SC650M-0 25 73 2.3 14 23 CA3x5-3 127 14 125 18 100 54 350 54 SC650M-1 25 73 8 45 23 CA3x5-4 127 14 125 45 300 135 900 54 e g SC650M-2 25 73 23 136 23 CA3x8-1 203 22 600 4 650 13 900 54 an SC650M-3 25 73 68 408 23 CA3x8-2 203 22 600 11 600 34 800 54 ch SC650M-4 25 73 204 1 180 23 CA3x8-3 203 22 600 29 000 87 000 54 o SC650M-5 23 210 23 113 25 CA3x8-4 203 22 600 72 500 217 000 54 ct t e SC650M-6 23 210 90 360 25 CA3x12-1 305 33 900 6 950 20 900 54 bj SC650M-7 23 210 320 1 090 25 CA3x12-2 305 33 900 17 400 52 200 54 su SC650M-8 23 210 770 2 630 25 CA3x12-3 305 33 900 43 500 130 450 54 ns SC650M-9 23 210 1 800 6 350 25 CA3x12-4 305 33 900 108 700 326 000 54 atio SC925M-0 40 110 4.5 29 23 CA4x6-3 152 47 500 3 500 8 600 55 c SC925M-1 40 110 14 90 23 CA4x6-5 152 47 500 8 600 18 600 55 cifi e SC925M-2 40 110 40 272 23 CA4x6-7 152 47 500 18 600 42 700 55 p S SC925M-3 40 110 113 726 23 CA4x8-3 203 63 300 5 000 11 400 55 9 SC925M-4 40 110 340 2 088 23 CA4x8-5 203 63 300 11 400 25 000 55 0 0 MC3325M-0 25 155 3 11 38 CA4x8-7 203 63 300 25 000 57 000 55 2 4. MC3325M-1 25 155 9 40 38 CA4x16-3 406 126 500 10 000 23 000 55 e MC3325M-2 25 155 30 120 38 CA4x16-5 406 126 500 23 000 50 000 55 su MC3325M-3 25 155 100 420 38 CA4x16-7 406 126 500 50 000 115 000 55 Is MC3325M-4 25 155 350 1 420 38 MC3350M-0 50 310 5 22 38 MC3350M-1 50 310 18 70 38 MC3350M-2 50 310 60 250 38 MC3350M-3 50 310 210 840 38 MC3350M-4 50 310 710 2 830 38 16 Stoßdämpfer GmbH · PO Box 1510 · D-40740 Langenfeld · Tel. +49-2173-9226-4100 · Fax +49-2173-9226-89 · E-Mail: [email protected] Shock Absorber Capacity Chart Adjustable Shock Absorbers Capacity Chart Max. Energy Capacity Nm Effective Weight me Self-Contained Adjustable Type Stroke W3 W4 me min. me max. Page mm Nm/Cycle Nm/h kg kg Part Number MA30M 8 3.5 5 650 0.23 15 27 FA1008VD-B 8 1.8 3 600 0.2 10 27 17 MA50M 7 5.5 13 550 4.5 20 27 MA35M 10 4 6 000 6 57 27 MA150M 12 22 35 000 1 109 27 MA225M 19 25 45 000 2.3 226 27 MA600M 25 68 68 000 9 1 360 27 MA900M 40 100 90 000 14 2 040 27 MA3325M 25 170 75 000 9 1 700 38 ML3325M 25 170 75 000 300 50 000 38 MA3350M 50 340 85 000 13 2 500 38 ML3350M 50 340 85 000 500 80 000 38 MA4525M 25 390 107 000 40 10 000 40 ML4525M 25 390 107 000 3 000 110 000 40 MA4550M 50 780 112 000 70 14 500 40 ML4550M 50 780 112 000 5 000 180 000 40 MA4575M 75 1 170 146 000 70 15 000 40 ML6425M 25 1 020 124 000 7 000 300 000 42 MA6450M 50 2 040 146 000 220 50 000 42 ML6450M 50 2 040 146 000 11 000 500 000 42 MA64100M 100 4 080 192 000 270 52 000 42 MA64150M 150 6 120 248 000 330 80 000 42 A11/2x2 50 2 350 362 000 195 32 000 52 A11/2x31/2 89 4 150 633 000 218 36 000 52 A11/2x5 127 5 900 904 000 227 41 000 52 A11/2x61/2 165 7 700 1 180 000 308 45 000 52 A2x2 50 3 600 1 100 000 250 77 000 53 A2x4 102 9 000 1 350 000 250 82 000 53 A2x6 152 13 500 1 600 000 260 86 000 53 A2x8 203 19 200 1 900 000 260 90 000 53 A2x10 254 23 700 2 200 000 320 113 000 53 A3x5 127 15 800 2 260 000 480 154 000 54 A3x8 203 28 200 3 600 000 540 181 500 54 A3x12 305 44 000 5 400 000 610 204 000 54 e g n a h c o ct t e bj u s s n o ati c cifi e p S 9 0 0 2 4. e u s s I Stoßdämpfer GmbH · PO Box 1510 · D-40740 Langenfeld · Tel. +49-2173-9226-4100 · Fax +49-2173-9226-89 · E-Mail: [email protected] 17 Miniature Shock Absorbers MC5 to MC75 Self-Compensating 18 ACE miniature shock absorbers are maintenance-free, self-contained hydraulic components. The model range MC5 to MC75 have a very short overall length and a low return force. The shock absorber is filled with a tem- perature stable oil and has an integrated positive stop. They are ideally suited for small, fast, handling equipment, rotary Elastomer Insert actuators, pick and place mechanisms (MC25M and MC75M) and similar small automation equipment. A wide choice of metering hardnesses enable these units to cover applications with effective weights ranging from Piston Rod 0.3kg to 36 kg. The MC30M-Z model enables direct Positive Stop installation inside a pneumatic pressure chamber (up to 7 bar), due to the inno- Main Bearing vative ACE stretch membrane. Accumulator Piston Return Spring Pressure Chamber Outer Body Impact velocity range: Ensure that effective weight of application is within the range of the unit chosen. Special range units available on request. e Material: Shock absorber body: Steel with black oxide g n a finish. Accessories: Steel with black oxide finish or nitride h c hMaCrd5e annedd .M HCa9rd: eAnluemd instiuaminl.e ss steel piston rod. Locknut ect to bj W capacity rating: (max. energy per hour Nm/hr) If your su 4 s application exceeds the tabu- n o lated W figures consider ati addition4al cooling i.e. cylinder cific e exhaust air etc. Ask ACE for p S further details. 9 0 Slot Mounting: In any position. 4.20 If precise end position datum e u s is required consider use of the s I optional stop collar type AH. Operating temperature range: 0 °C to 65 °C On request: The MC Series are available with weartec finish (seawater resistant) or other 18 special finishes.

Description:
The optimum solution is achieved by an ACE industrial shock absorber. a constant resisting force throughout the entire shock absorber stroke. 11 050 kg. Chosen from capacity chart: Model CA2x6-2 self-compensating . 6 350. 25. SC925M-0. 40. 110. 4.5. 29. 23. SC925M-1. 40. 110. 14. 90. 23.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.