ebook img

Shifts in wind energy potential following land-use driven vegetation dynamics in complex terrain PDF

2018·4.5 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Shifts in wind energy potential following land-use driven vegetation dynamics in complex terrain

ScienceoftheTotalEnvironment639(2018)374–384 ContentslistsavailableatScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Shifts in wind energy potential following land-use driven vegetation dynamics in complex terrain JiannongFanga,AlexanderPeringerb,Mihai-SorinStupariuc,d,IleanaPaˇtru-Stupariud,e, AlexandreButtlerf,g,h ,FrancoisGolayi,FernandoPorté-Agela,* aWindEngineeringandRenewableEnergyLaboratory(WiRE),SchoolofArchitecture,CivilandEnvironmentalEngineering(ENAC),ÉcolePolytechniqueFédéraledeLausanne(EPFL), Lausanne1015,Switzerland bLandscapeEcologyandResourcesManagement,FacultyFLUS-HKT,Nuertingen-GeislingenUniversity,Germany cFacultyofMathematicsandComputerScience,UniversityofBucharest,Romania dTransdisciplinaryResearchCentreLandscape-Territory-InformationSystems(CeLTIS),InstituteofResearchofUniversityofBucharest(ICUB),Romania eDepartmentofRegionalGeographyandEnvironment,FacultyofGeography,UniversityofBucharest,Romania fEcologicalSystemsLaboratory(ECOS),SchoolofArchitecture,CivilandEnvironmentalEngineering(ENAC),ÉcolePolytechniqueFédéraledeLausanne(EPFL),Lausanne1015,Switzerland gSwissFederalInstituteforForest,SnowandLandscapeResearch(WSL),SiteLausanne,Station2,Lausanne1015,Switzerland hLaboratoiredeChrono-Environnement,UMRCNRS6249,UFRdesSciencesetTechniques,UniversitédeFranche-Comté,16routedeGray,F-25030Besançon,France iGeographicInformationSystemsLaboratory(LASIG),SchoolofArchitecture,CivilandEnvironmentalEngineering(ENAC),ÉcolePolytechniqueFédéraledeLausanne(EPFL),Lausanne 1015,Switzerland H I G H L I G H T S G R A P H I C A L A B S T R A C T • Modelingframeworkcouplinglarge- eddy simulation of boundary layer, vegetationdynamicsanddigitalele- vationmodel. • Wind energy potential in complex mountainterrainstronglydependson land cover changes driven by land- usechange. • Trade-offbetweenrenewableenergy production and biodiversity under agro-andforestpoliciesinlandscape development. • The framework could support the long-term planning of wind energy projects under land-use and climate changescenarios. A R T I C L E I N F O A B S T R A C T Articlehistory: Manymountainousregionswithhighwindenergypotentialarecharacterizedbymulti-scalevariabilities Received30November2017 ofvegetationinbothspatialandtimedimensions,whichstronglyaffectthespatialdistributionofwind Receivedinrevisedform30April2018 resourceanditstimeevolution.Tothisend,wedevelopedacoupledinterdisciplinarymodelingframework Accepted6May2018 capableofassessingtheshiftsinwindenergypotentialfollowingland-usedrivenvegetationdynamicsin Availableonline26May2018 complexmountainterrain.ItwasappliedtoacasestudyareaintheRomanianCarpathians.Theresults showthattheoverallshiftsinwindenergypotentialfollowingthechangesofvegetationpatterndueto Editor:R.Ludwig differentland-usepoliciescanbedramatic.Thissuggeststhattheplanningofwindenergyprojectshouldbe *Correspondingauthor. E-mail address:fernando.porte-agel@epfl.ch(F.Porté-Agel). https://doi.org/10.1016/j.scitotenv.2018.05.083 0048-9697/ J.Fangetal. /ScienceoftheTotalEnvironment639(2018)374–384 375 Keywords: integratedwiththeland-useplanningataspecificsitetoensurethattheexpectedenergyproductionof Atmosphericboundarylayer theplannedwindfarmcanbereachedoveritsentirelifetime.Moreover,thechangesinthespatialdistri- Modelcoupling butionofwindandturbulenceunderdifferentscenariosofland-usearecomplex,andtheymustbetaken Large-eddysimulation intoaccountinthemicro-sitingofwindturbinestomaximizewindenergyproductionandminimizefatigue Digitalelevationmodel loads(andassociatedmaintenancecosts).Theproposednewmodelingframeworkoffers,forthefirsttime,a Wood-pasturemodel powerfultoolforassessinglong-termvariabilityinlocalwindenergypotentialthatemergesfromland-use Landcover changedrivenvegetationdynamicsovercomplexterrain.Followingapreviouslyunexploredpathwayof cause-effectrelationships,itdemonstratesanewlinkageofagro-andforestpoliciesinlandscapedevelop- mentwithanultimatetrade-offbetweenrenewableenergyproductionandbiodiversitytargets.Moreover, itcanbeextendedtostudythepotentialeffectsofmicro-climaticchangesassociatedwithwindfarmson vegetationdevelopment(growthandpatterning),whichcouldinturnhavealong-termfeedbackeffecton windresourcedistributioninmountainousregions. ©2018ElsevierB.V.Allrightsreserved. 1. Introduction conditions(Moengetal.,2007;Carvalhoetal.,2013;Gopalanetal., 2014;Castroetal.,2015;Bilaletal.,2016;SanzRodrigoetal.,2017). As a safe and renewable non-polluting resource, wind energy Amicroscalemodeltypicallyadoptsadomainsizerangingfrom has been undergoing a large-scale development worldwide in the 1to20kmandagridresolutionrangingfrom1to100m.Themajor- pastdecade.Withthecontinuousadvanceofwindpowertechnol- ityofmicroscalemodelsapplyComputationalFluidDynamics(CFD) ogyanddecreaseofitseffectivecosts,itisforeseenthatwindpower techniquestosolvetheNavier-Stokes(N-S)equationsgoverningtur- penetrationlevelswillcontinuetoincreaseinmanycountries.Accu- bulentflowsintheatmosphericboundarylayer(ABL)withstationary ratewindenergypotentialassessmentsarecrucialtothesuccessful forcing(i.e.mesoscaletendenciesareneglected).Amongthevarious developmentofwindpowerplants.Knowingthespatialdistribution CFD methods, Large-Eddy Simulation (LES) based on the spatially- ofwindandturbulenceataspecificsiteguidesthewindpowerplan- filteredN-Sequationshasbecomeanimportanttoolforsimulating nerstoselectthewindfarmsite,evaluatetheproductionandcost, turbulentflows.LEShasbeensuccessfullyvalidatedandappliedfor and optimize the micro-siting of wind turbines to maximize wind thestudyofABLflowsoverhomogeneousterrain.Thedevelopment energyproductionandminimizefatigueloads. andapplicationofLES-basednumericalmodelsforwindfieldsim- There are two main methods for assessing wind energy poten- ulationsovercomplexterrainisontherise(Wanetal.,2007;Silva tial: one is based on observational data and the other relies on Lopesetal.,2007;Wood,2000;WanandPorté-Agel,2011;Diebold numericalwindfieldsimulations.Inpractice,thetwomethodsare etal.,2013;BechmannandSørensen,2011;ChengandPorté-Agel, often combined to produce wind resource maps which, in some 2013; Mirocha et al., 2014; Liu et al., 2016; Fang and Porté-Agel, countries/regions such as Canada, USA, and Europe, are collected 2016;ShamsoddinandPorté-Agel,2017).ToapplyLEStocomplex togetherasnationalwindatlases.Variouswindflowmodelingsys- heterogeneousterrain,however,thereisaneedforcouplingitwith temstargetedatdifferentscaleshavebeendevelopedandappliedto high-resolutiondataoftherelevantsurfaceproperties,namelysur- windresourceassessment.Examplesofmesoscalesystemsinclude faceelevation(topography)andlandcover.Conventionally,Monin the widely used Weather Research and Forecasting (WRF) model ObukhovSimilarityTheory(MOST)isusedassurface-layerscheme (Skamarocketal.,2008)developedforbothresearchandoperational torelatevegetationwiththeturbulentfluxesinthenear-wallgird purposesandtheoperationalConsortiumforSmall-scaleModeling cellsbyassigningcorrespondingaerodynamicsurfaceroughnesses, (COSMO)model(Nolanetal.,2014).Mesoscalemodelingtypically while obstacles and tall canopies are explicitly modeled in CFD coversadomainsizeof107mto105mwithagridresolutionof105m when they are directly influencing the sites of interest. So far, in to103m.Generally,severallevelsofphysicaldownscalingbydomain numericalwindfieldsimulations,vegetationwastreatedasastatic nesting are required within these ranges to overcome the compu- surfacepropertyliketopographyandlittleresearchhasbeendone tational complexity. Initial and boundary conditions are obtained tostudythelong-termimpactsofvegetationdynamicsonlocalwind from large scale weather models like the Global Forecast System conditionsandtheirimplicationsonwindenergyprojectplanning. (GFS)producedbytheNationalCentersforEnvironmentalPrediction Theneedtoaddresslandscapestructuraldynamicscanbederived (NCEP).ManystudieshavevalidatedmesoscalemodelssuchasWRF from the 2009 European Environment Agency Report concerning andapplythemforwindresourceassessmentandwindpowerfore- Europe’sonshoreandoffshorewindpotential.Amongthestepsto cast.Sofarsatisfactoryresultshavebeenreportedmainlyforcases beaddressedinthefuture,thereportexplicitlymentionstheneces- wheretheterrainfeaturesaresimple.Forexample,Hahmannetal. sityofamoredetailedanalysisofareaswheremodelpredictionand (2015)showthatWRFisabletopredicttheannualmeanwindspeed observed wind velocities differed most, notably mountainous and within the measurement uncertainty in the North and Baltic Seas. forestedareas.Furthermore,theanalysisofspecificvulnerabilitiesof Itisworthmentioningthatglobalwinddata,basedonWRFisnow biodiversity related to specific bird and other species and of land- available(https://www.globalwindatlas.info/).However,incomplex scapeswasrequested,aswellastheexplicitconsiderationofsuch terrain,mesoscalemodelstendtoyieldconsiderableerrorsforboth vulnerabilitiesinmappingwindenergypotentialinEurope. wind speed and wind direction predictions (Jiménez and Dudhia, Inmountainousregions,ahighpotentialforwindturbinesexists, 2012,2013).Thisismainlyduetothefactthateffectsoflocaltopog- especiallyathigheraltitudesandonthecrestsofthesemiddle-range raphyandlandcoverareinsufficientlycapturedatrelativelycoarse mountains. For example, the Juvent wind farm in the Jura moun- grid resolutions in mesoscale models. To tackle this problem, fur- tains of Switzerland has 16 wind turbines installed on two hills, ther downscaling to microscale is required. Recently, the coupling MontSoleil(alt.1291m)andMontCrosin(alt.1268m),wherethe of mesoscale and microscale models has become a strong area of land cover varies from grasslands to forests. Unfortunately, these researchforthenextgenerationofwindresourceassessment.Thisis regionsarealsooftenverysensitivetoturbineinstallations,because becauseitcanbetterhandlethemulti-scalenatureoftheproblemby of their high value in terms of biodiversity and landscape scenery simulatingthevariousphysicalprocessesdirectlyandcaptureboth (Bergmeieretal.,2010;Etienne,1996).Duringthepastdecades,at largescaleweatherandmicroscaletopographyeffectsonlocalwind higheraltitudestherewasadrasticland-useandlandcoverchange, 376 J.Fangetal. /ScienceoftheTotalEnvironment639(2018)374–384 drivenbychangeinagro-policy.Moreemphasiswasputonproduc- terrain.Theterrainmodelingblockconsistsofveryhighresolution tivelowlandsandsubsidiesforlow-intensityland-useformsinthe DigitalElevationModels(DEMs)linkedwithsuitable,wavelet-based mountains decreased (Perrenoud et al., 2003). This resulted in the generalizationandfilteringtechniquestoprovidedescriptionofthe reductionofland-useintensity,ifnotabandonment,andledtoforest landsurfacepropertiesattherelevantscales.Thevegetationmod- encroachmentonformermountainpastures.Historicalphotographs eling block adopts the dynamic landscape and vegetation model showthatthicketsestablishedonlargepastureareaswithin30years (WoodPaM) to develop a set of alternative tree cover mosaics for (BarbezatandBoquet,2008;Dovcˇiaketal.,2008). arangeofland-useintensitiesintheSouthernCarpathianpasture- We address the Southern Carpathian mountains in Romania, woodlands.Throughtheuseofaterrain-followingcoordinatetrans- wherethisconflictisdramaticbecauseofmajorshiftsinagro-policy formationandsimilarity-theory-basedwallmodeling,LESiscoupled and land-use practices in the post-communist period (Maruska et withhigh-resolutioninformationoftherelevantlandsurfaceprop- al.,2012).AsinmanyEuropeanmountainousregions,woodedpas- ertiesobtainedfromtheterrainandvegetationmodelingblocks.The tures are a traditional land use form and an important part of proposed modeling framework is applied to a case study area in the cultural heritage, as in the Carpathian mountains. Moreover, theRomanianCarpathiansforwhichhighresolutionterraindataare pasture-woodlandsareasemi-naturallandscape(Buttleretal.,2009) available.Thedrivingquestionsareasfollows:(1)Towhatextent thatisespeciallyrichinbiodiversitywhencomparedtograsslands doesthewindenergypotentialinmountainlandscapesdependon and forests (Gillet et al., 1999; Dufour et al., 2006). Unfortunately, complex topography and vegetation structure? (2) Do the vegeta- wooded pastures are very sensitive to land-use changes (Peringer tiondynamicsandshiftsinvegetationstructurecausedbyland-use etal.,2013).Woodedpasturescoverlargeareas,predominantlyat changeimpactthewindenergypotential?(3)Whatarethesubse- higherelevations,whereherdingoflivestockclearedthelandscape quentimplicationsonwindpowerplanning? inthepastandcontributedtothetoday’shighwindpotential.Land abandonmentfollowingagro-politicalchangesisfollowedbypatch- 2. Modelingframework wise forest development on former grasslands. In a meta-analysis conducted at the level of the whole Carpathian region (Munteanu 2.1. Studysite etal.,2014)itwasmentionedthat,duringcommunismandinthe post-communist period, in Romania forest loss and land abandon- Thestudyarea(Fig. 1)isatFundata intheSouthernRomanian mentwereparallelprocessesinducedbydifferentdrivers:economic, Carpathians,forwhichhighresolutiongeographicalsurveydataare politicalandsocio-demographic.Aregionalstudy(Pa˘tru-Stupariuet available, hence it allows a synergistic combination of the three al.,2016)conductedinsurroundingsoftheFundatasiteshowedthat above-mentionedmodelingblocks.Thestudysitehasatotalsurface indeed, between 1912 and 1980, the forest cover reduced its sur- 27.46km2 andthealtituderangesbetween930mand1400m.The facealmostbyhalfwhilethepasturesalmostdoubledtheirsurface. vegetation cover is a mixture of ungrazed forest and wooded pas- Conversely,thetimeperiod1980–2009ischaracterizedbyaslight tures (Pa˘tru-Stupariu et al., 2017). It is worth mentioning that the forestregrowth,ofalmost10%,tothedetrimentofpastures.Thispro- characteristics and patterns of Fundata are similar to those of the cessishighlylikelytocontinueandevenbecomemorewidespread sitesintheSwissJuramountainswherewindenergyisunderfast inthefuture,andcanbeexpectedtoinfluencewindenergypoten- development. tial by an increase of surface roughness and is known to threaten landscape-scalebiodiversity. 2.2. Windmodeling The modeling of vegetation dynamics in wooded pastures as a responsetovariousscenariosofland-usesrequiresaprocess-based We used a new-generation tuning-free LES framework devel- approach that incorporates the major ecological processes of tree oped at the Wind Engineering and Renewable Energy Laboratory recruitmentandgrowth,andtheinfluenceoflivestockwhilegrazing (WiRE) of EPFL (hereafter called WiRE-LES). The details of WiRE- andbrowsing(Gillet,2008).Ahighspatialresolutionisrequiredto LESareprovidedinAppendixA.TheWiRE-LEShasbeenextensively mimictheestablishmentofyoungtreesclosetotheirseedparents validated in a variety of canonical flow conditions over both flat andtherebytherealisticformationofawoodland-grasslandmosaic terrainandsimpletopography(Porté-Ageletal.,2000;Wanetal., thatimpliesahighsurfaceroughnessandmajoreffectsonwindflow 2007;StollandPorté-Agel,2008;WanandPorté-Agel,2010;Wuand (PeringerandRosenthal,2011).Moreover,abalancedrepresentation Porté-Agel, 2011; Lu and Porté-Agel, 2011; Cheng and Porté-Agel, oftheecologyofwoodyplants,grasslandcommunitiesandlivestock 2013;FangandPorté-Agel,2016;ShamsoddinandPorté-Agel,2017). isrequiredtoensureareliablemodelresponsetoscenarioparam- Yet,windfieldinmountainousregionishighlyturbulentanditis etersandacrosslargeareaswithcomplextopographyandvariable stronglymodulatedbylocal,non-linearinteractionswiththeunder- growthconditionsfortreesandforageforlivestock(Weisbergetal., lying multi-scale topography and heterogeneous vegetation cover. 2006).Ingeneral,appropriatemodelsofpasture-woodlanddynam- Furthermore,geomorphologyandextensivelanduseinmountain- ics are few, but the wood-pasture model WoodPaM (Gillet, 2008) ous regions lead to the evolution of vegetation cover resulting in wasappliedintheSouthernCarpathiansrecentlyanddemonstrated complexheterogeneouspatterns,suchasforest-grasslandmosaicsof reasonablelandscapestructuralchangesaccordingtodistinctland- pasture-woodlands.ToapplytheWiRE-LESundersuchcomplexand useintensitiesandagro-politicalrecommendations(Peringeretal., dynamicsurfaceconditions,wecoupleitwithhigh-resolutiondata 2016). oftherelevantsurfacepropertiesobtainedfromtheterrainandveg- Based on these recent advances in wind resource assessment, etationmodelingblocksdescribedinthenexttwosubsections.The vegetation dynamics and terrain modeling, we aim to develop a high-resolutiondataofthetopographyisdirectlyusedasinputtothe modelingframeworkcapableofassessingtheshiftsinwindenergy WiRE-LEStodeterminethesurfaceelevationzsforthegenerationof potentialfollowingvegetationdynamicsinmountainlandscapesand thecomputationalgrid.Thehigh-resolutiondataofthevegetation applyit toacase study toobtainrelevantguidelinesforthelong- coverisfirstusedtocalculatethecanopyheight(h)anddensity(k). term planning of wind energy projects over complex terrain. To Then,thosepropertiesareusedtodeterminetheroughnesslength achievethis,wedevelopedaninterdisciplinaryapproachthatcon- (z )anddisplacementheight(d)inthewallmodelexpressedbyEq. 0 sistsofcouplingthreebuildingblocks:windmodeling,terrainmod- (A.4). In this study, the analytic expression proposed by Raupach eling,and vegetationmodeling.The windmodeling blockis based (1994)isusedtocalculatez0anddasfunctionsofhandk. onanew-generationtuning-freeLEStechniqueforhigh-resolution The computational domain for the LES and WoodPaM simula- eddy-resolving simulations of wind and turbulence over complex tions, along with the surface elevation distribution, are shown in J.Fangetal. /ScienceoftheTotalEnvironment639(2018)374–384 377 Fig.1. a)LocationofthestudysiteintheRomanianCarpathians(source:GoogleMaps).b)Orthophotomapofthestudysite.Thecoordinatesofthelowerleftcornerare 45◦24(cid:3)54(cid:3)(cid:3)Nand25◦14(cid:3)23(cid:3)(cid:3)E.Therectangledelineatedingreenrepresentsthecomputationaldomainofthewindandvegetationsimulations. Fig. 2. A neutrallystratified atmosphericboundary-layer flow over higherthanthemeanelevation,whichareusuallyfavorableforthe thismountainousregionissimulatedbytheWiRE-LESfordifferent installationofwindturbines. surfacevegetationpatterns.Themaximumslopehereisbelow45◦, sotheTFCTmethod(seeAppendixAfordetails)isusedtorepresent 2.3. Terrainmodeling thetopography.Theboundary-layer heightissetto1000mabove themeansurfaceelevation.Consideringthefactthattheareahasa TheterrainmodelingreliedonprocessingahighresolutionLiDAR characteristicstrongwest-wind(Dragomiretal.,2016),theflowis data set. The data was collected in October 2013 by the company drivenbyaconstantmeanpressuregradientalongthexdirection. Primul Meridian through customized airborne laser scanning. The Thedomainisdiscretizedinto192 × 96 × 96points,resultingina companyprocessedandclassifiedthepointsbyusingtheTerraScan gridresolutionofdx = dy = 25manddz≈10m.Periodicbound- softwarepackage,asfollows.Inafirststage,theclassificationwas ary conditions are applied in the horizontal directions. The upper made automatically by the internal algorithms of TerraScan. Then, boundaryconditionisspecifiedasstress-free.Thebottomboundary in a second stage, in the cases where the algorithms did not yield conditionisnopenetrationtogetherwiththewallstressdetermined theexpectedresults,e.g.duetogroundmorphology,theyusedthe according to Eq. (A.4). For each landcover scenario, the large-eddy TerraScan tools for performing a manual classification. Finally, the simulationisfirstrunforalongenoughtimetoguaranteethatthe companyprovidedtheclassifiedpointcloudintheLAS-dataformat. quasi-steadyconditionsarereached.TheLESresultsarethenaver- The average point density was 22.5 points per square meter, agedintimetoyieldstatisticsforthecomparisonbetweendifferent suchthatfinevegetationfeaturesbecamevisibleinthepointcloud landcoverscenarios. (Fig. 3). The points were classified by the company as ground To have a quantitative measure on the shift of wind energy (152,378,749 points), vegetation (461,054,334 points) and other potentialanditsrelationshipwiththelandscapeevolution,herewe classes-includingbuildings,haystacks,otherconstructionssuchas introduce an indicator of wind energy potential, called WEP. It is fences(5,706,879points).Theaveragepointspacingwas0.48mfor definedas thegroundand1.65mforthevegetation. (cid:2) (cid:3) WeusedtheArcGIS10.1softwareforproducing1mrastergrids WEP= U3 (1) representing(i)theDigitalTerrainModel(DTM)-derivedonlyfrom the ground points, by actually taking into account the last returns oftheLiDARpulses,(ii)theDigitalSurfaceModel(DSM)-weused whereUisthehub-heighttime-averagedwindspeedand(cid:5)(cid:6)denotes the points classified as vegetation for deriving the model; (iii) the the spatial averaging performed over the places with elevations Canopy Height Model (CHM) - it was derived as raster difference between the DSM and the DTM; (iv) the Canopy Density Model (CDM)-producedfromthevegetationpoints.Forderivingthemod- elsfromthepointcloud,weusednaturalneighborasinterpolation method,withgroundbelongingtotheDSM,becausetheyperformed betterthanlinearinterpolationandgroundnotincludedintheDSM. The comparison relied on visual checks of the output and on the computation of some basic statistics of the CHM grids: maximum, minimum,mean,standarddeviation,percentageofnegativecanopy andpercentageofcanopyabove30m,respectively(Table1). WeperformedadditionalcorrectionstotheDTM,CHMandCDM beforeusingtheminthewindandvegetationmodels.Thisincluded removing‘nodata’cellsandchangingcellswithnegativecanopyval- uestozero.Byadjustingthenumberofrowsandcolumnstobedivis- ibleby25,wefinallygenerated,throughstandard averagingtech- niques,DTM,CHMandCDMgridswithacellsizeof25m.Thegrids had147rowsand245columns,thuscoveringasurfaceof22.51km2 Fig.2. Thecomputationaldomainforthelarge-eddysimulation(LES)andWoodPaM simulations.Herezistheelevationfromsealevelinmandzsisthesurfaceelevation. andtheywerefurtherusedforthewindandvegetationmodeling. 378 J.Fangetal. /ScienceoftheTotalEnvironment639(2018)374–384 Fig.3. Left:3DviewofthegroundandvegetationpointsforasampleoftheLiDARdata.Thecolorramprepresentstheheightaboveground.Right:aerialphotooftheactual terrain.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.) 2.4. Vegetationmodeling Although not shown directly, the consequences of future land-use changewillbediscussed.Anyprospectivesimulationsforthefuture The spatially explicit dynamic model WoodPaM (Gillet, 2008) consequences of land-use change were hindered by the lack of wasdesignedtosimulatevegetationdynamicsinpasture-woodlands appropriateclimatechangescenariosinthearea,whereashistoric dependentonthemultipletraditionalandextensivelanduseforms, climatedatawasathand. includingcattlestockingandlogging.Themodelincorporatesmost The land-use scenarios were distinguished by the density of of the processes necessary to predict the long-term impact of sil- livestock,whichdeterminesgrazingpressureonvegetationandeco- vopastoral management and climate change on herbaceous and nomic yield for farmers. Livestock densities were set to 0.3, 0.5, forest plant communities, as well as cattle habitat use in hetero- 0.7and0.9AdultBovineUnits(ABU)perhectarefor124days/year. geneous pasture-woodlands (Peringer et al., 2013). WoodPaM is a These values reflect the minimum, the optimal and the maxi- grid-basedsimulationmodel,witheachcellbeing25mwide.Itfea- mum livestock densities according to the Romanian management turesanindividual-basedsubmodeloftreeregenerationandspread, guidelines for sustainable use of pasture-woodlands (Maruska et whichpredictsthestructureofforeststandslocatedinagridcelland al.,2012).Theintensivegrazingwith0.9ABU/haaimedtoindicate inneighboringcells.Incontrasttoforestlandscapemodels,Wood- overusethatinthelongrunleadstopastureswithalmostnotrees. PaMisabletorealisticallysimulategradientsfromopengrassland Thelow-intensityscenariowith0.3ABU/haaimedtoindicatealand- to closed forest continuously in space and time. The routines for scape dominated by forest with only small grassland area. Wood widespreadtreeestablishmentingrasslandsallowmodelingofthe exploitationwassimulatedassingle-treecuttingandsettoareturn characteristicpatch-mosaicofgrasslandandforestprevalentinthe intervalofthecutdownoftreesinagridcellof200yearsbecause studyarea. ofslowtreegrowthinthemountainclimate.Itwasthesameforall WoodPaM was applied to simulate a set of alternative forest- grazingscenariosandthusreflectsthelow-intensityexploitationof grasslandmosaicsinthestudyareabasedonscenariosofdifferent forestforfirewoodbythelocalpeople. land-useintensities.Thesemosaicsweresimulatedtodevelopsince Themodeloutputattheendofsimulations(year2000CE)was 1650CE(beginningofintensiveland-useinthearea)overaperiod the number of tree individuals per grid cell in 4 height classes. In of350yearsuntil2000CEundertheassumptionofconstantgrazing order to estimate the nature conservation value of the simulated pressure(andtreecutting).Theentirelandscapewasinitiallypas- landscapes,thetreecoverpergridcellwasestimatedfromthetree turedexceptforlargeanddenseforestsshowninFigs.4and5as individuals and was classified into habitat types that harbor spe- denseandtallstandsoftrees(lightblueforcanopyheightandyellow cificbiodiversity,namelyunwooded,sparselyanddenselywooded forcanopydensity).Thesearegenerallydominatedbybeech,which pasture and forest (Gallandat et al., 1995). Transferred to the LES indicatesanexclusionfromgrazingbyforestmanagement,because browsingintolerantbeechcannotregenerateunderherbivorepres- sure. The differences among simulated landscapes therefore show fundamentalrelationshipsamongland-useintensityandlandscape structureexpressedbytreecoverdistributionbutdonotshowsuc- cessional dynamics for land-use intensification or extensification. Table1 Basicstatisticsofthecanopyheightmodel(CHM)forthefourpossibilitiestogener- atethemodel:interpolationmethods-L(inear)andN(atural)N(eighbor)andground belongstothedigitalsurfacemodel(DSM)(yes/no). Interp. Groundin Max Min Mean Std. Negative Canopy> method DSM dev. CHM(%) 30m(%) L Yes 65.18 −2.03 4.48 7.22 0.44 0.15 L No 141.59 −9.31 4.85 7.49 0.81 0.17 NN Yes 61.10 −0.48 4.48 7.15 0.18 0.12 NN No 98.86 −7.68 4.85 7.45 0.56 0.15 Fig.4. ThepresentcanopyheightatFundatasiteintheRomanianCarpathians. J.Fangetal. /ScienceoftheTotalEnvironment639(2018)374–384 379 Fig.5. ThepresentcanopydensityatFundatasiteintheRomanianCarpathians. Fig.7. Theturbulenceintensityattheturbinehubheightof100msimulatedby theWiRE-LESmodellingframeworkforthepresentlandscapeatFundatasiteinthe wind modeling framework are the canopy height and density val- RomanianCarpathians.Herethesolidcontourlinesshowtheelevation. uespercellestimatedbasedonthephysicalclassofvegetationcover percell.Thesevalueswerethentranslatedintothesurfacerough- inthemostbalancedmanner(Fig.10),whichiscausalforthehighest nessanddisplacementheightvaluesasexplainedintheSection2.2. (c-)biodiversity at landscape scale and corresponds to the under- Altogether, scenario simulations demonstrated the long-term con- lyingrecommendationof“optimumgrazing”.Grasslandandforest sequences of different land-use intensities in mountain pasture- habitatsarealmostequallypresentandsatisfytherequirementsfor woodlandsandprovidedinformationfortheestimateofWEP,nature verydistinctgroupsoftargetspecies.Forest-grasslandecotoneswith conservationvalueandfarmer’sincomebasedonlivestockdensities. varyingconditions(sparselyanddenselywoodedpastures)arethe keyhabitatforpasture-woodlandsandreachtheirhighestcover.The 3. Resultsanddiscussions otherscenarioseitherfavorgrasslandorforestonthecostofeach other.Intheminimumgrazingscenario(Fig.8d),thevalleyswere Forthecurrentlandcover,thehigh-resolutionmapsofcanopy filledwithforest,thesizeofopenpasturelandwassmallandevenon heightanddensityobtainedbytheterrainmodelingareshownin thehilltopsthescatteredtreesweremoredense. Figs. 4 and 5, respectively. The mean wind speed field and turbu- Theintensivegrazingscenarioledtoalandscapestructurethat lenceintensity(TI)attheturbinehubheightof100mpredictedby corresponded to current conditions. This can be understood as a theWiRE-LESforthecurrentlandcoverarepresentedinFigs.6and legacyeffectfromthecommunistperiod,whenland-usewasinten- 7,respectively.Later,thissimulationcaseisusedasareferencefor siveeveninremoteregions.Thewidespreadcoveroflowcanopyin theevaluationofshiftsinwindenergypotentialfollowingvegetation Figs.4and5,however,showsthatearlysuccessionalshrubestablish- dynamicswithdifferentland-usescenarios. mentispresentfollowingpost-communistland-useextensification. Vegetation patterns in the computational domain (Fig. 2) for a In a nutshell, the scenarios demonstrate a strong and combined series of land-use scenarios that compare agro-economic recom- influence of land-use intensity and topography on the tree cover mendations for the management of Romanian pasture-woodland distribution. landscapes(Maruskaetal.,2012;Peringeretal.,2016)areshownin TheWiRE-LESwasappliedtosimulatewindandturbulenceover Fig.8.Underintensivegrazingaveryopenlandscapewithonlyfew the study area for the four land-use scenarios. Fig. 9 shows the andscatteredisolatedtreesemerged(Fig.8a).Theoveruseofpasture mean wind speed shifts at the surface of the turbine hub height woodlandsledtostructuralsimplicity.Undermaximumgrazing,the for the scenario landscapes with respect to the current one. The density of scattered trees was higher throughout the landscape. A results demonstrate that the wind field in complex mountain ter- realisticwood-pasturemosaiclandscapeemergedasitwaspredicted rain strongly depends on land cover and corresponding land use. by the management guideline for pasture-woodland conservation. Differentstructureofforest-grasslandmosaicpatternscouldaffect Underoptimumgrazing,forestpatchesdevelopedpredominantlyon the wind speed dramatically, thus having a significant impact on thevalleyslopesthatareunattractiveforlivestockbutlargepastures thepoweroutputfromwindturbines/farmstobeinstalledlocally. withonlyscatteredtreeswerefoundonthehilltops(compareFigs.2 Whereasthewindspeedpatternfortheintensivegrazingscenario and8c).Thislandscapepatternprovidesthedifferenthabitattypes only slightly differs from the current state (Fig. 9a), strong devia- namelyunwooded,sparselyanddenselywoodedpastureandforest tions towards lower wind speed are shown for the scenarios with lowergrazingintensity.Slowingdownthewindflowalreadysetsin withslightdensificationofthescatteredtreesonthehilltoppastures (Fig. 9b for maximum grazing). The development of a structurally richmosaiclandscapeunderoptimumgrazingbroadensthiseffect (Fig. 9c). With minimum grazing the entire landscape is affected (Fig.9d). Despitetheoveralltrendofdecreasingwindspeedwithlower- inggrazingpressure,locally,themeanwindspeedattheturbinehub heightcaneitherincreaseordecreasecomparedtothecurrentsitu- ation.Forexample,Fig.9ashowsamaximumincreaseof3.6m/sand amaximumdecreaseof1.8m/s,respectively. Fig.10showsthedecreaseofWEPrelativetothecurrentsitua- tionandinrelationtothecoverofhabitattypesinthefourscenario landscapes.Theareacoveredbyeachhabitatwasestimatedfromthe mapsinFig.8a–dandprovidesinformationonthespatialdistribu- Fig.6. Themeanwindspeedfieldattheturbinehubheightof100msimulatedby tionoftreesmoredetailedthantreecoverdoes.Theresultsshow theWiRE-LESmodellingframeworkforthepresentlandscapeatFundatasiteinthe RomanianCarpathians.Herethesolidcontourlinesshowtheelevation. that, for high grazing pressures (high ABUs), the WEP decrease is 380 J.Fangetal. /ScienceoftheTotalEnvironment639(2018)374–384 Fig.8. Simulatedtreecoverdistributionaccordingtoland-usescenarios(grazingpressureandsingle-treecutting)inthecomputationaldomainofFig.2.Theentirelandscape waspasturedexceptforseveralpatchesofforest,whichareshownindarkgreeninpanela)andasdenseandtallstandsoftreesinFigs.4and5.Darkergreentonesindicate highertreecover.a)Intensivegrazing(0.9ABU/hafor124daysperyear);b)maximumgrazing(0.7ABU/hafor124daysperyear);c)optimumgrazing(0.5ABU/hafor124days peryear);d)minimumgrazing(0.3ABU/hafor124daysperyear).Grazingintensitiesareexplainedinthetext. minimized.Whilewiththelowestgrazingpressure(i.e.0.3ABU/ha) increase of tree cover, WEP decreases rapidly when shifting from andconsequentlyoverallhightreecover,theWEPdecreaseishigh- intensive (0.9ABU/ha) to maximum grazing (0.7ABU/ha). The rea- est.Thisisconsistentwiththephysicsthattheoverallhighsurface sonistheemergenceofscatteredtreeseverywhereonthehilltops. roughnessduetodensetreecoverslowsdowntheflow.Therela- Theysumuptoarelativelylowtreecoverbutleadtohighsurface tivedecreaseofWEPcanreachupto40%inthecaseofpoorpasture roughness.Asaresult,certainsmallchangesinthelandscapethat management and the development of a landscape mosaic where maynotbesoobvious,canproducesubstantialdecreasesinWEP. treeless grasslands decline and wooded habitats dominate (mini- These landscape changes may be significant already after 25years mumgrazingscenario).ThelossofWEPissignificantalreadywith ofpoorpasture-managementorabandonment(Dovcˇiaketal.,2008) thedominanceofsparsely-woodedhabitatsinthecaseoftheopti- anddensethicketsmayevendevelopafter36years(historicalpho- mumgrazingscenario(0.7ABU/ha).Forestdevelopmentcontributes tographs of the area). Future climate warming will speed up tree lessbecauseinourcaseitisdominantinthevalleysforwhichWEPis growthinthemountainsbyprolongedgrowingseasons.Theresults notevaluated.TheimportanceoftreelessgrasslandforWEPisshown generally support the argument that turbine installations should by the optimum grazing scenario, where the prevail of sparsely- considerlandmanagementplanstoensuretheexpectedenergypro- woodedhabitatsonthecoastofgrasslandleadstoadramaticWEP duction for their lifetime (typically around 20–25years). This also decreaseof30%. impliesthatasinglesetofturbinescanbeinplacefor25years,then It is important to note that Fig. 10 demonstrates a non-linear decommissioned,withnewturbinesinstalledindifferentlocations. relationshipbetweenWEPandoveralltreecover.Withonlyaslight However,thishasramifications,likemoreroadsanddisturbance. Fig.9. Themeanwindspeedshift,respectivelythedifferencewithrespecttothemeanwindspeedinthecurrentlandscape,forfourdifferentland-usescenarios:a)Intensive grazing;b)maximumgrazing;c)optimumgrazing;d)minimumgrazing.Herethesolidcontourlinesshowtheelevation. J.Fangetal. /ScienceoftheTotalEnvironment639(2018)374–384 381 Moreover, Fig. 10 demonstrates a tradeoff between high WEP andstructurallydiverselandscapeswithhighhabitatdiversityand nature conservation value in combination with farmers’ income. Intensive grazing cleans up the landscape from even scattered trees, providing low roughness and highest wind energy potential and highest agro-economic benefit, but densely wooded habitats lack. The recommended maximum grazing (0.7ABU/ha) combines habitat provision for nature conservation purposes and high agro- economicalincomesforlocalpeople.However,windenergypoten- tialissuggestedtobe15%lower.Optimalpasturemanagementfora balancedhabitatdiversity(optimumgrazingof0.5ABU/ha)isasso- ciated with a strong decrease of WEP and also lower income for farmers.Thedisregardofpasture-woodlandmaintenance(minimum grazingof0.3ABU/ha)notonlyleadstolossesofbiodiversitybythe disappearance of treeless grassland habitats and to losses of local incomebutalsodramaticallydecreasesWEP.Insummary,oursim- Fig.10. Thecoverofhabitattypesandrelativedecreaseofwindenergypotential ulations suggest that the potential to find a balance among WEP, (WEP)forfourdifferentland-usescenarios:a)Intensivegrazing(0.9ABU/ha);b)max- agro-economicbenefitstothelocalpeopleandnatureconservation imumgrazing(0.7ABU/ha);c)optimumgrazing(0.5ABU/ha);d)minimumgrazing interestsliesinanoptimizedandintegratedmanagementschemeof (0.3ABU/ha).Habitatsaredefinedbytreecoverclasses.unwooded:0–2%;sparsely thelandscapeandshouldbeguaranteedbyincentivesfrommulti- wooded:2–20%;denselywooded:20–70%;forest:>70%. plesources.Whileagronomydepartmentsmayensurehumanand natureaspects,windenergycompaniesarecalledtoinvestinproper landmanagementthatensuresconstantlyhighenergyyields. Fig. 11 shows the locations of the maximum mean wind speed under the present land cover and two projected land covers due toland-usechanges.Itturnsoutthatthelocationwiththehighest windspeedalsochangesfromscenariotoscenario.Therefore,when optimizingthemicro-sitingofwindturbines,theassociatedchanges inthespatialdistributionofmeanwindspeedmustbetakeninto accounttomaximizewindenergyproduction. Fig.12showstheturbulenceintensities(TI)atthesurfaceofthe turbinehubheightforthefourland-usescenarios.Interestingly,the spatialpatternsoftheTIdistributionaresimilarbetweenthevarious land-usescenarios,indicatingthatwithrespecttoTItheterrainplays a dominant role as compared to the land cover. Nevertheless, the simulatedlandscapechangeforlessthanoptimumpasturemanage- ment(e.g.Fig.12c)leadstolargerareastobeaffectedbymedium valuesofTI.Thiscanbeunderstoodasaneffectofthespreadofscat- Fig.11. Locationsofthemaximummeanwindspeedfordifferentland-usescenarios: tered trees and the entire grassland-forest mosaic becoming more 1)Present;2)maximumgrazing;3)minimumgrazing. complexinpattern.Therefore,whenoptimizingthemicro-sitingof Fig.12. Turbulenceintensitydistributionsforfourdifferentland-usescenarios:a)Intensivegrazing;b)maximumgrazing;c)optimumgrazing;d)minimumgrazing.Herethe solidcontourlinesshowtheelevation. 382 J.Fangetal. /ScienceoftheTotalEnvironment639(2018)374–384 windturbines,thechangesinthespatialdistributionofturbulence TheWiRE-LESsolvesthethree-dimensionalspatiallyfilteredN-S intensity associated with future landscape changes must be also equationswrittenintherotationalformasfollows: takenintoaccounttominimizeturbinefatigueloadsandassociated maintenancecosts. ∂u˜ i =0, (A.1) ∂x i (cid:4) (cid:5) 4. Conclusions ∂∂u˜ti +u˜j ∂∂ux˜i −∂∂ux˜j =−∂∂p˜x∗ +m∂∂x2∂u˜xi −∂∂txij +Fi, (A.2) Theresultsofthecasestudydemonstratethattheoverallshifts j i i j j j in wind energy potential following the changes of vegetation pat- where t denotes time, u˜ is the i-th component of the instanta- ternduetodifferentland-usepoliciescanbedramatic.Thissuggests i neous resolved velocity, x is the i-th component of the position thatthewindpowerplanningshouldbeintegratedwiththeland-use i planningataspecificsitetoensurethattheexpectedenergyproduc- vector, p˜∗ = p˜/q+ 12u˜iu˜i is the modified pressure with the den- sityqandresolvedkineticenergyincluded,mdenotesthekinematic tionofthewindfarmtobeinstalledcanbereachedoveritsentire lifetime.Followingapreviouslyunexploredpathwayofcause-effect viscosity, and tij is the ij-th component of the SGS stress tensor. Buoyancyeffectsarenotconsideredinthisstudy(i.e.neutralstabil- relationships, a new linkage of agro- and forest policies to renew- ityisassumed).TheflowisdrivenbyanexternalforceF.VariousSGS ableenergyproductionandbiodiversitytargetswasdemonstrated. modelsareimplementedintheWiRE-LES.Usedinthisstudyisthe Regarding the sustainable and optimized landscape management, well-tested Lagrangian averaged scale-dependent dynamic model thereisacompromisetobetargetedthatbalancesbiodiversity,agro- (StollandPorté-Agel,2006)whichistuning-freeandhasbeenshown economic income and wind energy potential (WEP). Our coupled tobeparticularlywellsuitedtocapturingunresolvedsmall-scaletur- modelalsosuggestsnon-linearrelationshipsthatmayleadtostrong bulenceincomplexenvironments(StollandPorté-Agel,2006;Wan decreasesinWEPfollowingonlyslightincreaseintreecover.More- etal.,2007;StollandPorté-Agel,2008;ChengandPorté-Agel,2013). over,thechangesinthespatialdistributionofwindandturbulence TheincompressibilityofthefluidexpressedbyEq.(A.1)issatis- underdifferentscenariosofland-usearecomplex.Inparticular,the fiedbytheprojectionmethod(AlbertsonandParlange,1999;Fang locationwiththehighestwindspeedchangesfromscenariotosce- andPorté-Agel,2016).Alltheinvolvedpartialdifferentialequations nario.Therefore,whenoptimizingthemicro-sitingofwindturbines, arenumericallysolvedbyusingavertically-staggeredgridarrange- theassociatedchangesinwindspeedandturbulencemustbetaken mentwiththespatialderivativesofflowvariablesinthehorizontal into account to maximize wind energy production and minimize andverticaldirectionsbeingcalculatedbasedonthepseudo-spectral fatigueloads(andassociatedmaintenancecosts).Theproposednew andsecond-ordercentraldifferencemethodsrespectively(Albertson modeling framework offers, for the first time, a powerful tool for andParlange,1999;Porté-Ageletal.,2000).Thisarrangementallows assessing vegetation dynamics induced long-term uncertainties in the Poisson’s equation for pressure resulting from the projection windenergypotentialovercomplexterrain. methodtobesolvedefficientlyineachtimestepwithouttheneedof iterationwhentheterrainisflat.Allnon-lineartermsarede-aliased Acknowledgments in Fourier space by the 3/2 rule (Canuto et al., 1988). Time inte- grationisdonebytheAdams-Bashforthscheme.High-performance This work was supported by the Swiss National Science Foun- computing techniques are utilized in the WiRE-LES to accelerate dation in the framework of the Romanian-Swiss Research Pro- thecalculationsandmakethecomputationalcostofhigh-resolution gramme, project WindLand, project codes: IZERZ0-142168 and 22 simulationaffordable.Thisisdonethroughtheparallelizationusing RO-CH/RSRP and was partially carried out withintheframe of the horizontal slab decomposition and MPI for inter-processor com- SwissCentreforCompetenceinEnergyResearchontheFutureSwiss munication and the implementation of OpenMP within each MPI ElectricalInfrastructure (SCCER-FURIES) withthefinancialsupport task. oftheSwissInnovationAgency(Innosuisse-SCCERprogram),con- In the simulation of turbulent flows over complex terrain (e.g., tractnumber:1155002544.Computingresourceswereprovidedby hills,mountains,urbanareas),thecomplexityoftopographyleadsto EPFL through theuse ofthefacilitiesof itsScientificITandAppli- challengesindiscretizingthecomputationaldomain.IntheWiRE- cation Support Center and by the Swiss National Supercomputing LES,twomethodsofrepresentingtopographyhavebeendeveloped Centre(CSCS).WewishtothankMagdaNa˘pa˘rus¸-Aljancˇicˇfordiscus- andimplemented.Theyaretheimmersedboundarymethod(IBM) sionsregardingtheGISapproachesandIoanaStoicescuforfruitful andtheterrain-followingcoordinatetransformation(TFCT)method collaborationinthefieldcampaigns. (Wanetal.,2007;ChengandPorté-Agel,2013;FangandPorté-Agel, 2016).TheadvantageofIBMisthatnochangehastobemadeforthe AppendixA. WiRE-LES conventionalCartesiangrid.Tomodelthetopographyeffectsonthe flow,anartificialforceisintroducedtostoptheflowinsidethesolid. LES is an eddy-resolving numerical model, which is supe- Inaddition,properinterpolationsforvelocitynearthesolidsurface rior to the conventional Reynolds-Averaged Navier-Stokes (RANS) areneededtosatisfytheboundaryconditions.Meanwhile,toenforce approachinpredictingunsteadyturbulentflows.Computationally, bothno-slipanddivergence-freeconditions,thePoisson’sequation LESisfeasibleforveryhighReynoldsnumberflows,suchastheABL, for pressure should be solved together with the equation for the forwhichdirectnumericalsimulationoftheoriginalN-Sequations artificialforce(Fangetal.,2011).Intheterrain-followingcoordinate isunrealizableduetoitsrequirementofusingenoughgridresolu- transformationmethod,thephysicaldomainisdiscretizedusinga tiontoresolveturbulencefromtheenergy-containingintegralscale body-fittedgrid.Withthecoordinatetransformationdefinedas downtotheKolmogorovscale.InLES,turbulenteddieswithscales largerthanthegridscaleareresolvedandtheneteffectoftheunre- x¯=x, y¯=y, z¯=Hz−zs, (A.3) solved smaller scale motions is modeled by a subgrid-scale (SGS) H−zs model.TheaccuracyofLESreliesontheSGSmodel.Amajoradvance- ment in LES has been the introduction of the dynamic procedure where H is the maximum height of the domain and zs is the sur- (Germanoetal.,1991),whicheliminatestheneedoftuningparame- faceelevation,thegridbecomesaregularoneinthenewcoordinate tersinSGSmodels.Basedonthedynamicprocedure,moreadvanced system, so all calculations can be done using the same numerical SGSmodelshavebeendeveloped. schemesasforflatterrain.Forthederivativecalculationsinthex,y, J.Fangetal. /ScienceoftheTotalEnvironment639(2018)374–384 383 zframe,thechainruleisappliedtoderivethetransformformulas. Fang,J.,Porté-Agel,F.,2016.Intercomparisonofterrain-followingcoordinatetransfor- Accordingly,thePoisson’sequationforpressureisrewrittenforthe mationandimmersedboundarymethodsinlarge-eddysimulationofwindfields overcomplexterrain.J.Phys.Conf.Ser.753(8),082008. newcoordinatesystemandsolvedbyanefficientiterativeapproach Gallandat,J.-D.,Gillet,F.,Havlicek,E.,Perrenoud,A.,1995.Typologieetsystémique (FangandPorté-Agel,2016).TheadvantageoftheTFCTmethodis phyto-écologiquesdespâturagesboisésduJurasuisse.Tech.Rep.rapportfinalde thatitfacilitatestheimplementationofthewallboundaryconditions mandatOfficesfédérauxetcantonaux,Laboratoired’écologievégétale,Université deNeuchâtel,Neuchâtel,Switzerland. sincewehavethegridpointsexactlyonthewall.Thedisadvantageof Germano,M.,Piomelli,U.,Moin,P.,Cabot,W.,1991.Adynamicsubgrid-scaleeddy TFCTisthatitonlyworksfortopographywithlowtomediumslope, viscositymodel.Phys.FluidsA3(7),1760–1765. whileIBMisnotsubjecttosuchaconstraint. Gillet,F.,2008.Modellingvegetationdynamicsinheterogeneouspasture-woodland landscapes.Ecol.Model.217, 1–18. WhenapplyingLEStosolveturbulentflowsovercomplexterrain Gillet,F.,Murisier,B.,Buttler,A.,Gallandat,J.-D.,Gobat,J.M.,1999.Influenceoftree athighReynoldsnumbers,duetoimpracticalrefinementofthegrid coverondiversityofherbaceouscommunitiesinsubalpinewoodedpastures. toresolvethesmalleddiesintheroughnesssublayer,theuseofa Appl.Veg.Sci.2, 47–54. Gopalan,H.,Gundling,C.,Brown,K.,Roget,B.,Sitaraman,J.,Mirocha,J.,Miller,W., wallmodelisamust.Thereexistscurrentlynoaccuratewallmodel 2014.Acoupledmesoscale-microscaleframeworkforwindresourceestimation applicableforcomplexterrain.TheWiRE-LESfollowsthecommon andfarmaerodynamics.J.WindEng.Ind.Aerodyn.132, 13–26. practice (Chester et al., 2007) to simply use the wall model based Hahmann,A.,Vincent,C.,Peña,A.,Lange,J.,Hasager,C.,2015.Windclimateestima- onMOSTforflatwalls.Intheneutralcase,thewallshearstressis tionusingWRFmodeloutput:methodandmodelsensitivitiesoverthesea.Int.J. Climatol.35(12),3422–3439. calculatedaccordingtothelogarithmiclawforthevelocityprofile Jiménez,P.,Dudhia,J.,2012.Improvingtherepresentationofresolvedandunresolved as topographiceffectsonsurfacewindintheWRFmodel.J.Appl.Meteorol.Climatol. 51(2),300–316. (cid:6) (cid:7)(cid:7) (cid:7)(cid:7) (cid:8)2 Jiménez,P.,Dudhia,J.,2013.OntheabilityoftheWRFmodeltoreproducethesur- tw=−q ln((zj−Vdt)/z ) (A.4) f1a6c1e01w6i1n7d.directionovercomplexterrain.J.Appl.Meteorol.Climatol.52(7), 0 Liu,Z.,Ishihara,T.,Tanaka,T.,He,X.,2016.LESstudyofturbulentflowfieldsovera smooth3-dhillandasmooth2-dridge.J.WindEng.Ind.Aerodyn.153, 1–12. in a local coordinate system defined by the local tangential flow Lu,H.,Porté-Agel,F.,2011.Large-eddysimulationofaverylargewindfarminastable direction and the wall normal direction. In Eq. (A.4), j is the von atmosphericboundarylayer.Phys.Fluids23(6),065101. Maruska,T.,Mocanu,V.,Blaj,V.,2012.Agrosilvopastoralsystemandfoodsecurity Kármánconstant,z0 istheroughnesslength,disthedisplacement inthecontextofglobalwarming.AnnalsoftheAcademyofRomanianScien- height,andVtisthetangentialvelocityinterpolatedatapointwitha tists,SeriesonAgricultureForestryandVeterinaryMedicineSciences1, 131– normaldistanceztothesolidsurface.Thestressisthentransformed 140. Mirocha, J., Kosovic´, B., Kirkil, G., 2014. Resolved turbulence characteristics in backtotheoriginalcoordinatesystem. large-eddy simulations nested within mesoscale simulations using the weather research and forecasting model. Mon. Weather Rev. 142 (2), 806–831. Moeng,C.-H.,Dudhia,J.,Klemp,J.,Sullivan,P.,2007.Examiningtwo-waygridnesting References forlargeeddysimulationofthePBLusingtheWRFmodel.Mon.WeatherRev. 135(6),2295–2311. Albertson,J.D.,Parlange,M.B.,1999.Surfacelengthscalesandshearstress:implica- Munteanu,C.,Kuemmerle,T.,Boltiziar,M.,Butsic,V.,Gimmi,U.,Halada,L.,Kaim, tionsforland-atmosphereinteractionovercomplexterrain.WaterResour.Res. D.,Király,G.,Konkoly-Gyuró,E.,Kozak,J.,Lieskovský,J.,Mojses,M.,Müller,D., 35(7),2121–2132. Ostafin,K.,Ostapowicz,K.,Shandra,O.,Štych,P.,Walker,S.,Radeloff,V.,2014. Barbezat,V.,Boquet,J.-F.,2008.Gestionintégréedespaysagessylvo-pastorauxdel’Arc ForestandagriculturallandchangeintheCarpathianregion–ameta-analysisof jurassien-Manuel.ConférenceTransJurassienne,LaChaux-de-Fonds. long-termpatternsanddriversofchange.LandUsePolicy38, 685–697. Bechmann,A.,Sørensen,N.,2011.HybridRANS/LESappliedtocomplexterrain.Wind Nolan,P.,Lynch,P.,Sweeney,C.,2014.Simulatingthefuturewindenergyresourceof Energy14(2),225–237. IrelandusingtheCOSMO-CLMmodel.WindEnergy17(1),19–37. Bergmeier,E.,Petermann,J.,Schröder,E.,2010.Geobotanicalsurveyofwood-pasture Peringer, A., Rosenthal, G., 2011. Establishment patterns in a secondary tree line habitatsinEurope:diversity,threatsandconservation.Biodivers.Conserv.19, ecotone. Ecological Modelling 222 (17), 3120–3131. https://doi.org/10.1016/j. 2995–3014. ecolmodel.2011.05.025. Bilal, M., Birkelund, Y., Homola, M., Virk, M., 2016. Wind over complex terrain - Peringer,A.,Schulze,K.,Stupariu,I.,Stupariu,M.,Rosenthal,G.,Buttler,A.,Gillet, microscalemodellingwithtwotypesofmesoscalewindsatNygårdsfjell.Renew. F.,2016.Multi-scalefeedbacksbetweentreeregenerationtraitsandherbivore Energy99, 647–653. behaviorexplainthestructureofpasture-woodlandmosaics.Landsc.Ecol.31(4), Buttler,A.,Kohler,F.,Gillet,F.,2009.TheSwissmountainwoodedpastures:pat- 913–927. ternsandprocesses. In:Rigueiro-Rodriguez,A.,McAdam,J.,Mosquera-Losada, Peringer,A.,Siehoff,S.,Chételat,J.,Spiegelberger,T.,Buttler,A.,Gillet,F.,2013.Pastand M.(Eds.),AgroforestryinEurope:CurrentStatusandFutureProspects. Springer, futurelandscapedynamicsinpasture-woodlandsoftheSwissJuraMountains NewYork,pp.377–396. underclimatechange.Ecol.Soc.18(3),11. Canuto, C., Hussaini, M., Quarteroni, A., Zang, T., 1988.Spectral Methods in Fluid Perrenoud, A., Känzig-Schoch, U., Schneider, O., Wettstein, J.B., 2003. Exploitation Dynamics.Springer,NewYork. durabledespâturagesboisés.UnexempleappliquédeJurasuisse.HauptVerlag, Carvalho, D., Rocha, A., Santos, C., Pereira, R., 2013. Wind resource modelling in Bern. complexterrainusingdifferentmesoscale-microscalecouplingtechniques.Appl. Porté-Agel,F.,Meneveau,C.,Parlange,M.B.,2000.Ascale-dependentdynamicmodel Energy108, 493–504. forlarge-eddysimulation:applicationtoaneutralatmosphericboundarylayer.J. Castro,F.,SilvaSantos,C.,LopesDaCosta,J.,2015.One-waymesoscale-microscalecou- FluidMech.415, 261–284. plingforthesimulationofatmosphericflowsovercomplexterrain.WindEnergy Pa˘tru-Stupariu,I.,Stupariu,M.,Stoicescu,I.,Peringer,A.,Buttler,A.,Fürst,C.,2017. 18(7),1251–1272. Integratinggeo-biodiversityfeaturesintheanalysisoflandscapepatterns.Ecol. Cheng,W.-C.,Porté-Agel,F.,2013.Evaluationofsubgrid-scalemodelsinlarge-eddy Indic.80, 363–375. simulation of flow past a two-dimensional block. Int. J. Heat Fluid Flow 44, Pa˘tru-Stupariu,I.,Tudor,A.,Stupariu,M.,Buttler,A.,Peringer,A.,2016.Landscape 301–311. persistenceandstakeholderperspectives:thecaseofRomania’sCarpathians. Chester,S.,Meneveau,C.,Parlange,M.B.,2007.Modelingturbulentflowoverfractal Appl.Geogr.69, 87–98. treeswithrenormalizednumericalsimulation.J.Comput.Phys.225(1),427– Raupach,M.R.,1994.Simplifiedexpressionsforvegetationroughnesslengthandzero– 448. planedisplacementasfunctionsofcanopyheightandareaindex.Bound.-Layer Diebold,M.,Higgins,C.,Fang,J.,Bechmann,A.,Parlange,M.B.,2013.Flowoverhills: Meteorol.71, 211–216. a large-eddy simulation of the bolund case. Bound.-Layer Meteorol. 148 (1), SanzRodrigo,J.,ChávezArroyo,R.,Moriarty,P.,Churchfield,M.,Kosovic´,B.,Réthoré, 177–194. P.-E.,Hansen,K.,Hahmann,A.,Mirocha,J.,Rife,D.,2017.Mesoscaletomicroscale Dovcˇiak,M.,Hrivnák,R.,Ujházy,K.,Gömöry,D.,2008.Seedrainandenvironmental wind farm flow modeling and evaluation. Wiley Interdisciplinary Reviews: controlsoninvasionofPiceaabiesintograssland.PlantEcol.194(1),135–148. EnergyandEnvironment6(2),e214. Dragomir,G.,S¸erban,A.,Naˇstase,G.,Brezeanu,A.,2016.WindenergyinRomania:a Shamsoddin,S.,Porté-Agel,F.,2017.Large-eddysimulationofatmosphericbound- reviewfrom2009to2016.Renew.Sustain.EnergyRev.64, 129–143. ary-layerflowthroughawindfarmsitedontopography.Bound.-LayerMeteorol. Dufour,A.,Gadallah,Z.,Wagner,H.,Guisan,A.,Buttler,A.,2006.Plantspeciesrichness 163(1),1–17. andenvironmentalheterogeneityinamountainlandscape:effectsofvariability SilvaLopes,A.,Palma,J.,Castro,F.,2007.SimulationoftheAskerveinflow.Part2: andspatialconfiguration.Ecography29, 573–584. large-eddysimulations.Bound.-LayerMeteorol.125(1),85–108. Etienne,M.,1996.WesternEuropeanSilvopastoralSystems.INRA,Paris. Skamarock,W.C.,Klemp,J.B.,Dudhia,J.,Gill,D.O.,Barker,D.M.,Duda,M.G.,Huang, Fang,J.,Diebold,M.,Higgins,C.,Parlange,M.B.,2011.Towardsoscillation-freeimple- X.-Y., Wang, W., Powers, J.G., 2008. A description of the advanced research mentation of the immersed boundary method with spectral-like methods. J. WRFversion3.Tech.Rep.NCAR/TN-475+STR,NationalCenterforAtmospheric Comput.Phys.230(22),8179–8191. Research,Boulder,Colorado,USA.June.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.