ebook img

Shearlets : multiscale analysis for multivariate data PDF

346 Pages·2012·3.684 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Shearlets : multiscale analysis for multivariate data

Applied and Numerical Harmonic Analysis SeriesEditor JohnJ.Benedetto UniversityofMaryland CollegePark,MD,USA EditorialAdvisoryBoard AkramAldroubi JelenaKovacˇevic´ VanderbiltUniversity CarnegieMellonUniversity Nashville,TN,USA Pittsburgh,PA,USA AndreaBertozzi GittaKutyniok UniversityofCalifornia TechnischeUniversita¨tBerlin LosAngeles,CA,USA Berlin,Germany DouglasCochran MauroMaggioni ArizonaStateUniversity DukeUniversity Phoenix,AZ,USA Durham,NC,USA HansG.Feichtinger ZuoweiShen UniversityofVienna NationalUniversityofSingapore Vienna,Austria Singapore,Singapore ChristopherHeil ThomasStrohmer GeorgiaInstituteofTechnology UniversityofCalifornia Atlanta,GA,USA Davis,CA,USA Ste´phaneJaffard YangWang UniversityofParisXII MichiganStateUniversity Paris,France EastLansing,MI,USA Forfurthervolumes: http://www.springer.com/series/4968 Gitta Kutyniok • Demetrio Labate Editors Shearlets Multiscale Analysis for Multivariate Data Editors GittaKutyniok DemetrioLabate Institutfu¨rMathematik DepartmentofMathematics TechnischeUniversita¨tBerlin UniversityofHouston Berlin,Germany Houston,TX,USA ISBN978-0-8176-8315-3 e-ISBN978-0-8176-8316-0 DOI10.1007/978-0-8176-8316-0 SpringerNewYorkDordrechtHeidelbergLondon LibraryofCongressControlNumber:2012932597 MathematicalSubjectClassification(2010):42C15,42C40,65T60,68U10,94A08 (cid:2)c SpringerScience+BusinessMedia,LLC2012 Allrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewritten permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY10013, USA),except forbrief excerpts inconnection with reviews orscholarly analysis. Usein connectionwithanyformofinformationstorageandretrieval,electronicadaptation,computersoftware, orbysimilarordissimilarmethodologynowknownorhereafterdevelopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarks,andsimilarterms,eveniftheyare notidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyaresubject toproprietaryrights. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia (www.birkhauser-science.com) ANHA Series Preface TheAppliedandNumericalHarmonicAnalysis(ANHA)bookseriesaimstoprovide theengineering,mathematical,andscientificcommunitieswithsignificantdevelop- mentsinharmonicanalysis,rangingfromabstractharmonicanalysistobasicappli- cations.Thetitleoftheseriesreflectstheimportanceofapplicationsandnumerical implementation,butrichnessandrelevanceofapplicationsandimplementationde- pendfundamentallyonthestructureanddepthoftheoreticalunderpinnings.Thus, fromourpointofview,theinterleavingoftheoryandapplicationsandtheircreative symbioticevolutionisaxiomatic. Harmonic analysis is a wellspring of ideas and applicability that has flour- ished, developed, and deepened over time within many disciplines and by means ofcreativecross-fertilizationwithdiverseareas.Theintricateandfundamentalre- lationship between harmonic analysis and fields such as signal processing,partial differentialequations(PDEs),andimageprocessingisreflectedinourstate-of-the- artANHAseries. Our vision of modern harmonic analysis includes mathematical areas such as wavelettheory,Banachalgebras,classicalFourieranalysis,time–frequencyanaly- sis,andfractalgeometry,aswellasthediversetopicsthatimpingeonthem. Forexample,wavelettheorycanbeconsideredanappropriatetooltodealwith somebasicproblemsindigitalsignalprocessing,speechandimageprocessing,geo- physics, pattern recognition, biomedical engineering, and turbulence. These areas implement the latest technologyfrom sampling methods on surfaces to fast algo- rithmsandcomputervisionmethods.Theunderlyingmathematicsofwavelettheory dependsnotonlyonclassicalFourieranalysis,butalsoonideasfromabstracthar- monic analysis, includingvon Neumannalgebrasand the affine group.This leads toastudyoftheHeisenberggroupanditsrelationshiptoGaborsystems,andofthe metaplectic group for a meaningful interaction of signal decomposition methods. Theunifyinginfluenceofwavelettheoryintheaforementionedtopicsillustratesthe justification for providinga means for centralizing and disseminating information fromthebroader,butstillfocused,areaofharmonicanalysis.Thiswillbeakeyrole ofANHA.Weintendtopublishthescopeandinteractionthatsuchahostofissues demands. v vi ANHASeriesPreface Alongwithourcommitmentto publishmathematicallysignificantworksatthe frontiersofharmonicanalysis,wehaveacomparablystrongcommitmenttopublish majoradvancesinthefollowingapplicabletopicsinwhichharmonicanalysisplays asubstantialrole: Antennatheory Predictiontheory Biomedicalsignalprocessing Radarapplications Digitalsignalprocessing Samplingtheory Fastalgorithms Spectralestimation Gabortheoryandapplications Speechprocessing Imageprocessing Time–frequencyand Numericalpartialdifferentialequations time-scaleanalysis Wavelettheory TheabovepointofviewfortheANHAbookseriesisinspiredbythehistoryof Fourieranalysisitself,whosetentaclesreachintosomanyfields. Inthe lasttwocenturies,Fourieranalysishashada majorimpactonthedevel- opment of mathematics, on the understanding of many engineering and scientific phenomena,andonthesolutionofsomeofthemostimportantproblemsinmathe- maticsandthesciences.Historically,Fourierseriesweredevelopedintheanalysis of some of the classical PDEs of mathematical physics;these series were used to solve such equations. In order to understandFourier series and the kinds of solu- tionstheycouldrepresent,someofthemostbasicnotionsofanalysisweredefined, e.g.,theconceptof“function”.SincethecoefficientsofFourierseriesareintegrals, it is no surprise that Riemann integrals were conceived to deal with uniqueness propertiesoftrigonometricseries.Cantorssettheorywasalsodevelopedbecauseof suchuniquenessquestions. A basic problem in Fourier analysis is to show how complicated phenomena, suchassoundwaves,canbedescribedintermsofelementaryharmonics.Thereare twoaspectsofthisproblem:first,tofind,orevendefineproperly,theharmonicsor spectrumofagivenphenomenon,e.g.,thespectroscopyprobleminoptics;second, todeterminewhichphenomenacanbeconstructedfromgivenclassesofharmonics, asdone,e.g.,bythemechanicalsynthesizersintidalanalysis. Fourieranalysisisalsothenaturalsettingformanyotherproblemsinengineer- ing, mathematics, and the sciences. For example, Wiener’s Tauberian theorem in Fourieranalysisnotonlycharacterizesthebehavioroftheprimenumbers,butalso providesthepropernotionofspectrumforphenomenasuchaswhitelight;thislatter processleadstotheFourieranalysisassociatedwithcorrelationfunctionsinfilter- ingandpredictionproblems,andtheseproblems,inturn,dealnaturallywithHardy spacesinthetheoryofcomplexvariables. Nowadays, some of the theory of PDEs has given way to the study of Fourier integraloperators.Problemsin antenna theoryare studied in terms of unimodular trigonometricpolynomials.Applicationsof Fourieranalysisaboundin signalpro- cessing,whetherwiththefastFouriertransform(FFT),orfilterdesign,ortheadap- tivemodelinginherentintimefrequency-scalemethodssuchaswavelettheory.The ANHASeriesPreface vii coherentstatesofmathematicalphysicsaretranslatedandmodulatedFouriertrans- forms, and these are used, in conjunctionwith the uncertainty principle, for deal- ingwithsignalreconstructionincommunicationstheory.Wearebacktotheraison d’eˆtreoftheANHAseries! UniversityofMaryland JohnJ.Benedetto CollegePark SeriesEditor Preface The introduction of wavelets about 20 years ago has revolutionized applied mathematics, computer science, and engineering by providing a highly effective methodologyfor analyzing and processing univariate functions/signalscontaining singularities. However, wavelets do not perform equally well in the multivariate caseduetothefactthattheyarecapableofefficientlyencodingonlyisotropicfea- tures.ThislimitationcanbeseenbyobservingthatBesovspacescanbeprecisely characterizedbydecaypropertiesofsequencesofwaveletcoefficients,buttheyare not capable of capturingthose geometricfeatures which could be associated with edgesandotherdistributedsingularities.Indeed,suchgeometricfeaturesareessen- tial in the multivariate setting, since multivariate problems are typically governed byanisotropicphenomenasuchassingularitiesconcentratedonlowerdimensional embeddedmanifolds.Todealwiththischallenge,severalapproacheswereproposed intheattempttoextendthebenefitsofthewaveletframeworktohigherdimensions, withtheaimofintroducingrepresentationsystemswhichcouldprovidebothopti- mallysparse approximationsofanisotropicfeaturesanda unifiedtreatmentofthe continuumanddigitalworld.Amongthevariousmethodologiesproposed,suchas curveletsandcontourlets,theshearletsystem,whichwasintroducedin2005,stands outasthefirstandsofartheonlyapproachcapableofsatisfyingthiscombination ofrequirements. Today,variousdirectionsofresearchhavebeenestablishedinthetheoryofshear- lets. These include, in particular, the theory of continuous shearlets—associated with a parameter set of continuous range—and its application to the analysis of distributions.Anotherdirectionisthetheoryofdiscreteshearlets—associatedwith adiscreteparameterset—andtheirsparseapproximationproperties.Thankstothe fact that shearlets provide a unified treatment of the continuum and digital realm throughtheutilizationoftheshearingoperator,digitalizationandhencenumerical realizationscan be performedin a faithfulmanner,and this leads to very efficient algorithms.Buildingontheseresults,severalshearlet-basedalgorithmsweredevel- opedtoaddressarangeofproblemsinimageanddataprocessing. Thisbookisthefirstmonographdevotedtoshearlets.Itisnotonlyaimedatand accessibletoabroadreadershipincludinggraduatestudentsandresearchersinthe ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.