ebook img

Shear wave splitting along a nascent plate boundary: the North Anatolian Fault Zone PDF

13 Pages·2010·1.11 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Shear wave splitting along a nascent plate boundary: the North Anatolian Fault Zone

Geophysical Journal International Geophys.J.Int. (2010)181,1201–1213 doi:10.1111/j.1365-246X.2010.04576.x Shear wave splitting along a nascent plate boundary: the North Anatolian Fault Zone C. Berk Biryol,1 George Zandt,1 Susan L. Beck,1 A. Arda Ozacar,2 Hande E. Adiyaman1 and Christine R. Gans1 s c ni 1DepartmentofGeosciences,UniversityofArizona,Tucson,AZ,USA.E-mail:[email protected] o 2GeologicalEngineeringDepartment,MiddleEastTechnicalUniversity,Ankara,Turkey ct e t dD no Accepted2010February22.Received2010February22;inoriginalform2009June16 awn slo ca mide d SUMMARY na fro TbehtewNeeonrththAenAatnoaltioalniaFnauPlltaZteontoe(tNheAFsoZu)tihsaantrdanthsfeorEmursatsriuactPulraetethtaotctohnesntioturtthes.tWheebaonuanlydsaeryd eodym http Gs thepropertiesoftheupper-mantlestrainfieldandmantleanisotropyinthevicinityofNAFZ I://a viasplittingofSKSandSKKSphases.WeuseddatafromtheNorthAnatolianFault(NAF) GJca d passiveseismicexperiment.Thisisthefirststudythatanalysestheupper-mantleanisotropy e m in this region and our results indicate that the observed upper-mantle strain field is uniform ic .o underneaththearraywithconsistentNE–SWpolarizationdirectionsforfastsplitwaves.The u p measured lag times between the arrivals of the fast and slow split waves varies from 0.5 to .co m 1.6sforthestudyarea.Smallerlagtimesareobtainedconsistentlyintheeasternpartofthe /g array.However,wedonotobserveanysignificantvariationineitherthepolarizationdirections ji/a orthedelaytimesacrosstheplateboundary(NAFZ). rtic le Theuniformityofthefastpolarizationdirectionsthroughoutthestudyareaandthestrength -a b ofanisotropyfavouranasthenosphericsourcefortheanisotropy.Theregionaltectonicframe- s tra workfavoursaSWdirectionofasthenosphericflowduetotheforcesactingontheupper-mantle c t/1 exertedbytheslab-roll-backtakingplacealongtheAegeanandtheCypreanSubductionZones. 8 1 /3 Key words: Mantle processes; Seismic anisotropy; Continental tectonics: strike-slip and /1 2 transform;Dynamicsoflithosphereandmantle. 01 /6 0 1 0 3 9 b 1 INTRODUCTION westward extrusion of the Anatolian Plate along the right-lateral y gu NAFZ (Sengor 1979) and the left-lateral Eastern Anatolian Fault e s Analysisoftherelationshipbetweencrustalstrainandupper-mantle Zone(EAFZ)(Jackson&McKenzie1988)(Fig.1).Despitenumer- t o n deformationfieldsnearplateboundaryzonesisimportantforun- ousgeologicalstudiesalongthisfaultzone,thedeeperstructureof 2 5 derstandingpatternsofdeformationaroundplatemargins,aswell thisplatemarginremainsrelativelyunknown.Twoimportantprob- N as the dynamic interaction between the lithosphere and astheno- lemsthatweaddressinthisstudyaretheorientationofdeformation ov e sphere.Therearenodirectmeanstoobservethedynamicsofthe intheupper-mantlebeneathourstudyarea,andthedegreeofco- m b uppermostmantleinsuchplateboundaryzones.Seismicanisotropy herencybetweentheupper-mantleandthecrustalstrainfields. e generatedbythestraininducedlatticepreferredorientation(LPO) Analysis of shear wave splitting along other transform plate r 2 0 1 ofanisotropicmantleminerals(i.e.olivine),however, issensitive boundarieshasrevealeddifferentpatternsofmantledeformation. 8 todeformationatdepth.Thesplittingofpolarizedshearwavesin TheseismicanisotropystudiesinwesternNorthAmericaandalong suchananisotropicmediumcanquantifythedirectionandstrength theSanAndreasFault(SAF)indicateanupper-mantlestrainfield oftheanisotropy(Christensen1966;Keith&Crampin1977;Ando withdeformationdirectionsmostlyobliquetothesurfacetraceof 1984; Fukao 1984; Kind et al. 1985; Silver & Chan 1988; 1991; thefault.Somestudiesshowthatthereexistsashallowerzoneof Vinniketal.1992;Kaneshima&Silver1995;Silver1996;Savage deformationthatislocatedwithinanarrowercorridorthatfollows 1999;Silver&Holt2002). theshearzonewithdirectionsparallelingthestrikeofSAF(Oza- This study focuses on northern-central Anatolia and the North laybey&Savage1995;Silver1996;Hartog&Schwartz2001;Titus AnatolianFaultZone(NAFZ),whichisa1400kmlongcontinental etal.2007).TheslipratesmeasuredfortheSAFareontheorderof transformfaultthatformsthenorthernmarginoftheAnatolianplate 20–30 mm yr−1 (Johnson et al. 2007). These are similar to slip (Fig.1).TheearlyMiocenecollisionofthenorthward-converging rates measured for NAFZ, which are on the order of 20– ArabianPlatewiththeEurasianPlatealongtheBitlisSutureZone 25mmyr−1(McCluskyetal.2000).Manystudiesindicatethatthe (BSZ)resultedinnorth–southcontractioninEasternAnatoliaand dextralmotionalongNAFZinitiatedduringLateMiocenetoEarly (cid:2)C 2010TheAuthors 1201 Journalcompilation(cid:2)C 2010RAS 1202 C.B.Biryoletal. 25˚ 30˚ 35˚ 40˚ N Black Sea GC EURASIAN PALTE LC 40˚ A(GNSTNO) STUDY AREEAF NAFZ N E AEF ZA AC ~20 mm/yr ANATOLIAN PLATE E A F Z BSZ Aegean Sea D o w n ~25 mm/yr lo a ARABIAN d e Mediterranean Sea PALTE d 35˚ CT SFZ km from A T AFRICAN PALTE ~10 mm/yr D 0 100 200 http s Figure1. TectonicmapoftheAnatoliaandsurroundingregionsalsoshowingneotectonicstructures,platevelocitiesandthelocationofthestudyareain ://ac a thisframework.Openupside-downtrianglesarestationsoftheNAFarrayandtheopensquareistheGSNstationANTO.Platevelocitiesarerelativetofixed d e EurasiaPlate(Reilingeretal.1997;Barka&Reilinger1997).AT,AegeanTrench;BSZ,BitlisSutureZone;CT,CypreanTrench;DSFZ,DeadSeaFaultZone; m EAAC,EasternAnatolianAcretionaryComplex;EAFZ,EasternAnatolianFaultZone;EF,EzinepazariFault;ESM,EratosthenesSeamount;GC,Greater ic.o Caucasus;LC,LesserCaucasus;NAFZ,NorthAnatolianFaultZone;NEAFZ,North-EastAnatolianFaultZone. up .c o m Pliocene (∼5–11 Ma) (Barka & Kadinsky-Cade 1988; Barka & maximumfiniteextension(McKenzie1979;Ribe&Yu1991;Ribe /g Gu¨len1989;Koc¸yig˘it1989,1990;Dirik1993;Bozkurt&Koc¸yig˘it 1992)undertheeffectofsimpleshear,largestrainsandhightem- ji/a 1996;Barkaetal.2000;Bozkurt2001).Inthisrespect,theNAFZis peratures(1300◦C)(Zhang&Karato1995).Thelagtimebetween rtic significantlyyoungerthanSAF(∼17–30Ma)(McKenzie&Mor- thefastandslowcomponentsindicatesthestrengthorthethickness le-a gan 1969; Atwater 1970; Graham et al. 1989). Unlike the SAF, of the source of anisotropy (Silver & Chan 1991). Although this b s the upper-mantle deformation beneath the dextral NAFZ and the sourcecouldbeanywherebetweenthecoreandthereceiver,many tra c surroundingregionisnotwellconstrained,duetothelackofgeo- studies have shown that most anisotropy takes place in the upper t/1 8 physicalobservations.Thisisthefirststudytoinvestigatethechar- 400kmoftheEarth(Vinniketal.1992;Mainprice&Silver1993; 1 /3 acteristicsofthemantlestrainfieldbeneaththenorthwardconvex Barruol & Mainprice 1993; Vinnik et al. 1995, 1996). Previous /1 2 segmentoftheNAFZandthenorth-centralportionoftheAnatolian studiesindicatethatthecontributionofthecrusttothissourceof 0 1 Plateusingsplittingofshearwaves. anisotropyisrelativelysmall(0.04–0.2s)(Gledhill&Stuart1996; /6 0 Savage1999).Theseismicanisotropymeasurementsinferredfrom 1 0 shearwavesplittinghavelimitedverticalresolution,buttheypro- 39 videbetter lateral resolutionbecause theincidence angles forthe by 2 DATA AND METHOD associatedphasesarefairlysmallandeachmeasurementrepresents gu e Twoesdtuepdlyoytheedsaeissemisimcitiycaanrrdaythceolmithpoosspehderoifc3s9trubcrtouarde-obfanthdesreeigsimonic, aniWsoetrcoaplicculsatrteudcttuhreevbaelnueeasthofinϕdiavnidduδatlfroercienivdeivrsid.ualevent-station st on stationsthatcrossedtheNAFZinmultipletransects(Fig.1).These pairsusingtwodifferenttechniques,wheretheeffectsofsplitting 25 seismic instruments were provided by the Incorporated Research areremovedfromtheobservedseismogramsthroughagrid-search No Institutions for Seismology (IRIS)—Program for Array Seismic forsuitablevaluesofsplittingparameters(ϕandδt).Oneofthese ve m Studies of the Continental Lithosphere (PASSCAL) Consortium techniques, Rotation Correlation (RC), involves a search for the b e and recorded regional and global earthquakes continuously at 40 bestϕ,δtpairthatmaximizesthecorrelationbetweenthecorrected r 2 0 samplespersecondforaperiodof2yr. seismogrampairsbyrotationthroughaseriesofcoordinatesystems 1 8 SKSandSKKSarethemostcommoncorephasesusedinseismic (Fukao 1984; Bowman & Ando 1987). The second method that anisotropyanalysis.ThearrivalsaregeneratedbyPtoSVconver- we used is Singular Covariance (SC) defined by Silver & Chan sionsatthecore–mantleboundaryandgenerateconvertedphases (1991).Itincorporatesminimizationofthedisplacementenergyon polarizedintheradialplane.Anyanisotropicmediumunderneath thetransversecomponentafterremovingeffectsofsplitting.These thereceiversidecausessplittingofthepolarizedshearwave(SV) calculationsarecarriedoutusingtheSplitLabcodeofWu¨stefeld intofastandslowcomponents,withparticlemotionstakingplace et al. (2008). Utilization of two different techniques allows us to inassociatedfastandslowpropagationdirections(Backus1965). comparetheresultsintermsofconsistency,andhence,assessthe Shearwavesplittinganalysisdeterminesthepolarizationdirection qualityforindividualmeasurementsbasedonthecriteriaexplained ofthefastwave(ϕ)andthelagtimebetweenthefastandslowwaves byWu¨stefeld&Bokelmann(2007). (δt)(Silver&Chan1988;Silver&Chan1991;Vinniketal.1992). Thedatainclude140eventslocatedatadistancerangeof85–120◦ Forcommonmantlemineralssuchasolivine,thefastpolarization (Fig. 2a). The events were selected to have moment magnitudes directionisparalleltotheflowdirectionandalsothedirectionof over5.0anddepthsgreaterthan10km.However,bestresultswere (cid:2)C 2010TheAuthors,GJI,181,1201–1213 Journalcompilation(cid:2)C 2010RAS Anisotropyalonganascentplateboundary 1203 a b Radial Transverse Components Components SKS SKS YIKI YIKI Mw ≥ 7.0 YESI YESI 6.5 < Mw ≤ 7.0 STYEUPNE STYEUPNE 6.0 < Mw ≤ 6.5 SEYH SEYH 120˚ Mw ≤ 6.0 PAPNECLI PAPNECLI OGUR OGUR KUZO KUZO KUZA KUZA 85˚ km Depth KKUIZYIKL KKUIZYIKL 700 KIYI KIYI 650 KKGAVAAC KKGAVAAC 600 KARA KARA ISKE ISKE D 550 INSU INSU o INCE INCE w 455000 GHEAOKSCINAE GHEAOKSCINAE nloade 345000 DDDUOEMGRALE DDDUOEMGRALE d from 223050000 CCBCCABUORAKEKKLLMKTUUEI CCBCCABUORAKEKKLLMKTUUEI https://aca 150 BEDI BEDI de BAGB BAGB m 100 ALOR ALOR ic ALIN ALIN .o 50 ALIC ALIC up 0 0 5 101520 0 5 101520 .co Seconds Seconds m Event: January 21, 2007 /g Mw=7.5 ji/a Average Distance=90˚ rtic Hypocenter depth=22 km le Average Backazimuth=88.5˚ -a b s tra Figure2. (a)Eventsusedintheanalysisofanisotropyunderneaththenorth-centralportionofAnatolia.Greyscaleindicateshypocentredepthfortheseevents. c OpenstaratthecentreofthemapshowsthelocationoftheNAFarray.Mostoftheeventsarefrombackazimuthsof270◦±10◦and90◦±10◦.(b)Radial t/1 8 andtransversecomponentsofSKSarrivalsfortheMoluccaSeaevent(whitesquareonmap)in2007January21(Mw=7.5)recordedbytheNAFnetwork. 1/3 /1 2 obtainedonlyforeventswithmagnitudesover6.0(Mw)anddepths Wecarriedoutqualityassessmentforourresultsintwostages. 01 ofmorethan20km(Fig.2b).Wealsoobtainedsplittingparame- Thefirststageofthequalityassessmentincorporatesacomparison /6 0 tersfortheGlobalSeismographicNetwork(GSN)stationANTO, ofresultsobtainedusingSCandRCmethodsfollowingthecrite- 1 0 utilizingdatafortheperiodoftheNAFdeployment(Fig.1). riadefinedbyWu¨stefeld&Bokelmann(2007).Thesecriteriaare 39 inAtertmotsalofofsh2e4a6r1wsaevtessopfliSttKinSg.aPndrioSrKtoKStheararnivaallyssiws,emreoasntaolfysthede δdteRfiCn)eodfbthyeftawstoamxiesthmoidssfi.tTsh(|eϕdSeCs-cϕrRipCt|i)oannodfdtheelafyoutirmqeuaralittiyoscl(aδstsSeCs/ by gue datawasfilteredusingabandpassfilterwithcut-offlimitsof1and usedinthisstudyisgiveninFig.4.Thisfigurealsoshowsthedis- s t o 25 s to eliminate very high frequency and low frequency noise. tributionofindividualmeasurementsintotheseclasses.Thesecond n Occasionally the data were analysed without applying a filter or stage of quality analysis incorporates visual screening of results 25 withapplyingabroaderbandpassfilter(withcut-offperiods1and basedonhoweffectivelytheenergyonthetransversecomponentis N o v 50s)whenthesignal-to-noiseratiooftheseismogramswerehigh removedonthecorrectedseismogramsandhowwelltheresultsare e m enough.Consideringthedominantfrequencyofourmeasurements constrainedbasedontheerrorsassociatedwiththemeasurements. b e was ∼8 s for SKS and ∼11 s for SKKS, these filters were suit- Hence, we eliminated some of the poor measurements that were r 2 0 able for the data set. Examples of measurements using SKS and misclassifiedasnullmeasurementsduetothelowsignal-to-noise 1 8 SKKSphasesforoneeventrecordedatstationKUYLareshown ratiooftheassociatedwaveforms. inFig.3. Our measurements yielded 681 well-constrained splitting pa- rameters and 1053 null measurements. The remaining 727 mea- 3 RESULTS surements were of low quality, yielding poorly resolved splitting parameters. The results of our analysis and detailed statistics on Ingeneral,ourmeasurementsrevealroughlyNE–SWtrendingfast our measurements are summarized in Fig.5 and Table 1.In gen- polarization directions for the Eurasian Plate and the Anatolian eral,fewerSKKSphasesyieldwell-constrainedsplittingparame- Platewithoutanylargevariations(seesupportinginformationfor ters compared to SKS phases. However, the mean differences in rosediagramsoffastpolarizationdirectionsandnullmeasurements measuredsplittingparametersbetweenSKSandSKKSphasesare ateachstation).Themeanfastpolarizationdirectionforthearrayis small:approximately10◦ forfastpolarizationdirectionsand0.3s ∼43◦usingbothSCandRCmethods(Fig.5).Thefastpolarization fordelaytimes(Table1andFig.3). directionaveragesforboththenorthernandthesouthernblocksof (cid:2)C 2010TheAuthors,GJI,181,1201–1213 Journalcompilation(cid:2)C 2010RAS 1204 C.B.Biryoletal. 2000 1000 500 1000 0 0 0 20 40 0 10 20 30 1000 1000 Do w n 500 500 lo a d 0 0 ed fro m h ttp s ://a c 0 20 40 0 10 20 30 ad e m ic Figure3. AnexampleofSKS(toppanels)andSKKS(bottompanels)arrivalsandassociatedparticlemotionsbeforeandaftertheeffectsofthesplittingare .o removed.Bothofthearrivalsarefromanintermediatedepthevent(Mw=6.4)locatedbeneathJujuyProvince,Argentina. up.c o theNAFZarealsoapproximately43◦,showingnodistinguishable lines delineate the backazimuths where we will observe null re- m/g differenceacrosstheplateboundary. sultsforagivenfastpolarizationdirection(eitherbackazimuth= ji/a Although the fast polarization directions are nearly uniform ϕ orbackazimuth=ϕ ±90◦).Theblackcontinuouslines,onthe rtic throughouttheNAFarray,weobservesomeclearvariationinlag otherhand,showthedistributionofmeasurementsthathaveback- le-a times.ThemostnoteablevariationinlagtimesoccursinanE–W azimuthsoriented45◦fromthefastandslowpolarizationdirections b s directionratherthanaN-Sdirection.Atthewesternmostpartofthe (backazimuth=ϕ±45◦)or,inotherwords,farthestfromthenull tra studyarea,themeasureddelaytimesareontheorderof1.3s.Start- directions (ϕ or ϕ ± 90◦) for a given fast polarization direction ct/1 ingfrom34◦Elongitude,themeasuredlagtimesdecreasesmoothly (ϕ).AnalysisofsyntheticdatabyWu¨stefeld&Bokelmann(2007) 81 /3 towardstheeastwheretheyhavetheirminimumvaluesontheorder showedthatthebestsplittingmeasurementstendtoclusteraround /1 of0.5sandthenincreaseagaineastof37◦E(Fig.5).Thenumberof these ϕ ± 45◦ lines. Our good and fair measurements also tend 20 1 nullmeasurementssignificantlyincreasesforstationslocatedeast to cluster around these lines. In addition, our null measurements /6 of 34◦E longitude (see supporting information). This is probably arelocatedaroundthelinesrepresentingthenulldistribution(grey 01 0 related to smaller delay times, which make it harder to correctly continuous lines, Fig. 6). The mean ϕ for this station is 45◦ and 39 detect anisotropy given the noise recorded at stations. We obtain the observed nulls mostly lie within ±15◦ of this direction (the by mostlynullmeasurementsforthestationsbetween35◦Eand36◦E greyshadedregionsinFig.6).Althoughwehavealimitedback- gu e inthenorthernblock of NAFZ (openstarsonFig. 5)and station azimuthal distribution for our results and we cannot completely s KIYIlocatedintheSEpartoftheNAFarray.Twoofthesestations, ruleoutthepresenceofverticallyvaryinganisotropy,thedistribu- t on DERE and CALT, have a few splitting measurements with ϕ = tionofnullsandtheconsistencyinobservedsplittingparameters 25 ∼30±10◦andδt∼0.4±0.1sthatarefromeventslocatedtothe favour a single layer anisotropic source. This one layer model is N o v west.Around100kmtotheeastofthesestations,TEPEhasacouple alsoconsistentwithpreviousobservationsbyVinniketal.(1992) e m offairmeasurementswithϕ=∼25±10◦andδt∼0.6±0.2sthat andS¸apas¸&Boztepe-Gu¨ney(2009),whoanalysedanisotropybe- b e areobtainedfromeventslocatedtotheeast.ForstationKIYIwe neaththelong-operatingstationANTOandfoundnoevidenceof r 2 wereabletoobtainafewmeasurementsyieldingverysmalldelay verticallyvaryinganisotropy.Thecaseoftwo-layeranisotropywill 01 8 timesontheorderof0.4s.ForstationsOGURandEKIN,allthe bediscussedfurtherinthefollowingsection. resultsarenullsforbothwesternandeasternbackazimuths. The backazimuthal coverage of our data set is limited in the sensethatmostoftheeventsweusedarefromwesternandeastern 4 DISCUSSION backazimuths(Fig.2).Thismakesitdifficultforustoruleoutthe presenceofaverticallyvaryinganisotropybeneaththestudyarea. The existence of invariant anisotropy directions implies that the Thebackazimuthaldistributionofmeasurementsandnulls(using deformational fabric in the upper mantle is uniform beneath the SC method) for station ALIC is shown in Fig. 6. This station is study area and across the Anatolia-Eurasia Plate boundary, as located on the NAF (see Fig. 5) and the recorded data have high delineatedbytheNAFZ.Overabroaderregion,thisisinagreement signal-to-noiseratios.Thelightgrey,continuouslinesontheϕver- withthefindingsofSandvoletal.(2003)usingdatafromtheEast- susbackazimuthplot(Fig.6)showthelinearrelationshipbetween ern Turkey Seismic Experiment (ETSE). They observe no major distributionsofnullswithrespecttobackazimuth.Basically,these variations in NE–SW trending anisotropy directions beneath the (cid:2)C 2010TheAuthors,GJI,181,1201–1213 Journalcompilation(cid:2)C 2010RAS Anisotropyalonganascentplateboundary 1205 ± (s) MeanδErrort 0.250.340.310.220.160.260.180.260.280.200.150.270.170.310.200.160.21–0.300.280.270.240.230.180.250.230.320.160.140.220.290.27–0.210.220.260.200.300.220.27 ) ±n◦ϕ( 6298932931372608946819676182168261 9649306570761011881290358216 33262835709131 MeaError 8.15.10.11.14.22.7.14.19.10.16.14.11.10.15.9.12.–21.15.9.17.12.11.8.10.15.23.14.13.16.7.–11.11.7.7.18.17.14. s ull N air 591312013286894433429148528855153279756625118312 F # s Null D o ood 13111214162211251113308101730143646261612522012371223181781236141585552017 wn G lo # ad #Fair 115121574854132272211040592136130673341040416772811 ed fro m d h Goo 1610142985209321310121531160774610121964461922061919232136 ttps # ://a c # a otal 4535517031444147245544243387383755604637656941425272832323644434230523936774446 dem T ic .o ϕ (s) up a. MeanKKS 1.240.981.25–––1.051.18–0.97–0.900.661.27––––0.621.071.270.801.00––0.930.900.35-0.650.871.50––0.911.431.40–0.73– .com ourstudyare ϕMean◦KKS()S 44.1335.6036.33–––45.3045.48–45.33–45.6043.3635.28––––47.3238.9735.2855.3552.20––38.6344.9046.90-39.5540.2945.00––47.8439.7341.90–50.68– /gji/article-a KSphasesfor δMeantSKS(s)S 1.411.011.470.940.640.641.140.870.700.940.580.850.881.250.730.820.69–0.710.921.330.800.870.701.101.180.940.400.540.940.801.66–0.950.971.721.350.880.620.77 bstract/181/3 KSandSK ϕMean◦SKS() 42.9034.4236.0844.3344.9738.9847.7240.4345.4645.0436.5446.1645.1937.8639.2051.4351.62–43.4635.1038.5560.4248.5951.9521.4043.0937.8357.6037.5647.1144.1449.14–35.3945.8749.3339.3536.9543.7458.27 /1201/601 S 0 sfor KS 39 b ment SK 1681405107125987922171412209192399067831017101041253211210 y gu e # e asur S st o me SK 2927377026343435194636172465373041482628464632335212124292627333226403433563236 n 2 ofsplitting Mean#δt(s) 1.371.001.420.940.640.641.140.960.700.940.580.860.821.250.730.820.69–0.680.941.310.800.880.701.101.130.930.390.540.880.831.63–0.950.961.681.360.880.640.77 5 Novemb s e dqualitie Mean◦ϕ)( 43.2234.8136.1444.3344.9738.9847.5541.8745.4645.0736.5446.0744.7137.4439.2051.4351.62–45.0735.8337.7758.1748.8251.9521.4042.2038.9254.5437.5645.6042.6848.35–35.3946.2748.2239.5236.9545.0658.27 r 2018 n a s number Lon. 33.48732.87932.8732.79335.88736.4133.50634.26336.21137.36735.12534.26934.35733.44135.06435.28435.1435.78734.34833.56532.90635.36637.06735.24533.55232.87834.32335.31636.53634.33236.24832.86135.16534.30134.29932.933.52935.74337.22935.954 e h t of mary Lat. 0.9781.0611.3019.8680.9550.2781.1211.3150.5520.0151.3280.3730.0640.6041.4770.3910.9181.1479.7431.4690.5819.8420.7640.6880.2910.280.9410.1310.0481.590.4410.9041.1090.6471.1130.8560.8381.3690.4050.748 m 4443444444444444443443444444444444444444 u S Table1. Station ALICALINALORANTOARSLBAGBBEDIBEKIBOKECAKMCALTCAYACRLUCUKUDEREDOGLDUMAEKINGOCEHASAINCEINSUISKEKARAKARGKAVAKGACKIYIKIZIKKUYLKUZAKUZOOGURPANCPELISEYHSYUNTEPEYESIYIKI (cid:2)C 2010TheAuthors,GJI,181,1201–1213 Journalcompilation(cid:2)C 2010RAS 1206 C.B.Biryoletal. 90 constraining the depth of the anisotropic source is important for understandingthedominantcauseofdeformation. Fair 80 Good Poor 4.1 Locationofanisotropy 70 non-Null The ray paths for teleseismic phases used in shear wave splitting Null 60 analysisaresteeplyinclinedandtheyhavelittledepthresolution. Wecan,however,indirectlyinferthedepthoftheanisotropicsource 50 usingobserveddelaytimesandinferringthestrengthofanisotropy. Inthisanalysis,weassumethesourceofanisotropyissubhori- 40 zontalbeneaththestudyarea.Theresultsofouranalysismightbe affectedbythepresenceofasteeplydippinganisotropy.However, the case of dipping anisotropy requires variation in the observed 30 D Null splitting parameters with backazimuth, depending on the dip di- ow 20 non-Null rveacrtiiaotinonofinthseplainttiisnogtrpoapriacmmeteedrisuwmi.thWbeacdkoazniomtuotbhse(sreveeFaingy.6ro)bthuastt nloa d wouldaccountforasteeplydippinganisotropicsource.Thus,we e 10 d assumeasubhorizontalorhorizontalanisotropicsourcebeneathour fro studyarea. m 0 h 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 In the case of Eastern Anatolia and ETSE, the analysis of re- ttp c(Aeinvgeursfuentcatilo.n2s00sh6o;wOszaacnaarneotmala.lo2u0s0l8y)thbienne(6a0th–8th0ekEma)stliAthnoastpohliearne s://ac Figure4. Plotofallthemeasurementsinourdatasetwithrespecttodelay Plateau (EAP) and lithospheric thicknesses on the order of 100– ad e timeratiosandfastaxismisfitsbetweenSCandRCmethods.Theshaded 125kmbeneaththeArabianplate(Angusetal.2006).Fastpolar- m regionsrepresentsfairandgoodresults.Thecontinuousblacklinesseparates ic izationdirectionsareorienteduniformlyinNE–SWdirectionswith .o Nullandnon-Nulldomains.Alltheresultsplottedonthenon-shadedspace u delaytimesrangingbetween0.9and1.3sformostofthestations p arepoor. .c locatedontheArabianplateandEasternAnatolianPlateau(EAP) o m (Sandvoletal.2003)(Fig.7A),showingthatthemeasurementsare /g EasternAnatolianAccretionaryComplex(EAAC)andacrossma- insensitivetochangesinlithosphericthicknesses.Further,assum- ji/a jor structural features such as the EAFZ, the eastern portion of ing4percentanisotropicstrength,observeddelaytimesrequirean rtic le NAFZandtheBSZ(Fig.7A).Theuniformityofthesplittingmea- anisotropiclayerthicknessofatleast110km,significantlythicker -a b surements throughout the region raises the question of whether thantheestimatedlithosphericthicknessbeneaththeEAP.Hence, s the associated uniform deformation pattern exists in the subcon- theobservedanisotropyismostlikelylocatedintheasthenosphere tra c tinental lithospheric mantle or underlying asthenosphere. Hence, beneathEasternTurkey,asarguedbySandvoletal.(2003). t/1 8 1 /3 /1 2 0 1 /6 0 N 42˚ 10 3 9 b y KUYL g u HASA DERE e ALOR BEKI CALT TEPE st o n ALIN BEDI PELI OGUR EKIN 25 KUZO ALIC KGAC DUMA ARSL 41˚ No SEYH SYUN KARA YIKI NAFZ ISKE vem INCE CUKU PANC BOKE be CAYA DOGL EFZ KUZA YESI r 20 KAVA KARG BAGB 18 KIYI CRLU KIZIK CAKM 40˚ ANTO (GSN) INSU GOCE 39˚ 31˚ 32˚ 33˚ 34˚ 35˚ 36˚ 37˚ 38˚ Figure5. ResultsofsplittinganalysisforbothSCandRCmethods.Notethattherearenodistinctvariationsamongresultsobtainedusingbothtechniques. Openstarsindicatestationswithmostlynullmeasurements(seeSection3fordetails).NAFZ:NorthAnatolianFaultZone,EFZ:EzinepazariFaultZone. (cid:2)C 2010TheAuthors,GJI,181,1201–1213 Journalcompilation(cid:2)C 2010RAS Anisotropyalonganascentplateboundary 1207 Station: ALIC 90 4.0 3.5 45 3.0 2.5 0 2.0 1.5 1.0 0.5 0.0 D 0 45 90 0 45 90 o w n lo a d e Fwiigthurrees6p.ecFtastot-pboalcakriazzaitmiounthd.irTehcteiopnloatntedddmelaeyastuimreempelnottsswariethorbetsapinecetdtousbiancgkaSzCimmueththfoodr.sTtahtieondiAstLriIbCu.tiFoonroclfaoriutyr,mmeeaassuurreemmeennttssaarreepslhootwtendiwniath90p◦lums,ocdruolsuss, d fro m circleandsquaresigns.Ourbestestimatesofsplittingparameters(plusandcrosssigns)tendtoshowlessvariationthanthetheoreticaldistributionofapparent h splittingparametersfortwolayeranisotropicmodelsindicatedbythindashedlines.Themeanofourmeasurementsareplottedasthethick,black,dashed ttp lfionresst.aOtiounrmAeLaIsCu.rementsofnulls(circlesandsquares)mostlyliewithin±15◦range(thegreyshadedarea)ofobservedmeanfastpolarizationdirection(43◦) s://ac a d e The centre of our array is located approximately 600 km west m ofthecentreofETSEarrayandthearraysareadjacent(Fig.7A). 4.2 Asthenosphericflow ic.o Inthiscase,onewouldexpecttheobservedanisotropytobesub- The dominant mechanism that controls the deformation of hot, up lithosphericbeneaththeNAFarray,unlessaverysharpchangeof mechanically weak asthenosphere is shear strain related to flow. .co m the deformation field occurs from sublithospheric to lithospheric Theoretical analysis and laboratory studies on olivine show that /g levelsfromeasttowestbetweenthesetwoarrays.Inaddition,asin the strain-induced LPO of the mineral creates the observed seis- ji/a thecaseoftheArabianPlateandEAP,weareobservinguniform mic anisotropy, where the fast polarization direction parallels the rtic anisotropydirectionsacrossmajortectonicboundaries,suchasthe flow direction and extension axis of strain ellipse in most cases le-a Izmir-Ankara-ErzincanSuture,InnerTaurideandInnerPontidesu- (McKenzie 1979; Ribe 1989; Ribe & Yu 1991; Silver & Chan bs tures(seeFig.7Aforlocations),aswellastheNAFZ,markingthe 1991; Ribe 1992; Nicolas 1993; Zhang & Karato 1995; Savage tra c boundarybetweenseveralblocksandaccretionarycomplexesthat 1999;Karatoetal.2008).However,itisnotpossibletodirectlyob- t/1 8 definesthenorthernpartoftheAnatolianPlateandtheboundarybe- taintheuniqueflowvectorsfortheasthenosphereonlyusingshear 1 /3 tweentheEurasiaPlateandtheAnatolianPlate.Wesuggestthatthis wavesplittinganalysis.Inourstudyweattempttoconstrainthedi- /1 2 uniformity in splitting parameters across these tectonic provinces rectionofflowbylinkingtheupper-mantlestrainfieldtodynamics 0 1 alsoindicatestheyareassociatedwithsublithosphericstrainrather ofthemajortectonicelementsoftheregion. /6 0 thanlithosphericdeformation. Takingthebroadertectoniccharacteristicsoftheregionintocon- 1 0 MostofthestudyareaiscoveredbytheTethysideaccretionary sideration,wesuggestthattherelativelyrapidsouth-southwestdi- 39 complexes (Sengor et al. 2005) related to Tertiary closure of the rectedslabroll-backtakingplacealongtheAegeansubductionzone by northernbranchoftheNeotethys(Sengor&Yilmaz1981;Go¨ru¨r (LePichon&Angelier1981;Bozkurt2001;McCluskyetal.2003) gu e etal.1984;Koc¸yig˘itetal.1988;Koc¸yig˘it1991;Okayetal.1998),a mightberesponsibleforthemobilizationofasthenosphereinaSW s t o tectonicsettingnormallyassociatedwiththinnerlithosphere.Con- directionbeneaththeAnatolianRegion.TheAegeansectionofthe n sideringtheobservationofrelativelyhighdelaytimes(ontheorder northAfricanplateboundaryisassociatedwithlargerdistancesof 25 of1.3–1.6s)atthewesternmostportionsofthearrayandassuming4 trenchretreatcomparedtotheCypreantrench(Barka&Reilinger No v percentanisotropyfortheuppermantle,weinferthattheanisotropic 1997;McCluskyetal.2003),whichisaffectedbythecollisionofthe e m layerthicknessisontheorderof150km(Mainprice&Silver1993; EratosthenesSeamountsouthofCyprus(ESMonFig.1)(Rotstein b e Silver1996).Inthiscase,theanisotropyinthemantlelithosphere &Kafka1982;Kempler&Garfunkel1994;Robertsonetal.1994; r 2 0 isnotamajorcontributorbecausethelithosphericthicknessisless Robertson&Grasso1995;Glover&Robertson1998)(Fig.1).The 1 8 than 100 km beneath this tectonically active region, as indicated NEorientationofthebackarcdomainsofthesetwoarcsisbased bythesurfacewavedispersionstudybyPasyanos(2005).Besides, onpreliminarytomographicimagesoftheunderlyingslabs(Biryol Gans et al. (2009) reported low Pn velocities beneath the extent etal.2009).Thisdifferenceinroll-backdistancesmightgenerate of the Tethyside accretionary complexes for our study area. This differential shear strain in the asthenosphere, with strengths in- observationmightbeafurtherindicationofthinmantlelithosphere creasingfromeasttowesttowardsthecentreoftheAegeantrench. (<100 km) beneath parts of our study area. Hence, the estimates Relativelylargerdelaytimesobservedinshearwavesplittinganal- ofthethicknessoftheanisotropiclayeraretoolargetosuggesta ysisareofteninterpretedasathickersourceofanisotropyand/or solelylithosphericsourcebeneaththisregion. strongeranisotropy.Bothofthesecasesrequirethedeformationof Basedonalloftheseobservationswebelievethattheanisotropy theanisotropicmediumtobemorepervasiveandstrainsassociated andtheassociateddeformationfieldthatwearesamplingismostly withthedeformationtobehigher.Hence,thisSW-directeddiffer- asthenospheric,ratherthanlithospheric. entialasthenosphericstrainmightberesponsiblefortheobserved (cid:2)C 2010TheAuthors,GJI,181,1201–1213 Journalcompilation(cid:2)C 2010RAS 1208 C.B.Biryoletal. 40˚ D o w n lo a d e d 35˚ from h ttp s 25˚ 30˚ 35˚ 40˚ ://a c a d e m 2.0 60 ic .o 45 up 1.5 30 .co m 15 /g 1.0 0 ji/a -15 rtic le 0.5 -30 -a b -45 s 0.0 -60 trac 32 33 34 35 36 37 38 39 40 41 42 t/1 8 1 /3 /1 2 Figure7. A.Resultsofsplittinganalysis(greythickbars)fromETSE(Sandvoletal.2003)togetherwiththemeasurementsfromtheNAFExperimentand 0 1 Hatzfeldetal.(2001)forwesternTurkey.Thethin,lightanddarkgreycrossesindicatestrainrates.Lightanddarkgreybarsaremaximumfiniteextensional /6 0 strainaxisandmaximumfineshorteningstrainaxis,respectively(Kreemeretal.2003).Notethevariationofstrainaxesfromeasttowest.Suturezones(dashed 1 0 greylines)arealsoshown.BS:BitlisSuture,IAESZ:Izmir-Ankara-ErzincanSutureZone,ITSZ:InnerTaurideSutureZone,IPSZ:InnerPontideSutureZone. 3 9 Thebold,black,dashedlinedenotesthelocationofthehypotheticaltransitionthatseparatesthetwozonesundertheeffectofdifferentialroll-backratesalong b y theAegeanandCypreantrenches.NotethatthislinealsoseparatesthehigherandlowerdelaytimemeasurementsforNAFarray.Thetrenchretreatratesfor g u theAegeanandtheCypreantrenchesaregivenbyblackarrows(McCluskyetal.2003).Thebold,grey,dash-dotlineshowstheoutlineofKirsehirBlock.B. e s RelationshipbetweenmaximumfiniteextensiondirectionazimuthswithintheAnatoliaregioninanE–Wsenseandobserveddelaytimesfromshear-wave t o lsopnligttiitnugdems.eTashuerefimnietnetsm.aNxoimteutmheecxoterrnesliaotnioanzbimetuwthesenanddecdreealasyintgimdeeslaayretimaveesraagnedsvfaorryeinvgerfiyn0it.5e◦exotfelnosniognituadzeimthurtohufgrhoomutwAesntattoolieaa.stThbeetwtheiceknd3a4s◦haenddli3n8e◦s n 25 N separateszonesofmeasurementsassociatedwithdifferentialeffectsofslabroll-backalongAegeanandCypreantrenches. o v e m increaseindelaytimesfromeasttowestinthestudyarea(seethe byGansetal.(2009)showsfastPnvelocities(>8km/s)beneaththe b e locationofthedashedlineonFig.7Aanddashedgreylongitudinal centralpartoftheKirsehirBlock(seeFig.7Aforlocation),thatis r 2 zonesonFig.7B). characterizedbytheexistenceofcrystallinecomplexes.Thismight 01 8 Theshortspatialwavelengthvariationsindelaytimesmightalso beinterpretedintermsofthickerlithospherebeneaththisregion. beanindicationofsmall-scalecomplexitiesinasthenosphericflow Hence,asanalternativeexplanationforvaryingdelaytimes,local patternrelatedtothetectonicallycomplexcharacteroftheregion, thickerlithospheremightbeobstructing/constrainingtheflowofthe wheresubductionroll-back,backarcextension,continent-continent asthenospherebeneaththeeasternpartofthestudyarea,producing collision,slabdetachmentandtectonicescapealltakeplacewithin smallerstrainsintheuppermantle. severalhundredkilometres.Thevariationsinasthenosphericstrain amountsorpossiblesourcethicknessvariations(basedonvariation in delay times) could also be related to the probable existence of 4.3 Comparisonoflithosphericandasthenospheric topographyofthelithosphere–asthenosphereboundarybeneaththe strainfields AnatolianplatesouthoftheNAFZandtheEurasiaplatecontaining theBlackSeabasinandcontinentalbasementrocksofPontideaffin- Comparison of fast polarization directions with plate motion di- ity(Sengor&Yilmaz1981)tothenorth.ThePntomographystudy rectionsrequiresselectionofareferenceframethatwillyieldtrue (cid:2)C 2010TheAuthors,GJI,181,1201–1213 Journalcompilation(cid:2)C 2010RAS Anisotropyalonganascentplateboundary 1209 absoluteplatevelocities.Thereexistmultiplereferenceframesfor setofforcesduetotheirdifferentrheologiesanddifferentvertical plate motions, based on different assumptions, and each of these extents.Althoughwecannotdeterminetheasthenosphericflowdi- hasdifferentmotiondirectionsandspeeds.Oneofthemostcom- rectionviathesecomparisonsandobservations,theinterpretation monlyusedreferenceframesforourstudyarearegardsEurasiaas thatthevariationsincrustalstrainfieldareduetoAegeanslabroll- fixedandfocusesontherelativemotionsofthesurroundingplates back might be suggesting that the variations in anisotropy delay (i.e.Anatolia)withrespecttofixedEurasia(McCluskyetal.2000). timesarealsoduetotheeffectofthisroll-back.Thisprovidesfur- In this case, the direction of lithospheric motion depends strictly thersupportfortheideathattheobservedanisotropydirectionsare ontheselectionofthefixedplate(i.e.Eurasia)anddoesnotnec- generatedbyslabroll-backprocessestakingplacealongtheAegean essarily represent an absolute plate motion that can be used for andtheCypreansubductionzonesandhenceassociatedwithaSW comparison with mantle anisotropy measurements. Another rele- asthenosphericflow. vantreferenceframeisthehotspotreferenceframe(HS3-NUVEL- 1A of Gripp& Gordon2002). Theuncertainties in thedynamics ofmantleplumesandtheirsourcedepthswithinthemantleintro- 4.4 ComparisonofNAFZandSAF duce uncertainties in these plate motion measurements (Kreemer D o 2009). Recently Kreemer (2009) attempted to put constraints on StudiesofshearwaveanisotropyalongtheSAFindicatetheexis- w n the absolute plate motions in a hotspot reference frame based on tenceoftwolayeranisotropyalonga100–150kmwidezonefollow- lo a d observationsofshearwavesplittingorientations(GSRM-APM-1). ingthesurfacetraceofthefaultalongmostpartsofthePacific-North e d TheresultsofKreemer(2009)showamismatchbetweenobserved Americaplateboundary(Ozalaybey&Savage1994;Ozalaybey& fro anisotropy directions and resultant absolute plate velocity direc- Savage1995;Hartog&Schwartz2001;Polet&Kanamori2002). m tionsforcratons.TheNo-Net-Rotation(NNR)referenceframeof The lower, sublithospheric layer of this stack is characterized by http Kreemer&Holt(2001)incorporatesplatemotionswithrespectto EW-oriented polarization direction with delay times in the range s afixedmantle,withtheeffectsoflithosphericrotationremoved.In of0.85–1.70s(Hartog&Schwartz2001).Thesenseofanisotropy ://a c arecentstudyBecker(2008)pointedoutthereislikelytobeanet for this layer is subparallel to the absolute plate motion of the ad e rotation of lithosphere which affects the anisotropy in the mantle NorthAmericanPlate(Hartog&Schwartz2001;Gripp&Gordon m due to effects of basal shear forces applied on asthenosphere by 2002).Silver&Holt(2002)attributedthistodifferentialstrainbe- ic.o u moving stiff continental keels. In the Anatolia region all of these tweentheNorthAmericaplateandtheunderlyingasthenosphere. p .c referenceframesyielddifferentplatemotiondirectionsandthere Several studies argued that complications in this general pattern o m isnoconsensusonwhichoneofthesereferenceframesyieldsthe mightbeduetopastsubductionprocesses,small-scaleconvection /g trueabsoluteplatemotions.Thisuncertaintymakesitdifficultfor withintheslabwindow(Ozalaybey&Savage1994;Ozalaybey& ji/a us to compare plate motions in our study area with the observed Savage1995;Hartog&Schwartz2001;Polet&Kanamori2002), rtic anisotropydirections.Hence,weprefertoadoptanapproachthat oratoroidalmantleflowpatternrelatedtotheopeningoftheslab le-a isindependentofreferenceframeandincorporatescrustalstrains window (Zandt & Humphreys 2008). In contrast, the upper layer bs andstrainratesratherthanplatemotionvectors.Thus,weadopted (0to∼120kmdepth)displaysfastpolarizationdirectionsthatare tra c theuseofthepredictedstrainfieldforAnatoliacalculatedfromthe subparalleltothesurfacetraceoftheSAFwithrelativelysmaller t/1 8 GPSvelocityfield(Kreemeretal.2003;Allmendingeretal.2007). lag times, on the order of 0.50–1.25 s (thick, dark grey bars in 1 /3 RegionalstrainratesforAnatoliaindicatevariationintheprin- Fig.8b).Thecauseoftheanisotropyintheupperlayerisattributed /1 2 cipal infinitesimal shortening and extensional strain axes from toafinitestrainfieldorshearzoneinthemantlelithosphereasso- 0 1 easttowestfollowingthepatternofcounter-clockwiserotationof ciatedwiththerelativeplatemotionbetweenthePacificandNorth /6 0 Anatolianplate(Fig.7A).Thisvariationindirectionformaximum AmericanPlates(Ozalaybey&Savage1994;Ozalaybey&Savage 10 3 finiteshorteningandextensionisalsoinagreementwiththestruc- 1995;Hartog&Schwartz2001;Titusetal.2007).Thelateralextent 9 b turalfeaturesoftheAnatoliancrust,whereNE-andNW-striking oftheupperlayervariesbetween50and100kmaroundtheplate y g conjugatestrike-slipfaultsandEW-strikingthrustfaultsdominate boundaryanditappearsrelativelynarrowonthewesternsideofthe u e eastern Anatolia and nearly EW-striking normal faults dominate SAF(Ozalaybey&Savage1995;Silver1996). st o westernAnatolia.Asmentionedearlier,theLPOofolivineispar- Fig.8showsacomparisonofshearwavesplittingresultsforthe n 2 alleltotheflowdirectionandmaximumextensionaxisofthestrain NAFZandtheSAF(bothupperandlowerlayers).Althoughinboth 5 N ellipse.Inourstudyarea,thedirectionofmaximuminfinitesimal casesthereissimilaralignmentofthefastpolarizationdirections o v extensionalstrainforthecrustisgenerallyparalleltotheobserved obliquetothetracesoftheSAFandNAFZ(Fig.8),therearesome e m fast polarization direction, suggesting the associated lithospheric importantdifferencesbetweenthetwofaultsintermsofanisotropy. b e andasthenosphericstrainfieldsaretheresultofsimilarplatescale The angle between the anisotropy directions and the strike of the r 2 forces.Inthebroaderregion,weseethatthemaximuminfinitesi- NAFZ is ∼30◦ at the western part of the study area and is up to 01 8 malshorteningandextensionalstraindirectionsforthelithosphere 80◦ attheeasternend,duetothecurvatureofthefault.Wetested vary throughout Anatolia, whereas mantle deformation (fast po- varioustwolayeranisotropicmodelsforNAFZthataresimilarto larization)directionsremainuniform(Fig.7A).Thelagtimesfor those suggested for the SAF. Two of these models are shown in anisotropymeasurements,however,showsspatialvariationpatterns Fig.6.Thedashed,thinlinesinFig.6showthetheoreticaldistri- that resemble variation patterns in crustal strain axis orientations butionoftheapparentsplittingparametersfortwolayeranisotropic (Fig. 7B). Many studies state that the effect of Aegean slab roll- modelswiththefastdirectionsfortheupperlayerparallelingthe backincreasesfromeasttowestinAnatolianregion(i.e.Barka& strikeofNAF,andthefastdirectionsforthelowerlayerparalleling Reilinger1997;Meijer&Wortel1997;Allmendingeretal.2007) theNNRplatemotiondirection(30◦N).Forthemodelrepresented andthevariationinmaximumfinitestrainaxesshowsthisclearly bythethin,blackdashedline(Model1)thedelaytimeassociated (Figs7AandB).Observeddifferencesbetweenmantleanisotropy withthelowerlayeris0.8sandfortheupperlayeritis0.5s.For directionsandcrustalstrainaxistrendsmightbeassociatedwithdif- the model represented by the grey, dashed line (Model 2), how- ferencesinresponsesoflithosphereandasthenospheretoasimilar ever,delaytimeassociatedwiththelowerlayeris1.1sandforthe (cid:2)C 2010TheAuthors,GJI,181,1201–1213 Journalcompilation(cid:2)C 2010RAS 1210 C.B.Biryoletal. a N 1.5 sec. km 44˚ E 1 sec. 0 100 200 W 0.5 sec. S 42˚ D 30 32 34 36 38 40 ow ˚ ˚ ˚ ˚ ˚ ˚ n lo a b de d W km fro S m 0 100 200 h 30˚ E N ttps 244˚ ://ac a d e m ic .o u p .c o 32˚ 246˚ 34˚ 244˚ 36˚ 242˚ 38˚ 240˚ 40˚ 238˚ m/g ji/a Figure8. Mapsfor(a)NAFZand(b)SAF,showingcharacteristicsofobservedanisotropyaroundplateboundaryzones.ThedarkgreyfilledcirclesforNAFZ rtic mapindicatemeasurementsofsplittingfromtheETSE(Sandvoletal.2003).ThethickblackbarsfortheSAFmapindicateanisotropyobservedintheupper le layerofthetwolayeredstack(Liuetal.1995;Silver1996;Obrebskietal.2006).SplittingmeasurementsforSAFandwesternNorthAmericaaretakenfrom -ab s Liu(2009). tra c t/1 upper layer it is 0.2 s. Although the backazimuthal distribution formationhasyetaccumulatedtoprovideasignificantcontribution 81 ofourmeasurementsareratherlimited,noneofthesemodelscan totheanisotropy. /3/1 uniquely and robustly explain the distribution of measured delay 20 1 timesandfastpolarizationdirections.Inthecaseoffastpolariza- /6 5 CONCLUSIONS 0 tiondirections,model2withtheupperlayerhavingsmallerdelay 1 0 times(greydashedline)showsarelativelybetterfit.However,in AnalysisofshearwavesplittinginthecentralpartoftheAnatolia- 39 termsofdelaytimes,noneofthemodelsfitsthetheoreticaldistri- Eurasia plate boundary, around the northward convex part of the by bution.Theupperlayerwillhaveathicknessof15–20km,ifwe NAFZ, reveals fairly uniform NE–SW trending anisotropy direc- gu e aosbssuemrveedfofuarsttpoofilavreizpaetironcednitreacntiisoontsrobpyym.Bodaeseld2,ownetchaenbneottterurlfietoouft toifonsisgwniifithcadnetcarnedasuinngifodremlayantiimsoetsrofproymacwroessstmtoaejoarstt.eTcthoeniecxbisotuenncde- st on the existence of a thinner anisotropic layer with fast polarization ariesandplatemarginsinthestudyareaarguesforanasthenospheric 25 directionsparallelingtheshearzoneassociatedwithNAFZ.How- sourcefortheanisotropyratherthanalithosphericsource. No ever,itisdifficulttoresolveanisotropicpropertiesofsuchathin We suggest the slab roll-back taking place along the Aegean ve m layergiventheerrorsassociatedwithsplittingmeasurements.Even trench and the different amounts of trench retreat for the Aegean b e ifthislayerexists,itwillbemuchthinnerthanthesuggestedupper andCypreantrenchescontributessignificantlytotheupper-mantle r 2 layer for the SAF. Thus, we believe the simplest model that best dynamicsoftheregionandinducesaSW-directedastheonospheric 01 8 explainsourobservationsisasinglelayeranisotropicsource. flowwithdifferentialstrengthsfromeasttowest.Thesimilarpat- TheNAFZhasbeenactivesince∼5Ma(Barka&Kandinsky- terns of variation for both crustal strain field and observed fast Cade1988;Barka&Gu¨len1989;Koc¸yig˘it1989,1990;Dirik1993; polarizationdirectionsalsosupporttheideaofSWasthenospheric Bozkurt & Koc¸yig˘it 1996; Barka et al. 2000; Bozkurt 2001) and flowundertheeffectsofAegeanandCypreanslabroll-backpro- accommodates75–125kmofcumulativedisplacement(Westaway cesses. 1994;Armijoetal.1999;Barkaetal.2000).Thesevaluesofage ComparisonoftheNAFZandSAFintermsofanisotropysug- andoffsetforNAFZaresignificantlylowerthanthosefortheSAF gestssomeimportantdifferencesexistbetweenthesefaults.Many (∼315–730 km offset with an age of ∼17–30 Ma) (McKenzie & studiessuggestdoublelayeranisotropyfortheSAF,wheretheup- Morgan1969;Atwater1970;Grahametal.1989;Dickinson1996; per layer fast polarization direction is parallel to the strike of the Dickinson&Wernicke1997).Thismightimplythatthedeforma- faultandthelowerlayerfastpolarizationdirectionisparalleltothe tionalongtheNAFZisatanearlydevelopmentstagecomparedto absoluteplatemotionintheregion.Aftertestingvarioustwolayer theSAF,sothatnodominant,overprintingeffectoflithosphericde- modelssimilartowhatisobservedalongtheSAF,wecouldnotfit (cid:2)C 2010TheAuthors,GJI,181,1201–1213 Journalcompilation(cid:2)C 2010RAS

Description:
Geo dynamics and tectonics. Shear wave splitting along a nascent plate boundary: the North. Anatolian Fault Zone. C. Berk Biryol,1 George Zandt,1 Susan L. Beck,1 A. Arda Ozacar,2 Hande E. Adiyaman1 and Christine R. Gans1. 1Department of Geosciences, University of Arizona, Tucson, AZ, USA.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.