Geophysical Journal International Geophys.J.Int. (2010)181,1201–1213 doi:10.1111/j.1365-246X.2010.04576.x Shear wave splitting along a nascent plate boundary: the North Anatolian Fault Zone C. Berk Biryol,1 George Zandt,1 Susan L. Beck,1 A. Arda Ozacar,2 Hande E. Adiyaman1 and Christine R. Gans1 s c ni 1DepartmentofGeosciences,UniversityofArizona,Tucson,AZ,USA.E-mail:[email protected] o 2GeologicalEngineeringDepartment,MiddleEastTechnicalUniversity,Ankara,Turkey ct e t dD no Accepted2010February22.Received2010February22;inoriginalform2009June16 awn slo ca mide d SUMMARY na fro TbehtewNeeonrththAenAatnoaltioalniaFnauPlltaZteontoe(tNheAFsoZu)tihsaantrdanthsfeorEmursatsriuactPulraetethtaotctohnesntioturtthes.tWheebaonuanlydsaeryd eodym http Gs thepropertiesoftheupper-mantlestrainfieldandmantleanisotropyinthevicinityofNAFZ I://a viasplittingofSKSandSKKSphases.WeuseddatafromtheNorthAnatolianFault(NAF) GJca d passiveseismicexperiment.Thisisthefirststudythatanalysestheupper-mantleanisotropy e m in this region and our results indicate that the observed upper-mantle strain field is uniform ic .o underneaththearraywithconsistentNE–SWpolarizationdirectionsforfastsplitwaves.The u p measured lag times between the arrivals of the fast and slow split waves varies from 0.5 to .co m 1.6sforthestudyarea.Smallerlagtimesareobtainedconsistentlyintheeasternpartofthe /g array.However,wedonotobserveanysignificantvariationineitherthepolarizationdirections ji/a orthedelaytimesacrosstheplateboundary(NAFZ). rtic le Theuniformityofthefastpolarizationdirectionsthroughoutthestudyareaandthestrength -a b ofanisotropyfavouranasthenosphericsourcefortheanisotropy.Theregionaltectonicframe- s tra workfavoursaSWdirectionofasthenosphericflowduetotheforcesactingontheupper-mantle c t/1 exertedbytheslab-roll-backtakingplacealongtheAegeanandtheCypreanSubductionZones. 8 1 /3 Key words: Mantle processes; Seismic anisotropy; Continental tectonics: strike-slip and /1 2 transform;Dynamicsoflithosphereandmantle. 01 /6 0 1 0 3 9 b 1 INTRODUCTION westward extrusion of the Anatolian Plate along the right-lateral y gu NAFZ (Sengor 1979) and the left-lateral Eastern Anatolian Fault e s Analysisoftherelationshipbetweencrustalstrainandupper-mantle Zone(EAFZ)(Jackson&McKenzie1988)(Fig.1).Despitenumer- t o n deformationfieldsnearplateboundaryzonesisimportantforun- ousgeologicalstudiesalongthisfaultzone,thedeeperstructureof 2 5 derstandingpatternsofdeformationaroundplatemargins,aswell thisplatemarginremainsrelativelyunknown.Twoimportantprob- N as the dynamic interaction between the lithosphere and astheno- lemsthatweaddressinthisstudyaretheorientationofdeformation ov e sphere.Therearenodirectmeanstoobservethedynamicsofthe intheupper-mantlebeneathourstudyarea,andthedegreeofco- m b uppermostmantleinsuchplateboundaryzones.Seismicanisotropy herencybetweentheupper-mantleandthecrustalstrainfields. e generatedbythestraininducedlatticepreferredorientation(LPO) Analysis of shear wave splitting along other transform plate r 2 0 1 ofanisotropicmantleminerals(i.e.olivine),however, issensitive boundarieshasrevealeddifferentpatternsofmantledeformation. 8 todeformationatdepth.Thesplittingofpolarizedshearwavesin TheseismicanisotropystudiesinwesternNorthAmericaandalong suchananisotropicmediumcanquantifythedirectionandstrength theSanAndreasFault(SAF)indicateanupper-mantlestrainfield oftheanisotropy(Christensen1966;Keith&Crampin1977;Ando withdeformationdirectionsmostlyobliquetothesurfacetraceof 1984; Fukao 1984; Kind et al. 1985; Silver & Chan 1988; 1991; thefault.Somestudiesshowthatthereexistsashallowerzoneof Vinniketal.1992;Kaneshima&Silver1995;Silver1996;Savage deformationthatislocatedwithinanarrowercorridorthatfollows 1999;Silver&Holt2002). theshearzonewithdirectionsparallelingthestrikeofSAF(Oza- This study focuses on northern-central Anatolia and the North laybey&Savage1995;Silver1996;Hartog&Schwartz2001;Titus AnatolianFaultZone(NAFZ),whichisa1400kmlongcontinental etal.2007).TheslipratesmeasuredfortheSAFareontheorderof transformfaultthatformsthenorthernmarginoftheAnatolianplate 20–30 mm yr−1 (Johnson et al. 2007). These are similar to slip (Fig.1).TheearlyMiocenecollisionofthenorthward-converging rates measured for NAFZ, which are on the order of 20– ArabianPlatewiththeEurasianPlatealongtheBitlisSutureZone 25mmyr−1(McCluskyetal.2000).Manystudiesindicatethatthe (BSZ)resultedinnorth–southcontractioninEasternAnatoliaand dextralmotionalongNAFZinitiatedduringLateMiocenetoEarly (cid:2)C 2010TheAuthors 1201 Journalcompilation(cid:2)C 2010RAS 1202 C.B.Biryoletal. 25˚ 30˚ 35˚ 40˚ N Black Sea GC EURASIAN PALTE LC 40˚ A(GNSTNO) STUDY AREEAF NAFZ N E AEF ZA AC ~20 mm/yr ANATOLIAN PLATE E A F Z BSZ Aegean Sea D o w n ~25 mm/yr lo a ARABIAN d e Mediterranean Sea PALTE d 35˚ CT SFZ km from A T AFRICAN PALTE ~10 mm/yr D 0 100 200 http s Figure1. TectonicmapoftheAnatoliaandsurroundingregionsalsoshowingneotectonicstructures,platevelocitiesandthelocationofthestudyareain ://ac a thisframework.Openupside-downtrianglesarestationsoftheNAFarrayandtheopensquareistheGSNstationANTO.Platevelocitiesarerelativetofixed d e EurasiaPlate(Reilingeretal.1997;Barka&Reilinger1997).AT,AegeanTrench;BSZ,BitlisSutureZone;CT,CypreanTrench;DSFZ,DeadSeaFaultZone; m EAAC,EasternAnatolianAcretionaryComplex;EAFZ,EasternAnatolianFaultZone;EF,EzinepazariFault;ESM,EratosthenesSeamount;GC,Greater ic.o Caucasus;LC,LesserCaucasus;NAFZ,NorthAnatolianFaultZone;NEAFZ,North-EastAnatolianFaultZone. up .c o m Pliocene (∼5–11 Ma) (Barka & Kadinsky-Cade 1988; Barka & maximumfiniteextension(McKenzie1979;Ribe&Yu1991;Ribe /g Gu¨len1989;Koc¸yig˘it1989,1990;Dirik1993;Bozkurt&Koc¸yig˘it 1992)undertheeffectofsimpleshear,largestrainsandhightem- ji/a 1996;Barkaetal.2000;Bozkurt2001).Inthisrespect,theNAFZis peratures(1300◦C)(Zhang&Karato1995).Thelagtimebetween rtic significantlyyoungerthanSAF(∼17–30Ma)(McKenzie&Mor- thefastandslowcomponentsindicatesthestrengthorthethickness le-a gan 1969; Atwater 1970; Graham et al. 1989). Unlike the SAF, of the source of anisotropy (Silver & Chan 1991). Although this b s the upper-mantle deformation beneath the dextral NAFZ and the sourcecouldbeanywherebetweenthecoreandthereceiver,many tra c surroundingregionisnotwellconstrained,duetothelackofgeo- studies have shown that most anisotropy takes place in the upper t/1 8 physicalobservations.Thisisthefirststudytoinvestigatethechar- 400kmoftheEarth(Vinniketal.1992;Mainprice&Silver1993; 1 /3 acteristicsofthemantlestrainfieldbeneaththenorthwardconvex Barruol & Mainprice 1993; Vinnik et al. 1995, 1996). Previous /1 2 segmentoftheNAFZandthenorth-centralportionoftheAnatolian studiesindicatethatthecontributionofthecrusttothissourceof 0 1 Plateusingsplittingofshearwaves. anisotropyisrelativelysmall(0.04–0.2s)(Gledhill&Stuart1996; /6 0 Savage1999).Theseismicanisotropymeasurementsinferredfrom 1 0 shearwavesplittinghavelimitedverticalresolution,buttheypro- 39 videbetter lateral resolutionbecause theincidence angles forthe by 2 DATA AND METHOD associatedphasesarefairlysmallandeachmeasurementrepresents gu e Twoesdtuepdlyoytheedsaeissemisimcitiycaanrrdaythceolmithpoosspehderoifc3s9trubcrtouarde-obfanthdesreeigsimonic, aniWsoetrcoaplicculsatrteudcttuhreevbaelnueeasthofinϕdiavnidduδatlfroercienivdeivrsid.ualevent-station st on stationsthatcrossedtheNAFZinmultipletransects(Fig.1).These pairsusingtwodifferenttechniques,wheretheeffectsofsplitting 25 seismic instruments were provided by the Incorporated Research areremovedfromtheobservedseismogramsthroughagrid-search No Institutions for Seismology (IRIS)—Program for Array Seismic forsuitablevaluesofsplittingparameters(ϕandδt).Oneofthese ve m Studies of the Continental Lithosphere (PASSCAL) Consortium techniques, Rotation Correlation (RC), involves a search for the b e and recorded regional and global earthquakes continuously at 40 bestϕ,δtpairthatmaximizesthecorrelationbetweenthecorrected r 2 0 samplespersecondforaperiodof2yr. seismogrampairsbyrotationthroughaseriesofcoordinatesystems 1 8 SKSandSKKSarethemostcommoncorephasesusedinseismic (Fukao 1984; Bowman & Ando 1987). The second method that anisotropyanalysis.ThearrivalsaregeneratedbyPtoSVconver- we used is Singular Covariance (SC) defined by Silver & Chan sionsatthecore–mantleboundaryandgenerateconvertedphases (1991).Itincorporatesminimizationofthedisplacementenergyon polarizedintheradialplane.Anyanisotropicmediumunderneath thetransversecomponentafterremovingeffectsofsplitting.These thereceiversidecausessplittingofthepolarizedshearwave(SV) calculationsarecarriedoutusingtheSplitLabcodeofWu¨stefeld intofastandslowcomponents,withparticlemotionstakingplace et al. (2008). Utilization of two different techniques allows us to inassociatedfastandslowpropagationdirections(Backus1965). comparetheresultsintermsofconsistency,andhence,assessthe Shearwavesplittinganalysisdeterminesthepolarizationdirection qualityforindividualmeasurementsbasedonthecriteriaexplained ofthefastwave(ϕ)andthelagtimebetweenthefastandslowwaves byWu¨stefeld&Bokelmann(2007). (δt)(Silver&Chan1988;Silver&Chan1991;Vinniketal.1992). Thedatainclude140eventslocatedatadistancerangeof85–120◦ Forcommonmantlemineralssuchasolivine,thefastpolarization (Fig. 2a). The events were selected to have moment magnitudes directionisparalleltotheflowdirectionandalsothedirectionof over5.0anddepthsgreaterthan10km.However,bestresultswere (cid:2)C 2010TheAuthors,GJI,181,1201–1213 Journalcompilation(cid:2)C 2010RAS Anisotropyalonganascentplateboundary 1203 a b Radial Transverse Components Components SKS SKS YIKI YIKI Mw ≥ 7.0 YESI YESI 6.5 < Mw ≤ 7.0 STYEUPNE STYEUPNE 6.0 < Mw ≤ 6.5 SEYH SEYH 120˚ Mw ≤ 6.0 PAPNECLI PAPNECLI OGUR OGUR KUZO KUZO KUZA KUZA 85˚ km Depth KKUIZYIKL KKUIZYIKL 700 KIYI KIYI 650 KKGAVAAC KKGAVAAC 600 KARA KARA ISKE ISKE D 550 INSU INSU o INCE INCE w 455000 GHEAOKSCINAE GHEAOKSCINAE nloade 345000 DDDUOEMGRALE DDDUOEMGRALE d from 223050000 CCBCCABUORAKEKKLLMKTUUEI CCBCCABUORAKEKKLLMKTUUEI https://aca 150 BEDI BEDI de BAGB BAGB m 100 ALOR ALOR ic ALIN ALIN .o 50 ALIC ALIC up 0 0 5 101520 0 5 101520 .co Seconds Seconds m Event: January 21, 2007 /g Mw=7.5 ji/a Average Distance=90˚ rtic Hypocenter depth=22 km le Average Backazimuth=88.5˚ -a b s tra Figure2. (a)Eventsusedintheanalysisofanisotropyunderneaththenorth-centralportionofAnatolia.Greyscaleindicateshypocentredepthfortheseevents. c OpenstaratthecentreofthemapshowsthelocationoftheNAFarray.Mostoftheeventsarefrombackazimuthsof270◦±10◦and90◦±10◦.(b)Radial t/1 8 andtransversecomponentsofSKSarrivalsfortheMoluccaSeaevent(whitesquareonmap)in2007January21(Mw=7.5)recordedbytheNAFnetwork. 1/3 /1 2 obtainedonlyforeventswithmagnitudesover6.0(Mw)anddepths Wecarriedoutqualityassessmentforourresultsintwostages. 01 ofmorethan20km(Fig.2b).Wealsoobtainedsplittingparame- Thefirststageofthequalityassessmentincorporatesacomparison /6 0 tersfortheGlobalSeismographicNetwork(GSN)stationANTO, ofresultsobtainedusingSCandRCmethodsfollowingthecrite- 1 0 utilizingdatafortheperiodoftheNAFdeployment(Fig.1). riadefinedbyWu¨stefeld&Bokelmann(2007).Thesecriteriaare 39 inAtertmotsalofofsh2e4a6r1wsaevtessopfliSttKinSg.aPndrioSrKtoKStheararnivaallyssiws,emreoasntaolfysthede δdteRfiCn)eodfbthyeftawstoamxiesthmoidssfi.tTsh(|eϕdSeCs-cϕrRipCt|i)oannodfdtheelafyoutirmqeuaralittiyoscl(aδstsSeCs/ by gue datawasfilteredusingabandpassfilterwithcut-offlimitsof1and usedinthisstudyisgiveninFig.4.Thisfigurealsoshowsthedis- s t o 25 s to eliminate very high frequency and low frequency noise. tributionofindividualmeasurementsintotheseclasses.Thesecond n Occasionally the data were analysed without applying a filter or stage of quality analysis incorporates visual screening of results 25 withapplyingabroaderbandpassfilter(withcut-offperiods1and basedonhoweffectivelytheenergyonthetransversecomponentis N o v 50s)whenthesignal-to-noiseratiooftheseismogramswerehigh removedonthecorrectedseismogramsandhowwelltheresultsare e m enough.Consideringthedominantfrequencyofourmeasurements constrainedbasedontheerrorsassociatedwiththemeasurements. b e was ∼8 s for SKS and ∼11 s for SKKS, these filters were suit- Hence, we eliminated some of the poor measurements that were r 2 0 able for the data set. Examples of measurements using SKS and misclassifiedasnullmeasurementsduetothelowsignal-to-noise 1 8 SKKSphasesforoneeventrecordedatstationKUYLareshown ratiooftheassociatedwaveforms. inFig.3. Our measurements yielded 681 well-constrained splitting pa- rameters and 1053 null measurements. The remaining 727 mea- 3 RESULTS surements were of low quality, yielding poorly resolved splitting parameters. The results of our analysis and detailed statistics on Ingeneral,ourmeasurementsrevealroughlyNE–SWtrendingfast our measurements are summarized in Fig.5 and Table 1.In gen- polarization directions for the Eurasian Plate and the Anatolian eral,fewerSKKSphasesyieldwell-constrainedsplittingparame- Platewithoutanylargevariations(seesupportinginformationfor ters compared to SKS phases. However, the mean differences in rosediagramsoffastpolarizationdirectionsandnullmeasurements measuredsplittingparametersbetweenSKSandSKKSphasesare ateachstation).Themeanfastpolarizationdirectionforthearrayis small:approximately10◦ forfastpolarizationdirectionsand0.3s ∼43◦usingbothSCandRCmethods(Fig.5).Thefastpolarization fordelaytimes(Table1andFig.3). directionaveragesforboththenorthernandthesouthernblocksof (cid:2)C 2010TheAuthors,GJI,181,1201–1213 Journalcompilation(cid:2)C 2010RAS 1204 C.B.Biryoletal. 2000 1000 500 1000 0 0 0 20 40 0 10 20 30 1000 1000 Do w n 500 500 lo a d 0 0 ed fro m h ttp s ://a c 0 20 40 0 10 20 30 ad e m ic Figure3. AnexampleofSKS(toppanels)andSKKS(bottompanels)arrivalsandassociatedparticlemotionsbeforeandaftertheeffectsofthesplittingare .o removed.Bothofthearrivalsarefromanintermediatedepthevent(Mw=6.4)locatedbeneathJujuyProvince,Argentina. up.c o theNAFZarealsoapproximately43◦,showingnodistinguishable lines delineate the backazimuths where we will observe null re- m/g differenceacrosstheplateboundary. sultsforagivenfastpolarizationdirection(eitherbackazimuth= ji/a Although the fast polarization directions are nearly uniform ϕ orbackazimuth=ϕ ±90◦).Theblackcontinuouslines,onthe rtic throughouttheNAFarray,weobservesomeclearvariationinlag otherhand,showthedistributionofmeasurementsthathaveback- le-a times.ThemostnoteablevariationinlagtimesoccursinanE–W azimuthsoriented45◦fromthefastandslowpolarizationdirections b s directionratherthanaN-Sdirection.Atthewesternmostpartofthe (backazimuth=ϕ±45◦)or,inotherwords,farthestfromthenull tra studyarea,themeasureddelaytimesareontheorderof1.3s.Start- directions (ϕ or ϕ ± 90◦) for a given fast polarization direction ct/1 ingfrom34◦Elongitude,themeasuredlagtimesdecreasesmoothly (ϕ).AnalysisofsyntheticdatabyWu¨stefeld&Bokelmann(2007) 81 /3 towardstheeastwheretheyhavetheirminimumvaluesontheorder showedthatthebestsplittingmeasurementstendtoclusteraround /1 of0.5sandthenincreaseagaineastof37◦E(Fig.5).Thenumberof these ϕ ± 45◦ lines. Our good and fair measurements also tend 20 1 nullmeasurementssignificantlyincreasesforstationslocatedeast to cluster around these lines. In addition, our null measurements /6 of 34◦E longitude (see supporting information). This is probably arelocatedaroundthelinesrepresentingthenulldistribution(grey 01 0 related to smaller delay times, which make it harder to correctly continuous lines, Fig. 6). The mean ϕ for this station is 45◦ and 39 detect anisotropy given the noise recorded at stations. We obtain the observed nulls mostly lie within ±15◦ of this direction (the by mostlynullmeasurementsforthestationsbetween35◦Eand36◦E greyshadedregionsinFig.6).Althoughwehavealimitedback- gu e inthenorthernblock of NAFZ (openstarsonFig. 5)and station azimuthal distribution for our results and we cannot completely s KIYIlocatedintheSEpartoftheNAFarray.Twoofthesestations, ruleoutthepresenceofverticallyvaryinganisotropy,thedistribu- t on DERE and CALT, have a few splitting measurements with ϕ = tionofnullsandtheconsistencyinobservedsplittingparameters 25 ∼30±10◦andδt∼0.4±0.1sthatarefromeventslocatedtothe favour a single layer anisotropic source. This one layer model is N o v west.Around100kmtotheeastofthesestations,TEPEhasacouple alsoconsistentwithpreviousobservationsbyVinniketal.(1992) e m offairmeasurementswithϕ=∼25±10◦andδt∼0.6±0.2sthat andS¸apas¸&Boztepe-Gu¨ney(2009),whoanalysedanisotropybe- b e areobtainedfromeventslocatedtotheeast.ForstationKIYIwe neaththelong-operatingstationANTOandfoundnoevidenceof r 2 wereabletoobtainafewmeasurementsyieldingverysmalldelay verticallyvaryinganisotropy.Thecaseoftwo-layeranisotropywill 01 8 timesontheorderof0.4s.ForstationsOGURandEKIN,allthe bediscussedfurtherinthefollowingsection. resultsarenullsforbothwesternandeasternbackazimuths. The backazimuthal coverage of our data set is limited in the sensethatmostoftheeventsweusedarefromwesternandeastern 4 DISCUSSION backazimuths(Fig.2).Thismakesitdifficultforustoruleoutthe presenceofaverticallyvaryinganisotropybeneaththestudyarea. The existence of invariant anisotropy directions implies that the Thebackazimuthaldistributionofmeasurementsandnulls(using deformational fabric in the upper mantle is uniform beneath the SC method) for station ALIC is shown in Fig. 6. This station is study area and across the Anatolia-Eurasia Plate boundary, as located on the NAF (see Fig. 5) and the recorded data have high delineatedbytheNAFZ.Overabroaderregion,thisisinagreement signal-to-noiseratios.Thelightgrey,continuouslinesontheϕver- withthefindingsofSandvoletal.(2003)usingdatafromtheEast- susbackazimuthplot(Fig.6)showthelinearrelationshipbetween ern Turkey Seismic Experiment (ETSE). They observe no major distributionsofnullswithrespecttobackazimuth.Basically,these variations in NE–SW trending anisotropy directions beneath the (cid:2)C 2010TheAuthors,GJI,181,1201–1213 Journalcompilation(cid:2)C 2010RAS Anisotropyalonganascentplateboundary 1205 ± (s) MeanδErrort 0.250.340.310.220.160.260.180.260.280.200.150.270.170.310.200.160.21–0.300.280.270.240.230.180.250.230.320.160.140.220.290.27–0.210.220.260.200.300.220.27 ) ±n◦ϕ( 6298932931372608946819676182168261 9649306570761011881290358216 33262835709131 MeaError 8.15.10.11.14.22.7.14.19.10.16.14.11.10.15.9.12.–21.15.9.17.12.11.8.10.15.23.14.13.16.7.–11.11.7.7.18.17.14. s ull N air 591312013286894433429148528855153279756625118312 F # s Null D o ood 13111214162211251113308101730143646261612522012371223181781236141585552017 wn G lo # ad #Fair 115121574854132272211040592136130673341040416772811 ed fro m d h Goo 1610142985209321310121531160774610121964461922061919232136 ttps # ://a c # a otal 4535517031444147245544243387383755604637656941425272832323644434230523936774446 dem T ic .o ϕ (s) up a. MeanKKS 1.240.981.25–––1.051.18–0.97–0.900.661.27––––0.621.071.270.801.00––0.930.900.35-0.650.871.50––0.911.431.40–0.73– .com ourstudyare ϕMean◦KKS()S 44.1335.6036.33–––45.3045.48–45.33–45.6043.3635.28––––47.3238.9735.2855.3552.20––38.6344.9046.90-39.5540.2945.00––47.8439.7341.90–50.68– /gji/article-a KSphasesfor δMeantSKS(s)S 1.411.011.470.940.640.641.140.870.700.940.580.850.881.250.730.820.69–0.710.921.330.800.870.701.101.180.940.400.540.940.801.66–0.950.971.721.350.880.620.77 bstract/181/3 KSandSK ϕMean◦SKS() 42.9034.4236.0844.3344.9738.9847.7240.4345.4645.0436.5446.1645.1937.8639.2051.4351.62–43.4635.1038.5560.4248.5951.9521.4043.0937.8357.6037.5647.1144.1449.14–35.3945.8749.3339.3536.9543.7458.27 /1201/601 S 0 sfor KS 39 b ment SK 1681405107125987922171412209192399067831017101041253211210 y gu e # e asur S st o me SK 2927377026343435194636172465373041482628464632335212124292627333226403433563236 n 2 ofsplitting Mean#δt(s) 1.371.001.420.940.640.641.140.960.700.940.580.860.821.250.730.820.69–0.680.941.310.800.880.701.101.130.930.390.540.880.831.63–0.950.961.681.360.880.640.77 5 Novemb s e dqualitie Mean◦ϕ)( 43.2234.8136.1444.3344.9738.9847.5541.8745.4645.0736.5446.0744.7137.4439.2051.4351.62–45.0735.8337.7758.1748.8251.9521.4042.2038.9254.5437.5645.6042.6848.35–35.3946.2748.2239.5236.9545.0658.27 r 2018 n a s number Lon. 33.48732.87932.8732.79335.88736.4133.50634.26336.21137.36735.12534.26934.35733.44135.06435.28435.1435.78734.34833.56532.90635.36637.06735.24533.55232.87834.32335.31636.53634.33236.24832.86135.16534.30134.29932.933.52935.74337.22935.954 e h t of mary Lat. 0.9781.0611.3019.8680.9550.2781.1211.3150.5520.0151.3280.3730.0640.6041.4770.3910.9181.1479.7431.4690.5819.8420.7640.6880.2910.280.9410.1310.0481.590.4410.9041.1090.6471.1130.8560.8381.3690.4050.748 m 4443444444444444443443444444444444444444 u S Table1. Station ALICALINALORANTOARSLBAGBBEDIBEKIBOKECAKMCALTCAYACRLUCUKUDEREDOGLDUMAEKINGOCEHASAINCEINSUISKEKARAKARGKAVAKGACKIYIKIZIKKUYLKUZAKUZOOGURPANCPELISEYHSYUNTEPEYESIYIKI (cid:2)C 2010TheAuthors,GJI,181,1201–1213 Journalcompilation(cid:2)C 2010RAS 1206 C.B.Biryoletal. 90 constraining the depth of the anisotropic source is important for understandingthedominantcauseofdeformation. Fair 80 Good Poor 4.1 Locationofanisotropy 70 non-Null The ray paths for teleseismic phases used in shear wave splitting Null 60 analysisaresteeplyinclinedandtheyhavelittledepthresolution. Wecan,however,indirectlyinferthedepthoftheanisotropicsource 50 usingobserveddelaytimesandinferringthestrengthofanisotropy. Inthisanalysis,weassumethesourceofanisotropyissubhori- 40 zontalbeneaththestudyarea.Theresultsofouranalysismightbe affectedbythepresenceofasteeplydippinganisotropy.However, the case of dipping anisotropy requires variation in the observed 30 D Null splitting parameters with backazimuth, depending on the dip di- ow 20 non-Null rveacrtiiaotinonofinthseplainttiisnogtrpoapriacmmeteedrisuwmi.thWbeacdkoazniomtuotbhse(sreveeFaingy.6ro)bthuastt nloa d wouldaccountforasteeplydippinganisotropicsource.Thus,we e 10 d assumeasubhorizontalorhorizontalanisotropicsourcebeneathour fro studyarea. m 0 h 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 In the case of Eastern Anatolia and ETSE, the analysis of re- ttp c(Aeinvgeursfuentcatilo.n2s00sh6o;wOszaacnaarneotmala.lo2u0s0l8y)thbienne(6a0th–8th0ekEma)stliAthnoastpohliearne s://ac Figure4. Plotofallthemeasurementsinourdatasetwithrespecttodelay Plateau (EAP) and lithospheric thicknesses on the order of 100– ad e timeratiosandfastaxismisfitsbetweenSCandRCmethods.Theshaded 125kmbeneaththeArabianplate(Angusetal.2006).Fastpolar- m regionsrepresentsfairandgoodresults.Thecontinuousblacklinesseparates ic izationdirectionsareorienteduniformlyinNE–SWdirectionswith .o Nullandnon-Nulldomains.Alltheresultsplottedonthenon-shadedspace u delaytimesrangingbetween0.9and1.3sformostofthestations p arepoor. .c locatedontheArabianplateandEasternAnatolianPlateau(EAP) o m (Sandvoletal.2003)(Fig.7A),showingthatthemeasurementsare /g EasternAnatolianAccretionaryComplex(EAAC)andacrossma- insensitivetochangesinlithosphericthicknesses.Further,assum- ji/a jor structural features such as the EAFZ, the eastern portion of ing4percentanisotropicstrength,observeddelaytimesrequirean rtic le NAFZandtheBSZ(Fig.7A).Theuniformityofthesplittingmea- anisotropiclayerthicknessofatleast110km,significantlythicker -a b surements throughout the region raises the question of whether thantheestimatedlithosphericthicknessbeneaththeEAP.Hence, s the associated uniform deformation pattern exists in the subcon- theobservedanisotropyismostlikelylocatedintheasthenosphere tra c tinental lithospheric mantle or underlying asthenosphere. Hence, beneathEasternTurkey,asarguedbySandvoletal.(2003). t/1 8 1 /3 /1 2 0 1 /6 0 N 42˚ 10 3 9 b y KUYL g u HASA DERE e ALOR BEKI CALT TEPE st o n ALIN BEDI PELI OGUR EKIN 25 KUZO ALIC KGAC DUMA ARSL 41˚ No SEYH SYUN KARA YIKI NAFZ ISKE vem INCE CUKU PANC BOKE be CAYA DOGL EFZ KUZA YESI r 20 KAVA KARG BAGB 18 KIYI CRLU KIZIK CAKM 40˚ ANTO (GSN) INSU GOCE 39˚ 31˚ 32˚ 33˚ 34˚ 35˚ 36˚ 37˚ 38˚ Figure5. ResultsofsplittinganalysisforbothSCandRCmethods.Notethattherearenodistinctvariationsamongresultsobtainedusingbothtechniques. Openstarsindicatestationswithmostlynullmeasurements(seeSection3fordetails).NAFZ:NorthAnatolianFaultZone,EFZ:EzinepazariFaultZone. (cid:2)C 2010TheAuthors,GJI,181,1201–1213 Journalcompilation(cid:2)C 2010RAS Anisotropyalonganascentplateboundary 1207 Station: ALIC 90 4.0 3.5 45 3.0 2.5 0 2.0 1.5 1.0 0.5 0.0 D 0 45 90 0 45 90 o w n lo a d e Fwiigthurrees6p.ecFtastot-pboalcakriazzaitmiounthd.irTehcteiopnloatntedddmelaeyastuimreempelnottsswariethorbetsapinecetdtousbiancgkaSzCimmueththfoodr.sTtahtieondiAstLriIbCu.tiFoonroclfaoriutyr,mmeeaassuurreemmeennttssaarreepslhootwtendiwniath90p◦lums,ocdruolsuss, d fro m circleandsquaresigns.Ourbestestimatesofsplittingparameters(plusandcrosssigns)tendtoshowlessvariationthanthetheoreticaldistributionofapparent h splittingparametersfortwolayeranisotropicmodelsindicatedbythindashedlines.Themeanofourmeasurementsareplottedasthethick,black,dashed ttp lfionresst.aOtiounrmAeLaIsCu.rementsofnulls(circlesandsquares)mostlyliewithin±15◦range(thegreyshadedarea)ofobservedmeanfastpolarizationdirection(43◦) s://ac a d e The centre of our array is located approximately 600 km west m ofthecentreofETSEarrayandthearraysareadjacent(Fig.7A). 4.2 Asthenosphericflow ic.o Inthiscase,onewouldexpecttheobservedanisotropytobesub- The dominant mechanism that controls the deformation of hot, up lithosphericbeneaththeNAFarray,unlessaverysharpchangeof mechanically weak asthenosphere is shear strain related to flow. .co m the deformation field occurs from sublithospheric to lithospheric Theoretical analysis and laboratory studies on olivine show that /g levelsfromeasttowestbetweenthesetwoarrays.Inaddition,asin the strain-induced LPO of the mineral creates the observed seis- ji/a thecaseoftheArabianPlateandEAP,weareobservinguniform mic anisotropy, where the fast polarization direction parallels the rtic anisotropydirectionsacrossmajortectonicboundaries,suchasthe flow direction and extension axis of strain ellipse in most cases le-a Izmir-Ankara-ErzincanSuture,InnerTaurideandInnerPontidesu- (McKenzie 1979; Ribe 1989; Ribe & Yu 1991; Silver & Chan bs tures(seeFig.7Aforlocations),aswellastheNAFZ,markingthe 1991; Ribe 1992; Nicolas 1993; Zhang & Karato 1995; Savage tra c boundarybetweenseveralblocksandaccretionarycomplexesthat 1999;Karatoetal.2008).However,itisnotpossibletodirectlyob- t/1 8 definesthenorthernpartoftheAnatolianPlateandtheboundarybe- taintheuniqueflowvectorsfortheasthenosphereonlyusingshear 1 /3 tweentheEurasiaPlateandtheAnatolianPlate.Wesuggestthatthis wavesplittinganalysis.Inourstudyweattempttoconstrainthedi- /1 2 uniformity in splitting parameters across these tectonic provinces rectionofflowbylinkingtheupper-mantlestrainfieldtodynamics 0 1 alsoindicatestheyareassociatedwithsublithosphericstrainrather ofthemajortectonicelementsoftheregion. /6 0 thanlithosphericdeformation. Takingthebroadertectoniccharacteristicsoftheregionintocon- 1 0 MostofthestudyareaiscoveredbytheTethysideaccretionary sideration,wesuggestthattherelativelyrapidsouth-southwestdi- 39 complexes (Sengor et al. 2005) related to Tertiary closure of the rectedslabroll-backtakingplacealongtheAegeansubductionzone by northernbranchoftheNeotethys(Sengor&Yilmaz1981;Go¨ru¨r (LePichon&Angelier1981;Bozkurt2001;McCluskyetal.2003) gu e etal.1984;Koc¸yig˘itetal.1988;Koc¸yig˘it1991;Okayetal.1998),a mightberesponsibleforthemobilizationofasthenosphereinaSW s t o tectonicsettingnormallyassociatedwiththinnerlithosphere.Con- directionbeneaththeAnatolianRegion.TheAegeansectionofthe n sideringtheobservationofrelativelyhighdelaytimes(ontheorder northAfricanplateboundaryisassociatedwithlargerdistancesof 25 of1.3–1.6s)atthewesternmostportionsofthearrayandassuming4 trenchretreatcomparedtotheCypreantrench(Barka&Reilinger No v percentanisotropyfortheuppermantle,weinferthattheanisotropic 1997;McCluskyetal.2003),whichisaffectedbythecollisionofthe e m layerthicknessisontheorderof150km(Mainprice&Silver1993; EratosthenesSeamountsouthofCyprus(ESMonFig.1)(Rotstein b e Silver1996).Inthiscase,theanisotropyinthemantlelithosphere &Kafka1982;Kempler&Garfunkel1994;Robertsonetal.1994; r 2 0 isnotamajorcontributorbecausethelithosphericthicknessisless Robertson&Grasso1995;Glover&Robertson1998)(Fig.1).The 1 8 than 100 km beneath this tectonically active region, as indicated NEorientationofthebackarcdomainsofthesetwoarcsisbased bythesurfacewavedispersionstudybyPasyanos(2005).Besides, onpreliminarytomographicimagesoftheunderlyingslabs(Biryol Gans et al. (2009) reported low Pn velocities beneath the extent etal.2009).Thisdifferenceinroll-backdistancesmightgenerate of the Tethyside accretionary complexes for our study area. This differential shear strain in the asthenosphere, with strengths in- observationmightbeafurtherindicationofthinmantlelithosphere creasingfromeasttowesttowardsthecentreoftheAegeantrench. (<100 km) beneath parts of our study area. Hence, the estimates Relativelylargerdelaytimesobservedinshearwavesplittinganal- ofthethicknessoftheanisotropiclayeraretoolargetosuggesta ysisareofteninterpretedasathickersourceofanisotropyand/or solelylithosphericsourcebeneaththisregion. strongeranisotropy.Bothofthesecasesrequirethedeformationof Basedonalloftheseobservationswebelievethattheanisotropy theanisotropicmediumtobemorepervasiveandstrainsassociated andtheassociateddeformationfieldthatwearesamplingismostly withthedeformationtobehigher.Hence,thisSW-directeddiffer- asthenospheric,ratherthanlithospheric. entialasthenosphericstrainmightberesponsiblefortheobserved (cid:2)C 2010TheAuthors,GJI,181,1201–1213 Journalcompilation(cid:2)C 2010RAS 1208 C.B.Biryoletal. 40˚ D o w n lo a d e d 35˚ from h ttp s 25˚ 30˚ 35˚ 40˚ ://a c a d e m 2.0 60 ic .o 45 up 1.5 30 .co m 15 /g 1.0 0 ji/a -15 rtic le 0.5 -30 -a b -45 s 0.0 -60 trac 32 33 34 35 36 37 38 39 40 41 42 t/1 8 1 /3 /1 2 Figure7. A.Resultsofsplittinganalysis(greythickbars)fromETSE(Sandvoletal.2003)togetherwiththemeasurementsfromtheNAFExperimentand 0 1 Hatzfeldetal.(2001)forwesternTurkey.Thethin,lightanddarkgreycrossesindicatestrainrates.Lightanddarkgreybarsaremaximumfiniteextensional /6 0 strainaxisandmaximumfineshorteningstrainaxis,respectively(Kreemeretal.2003).Notethevariationofstrainaxesfromeasttowest.Suturezones(dashed 1 0 greylines)arealsoshown.BS:BitlisSuture,IAESZ:Izmir-Ankara-ErzincanSutureZone,ITSZ:InnerTaurideSutureZone,IPSZ:InnerPontideSutureZone. 3 9 Thebold,black,dashedlinedenotesthelocationofthehypotheticaltransitionthatseparatesthetwozonesundertheeffectofdifferentialroll-backratesalong b y theAegeanandCypreantrenches.NotethatthislinealsoseparatesthehigherandlowerdelaytimemeasurementsforNAFarray.Thetrenchretreatratesfor g u theAegeanandtheCypreantrenchesaregivenbyblackarrows(McCluskyetal.2003).Thebold,grey,dash-dotlineshowstheoutlineofKirsehirBlock.B. e s RelationshipbetweenmaximumfiniteextensiondirectionazimuthswithintheAnatoliaregioninanE–Wsenseandobserveddelaytimesfromshear-wave t o lsopnligttiitnugdems.eTashuerefimnietnetsm.aNxoimteutmheecxoterrnesliaotnioanzbimetuwthesenanddecdreealasyintgimdeeslaayretimaveesraagnedsvfaorryeinvgerfiyn0it.5e◦exotfelnosniognituadzeimthurtohufgrhoomutwAesntattoolieaa.stThbeetwtheiceknd3a4s◦haenddli3n8e◦s n 25 N separateszonesofmeasurementsassociatedwithdifferentialeffectsofslabroll-backalongAegeanandCypreantrenches. o v e m increaseindelaytimesfromeasttowestinthestudyarea(seethe byGansetal.(2009)showsfastPnvelocities(>8km/s)beneaththe b e locationofthedashedlineonFig.7Aanddashedgreylongitudinal centralpartoftheKirsehirBlock(seeFig.7Aforlocation),thatis r 2 zonesonFig.7B). characterizedbytheexistenceofcrystallinecomplexes.Thismight 01 8 Theshortspatialwavelengthvariationsindelaytimesmightalso beinterpretedintermsofthickerlithospherebeneaththisregion. beanindicationofsmall-scalecomplexitiesinasthenosphericflow Hence,asanalternativeexplanationforvaryingdelaytimes,local patternrelatedtothetectonicallycomplexcharacteroftheregion, thickerlithospheremightbeobstructing/constrainingtheflowofthe wheresubductionroll-back,backarcextension,continent-continent asthenospherebeneaththeeasternpartofthestudyarea,producing collision,slabdetachmentandtectonicescapealltakeplacewithin smallerstrainsintheuppermantle. severalhundredkilometres.Thevariationsinasthenosphericstrain amountsorpossiblesourcethicknessvariations(basedonvariation in delay times) could also be related to the probable existence of 4.3 Comparisonoflithosphericandasthenospheric topographyofthelithosphere–asthenosphereboundarybeneaththe strainfields AnatolianplatesouthoftheNAFZandtheEurasiaplatecontaining theBlackSeabasinandcontinentalbasementrocksofPontideaffin- Comparison of fast polarization directions with plate motion di- ity(Sengor&Yilmaz1981)tothenorth.ThePntomographystudy rectionsrequiresselectionofareferenceframethatwillyieldtrue (cid:2)C 2010TheAuthors,GJI,181,1201–1213 Journalcompilation(cid:2)C 2010RAS Anisotropyalonganascentplateboundary 1209 absoluteplatevelocities.Thereexistmultiplereferenceframesfor setofforcesduetotheirdifferentrheologiesanddifferentvertical plate motions, based on different assumptions, and each of these extents.Althoughwecannotdeterminetheasthenosphericflowdi- hasdifferentmotiondirectionsandspeeds.Oneofthemostcom- rectionviathesecomparisonsandobservations,theinterpretation monlyusedreferenceframesforourstudyarearegardsEurasiaas thatthevariationsincrustalstrainfieldareduetoAegeanslabroll- fixedandfocusesontherelativemotionsofthesurroundingplates back might be suggesting that the variations in anisotropy delay (i.e.Anatolia)withrespecttofixedEurasia(McCluskyetal.2000). timesarealsoduetotheeffectofthisroll-back.Thisprovidesfur- In this case, the direction of lithospheric motion depends strictly thersupportfortheideathattheobservedanisotropydirectionsare ontheselectionofthefixedplate(i.e.Eurasia)anddoesnotnec- generatedbyslabroll-backprocessestakingplacealongtheAegean essarily represent an absolute plate motion that can be used for andtheCypreansubductionzonesandhenceassociatedwithaSW comparison with mantle anisotropy measurements. Another rele- asthenosphericflow. vantreferenceframeisthehotspotreferenceframe(HS3-NUVEL- 1A of Gripp& Gordon2002). Theuncertainties in thedynamics ofmantleplumesandtheirsourcedepthswithinthemantleintro- 4.4 ComparisonofNAFZandSAF duce uncertainties in these plate motion measurements (Kreemer D o 2009). Recently Kreemer (2009) attempted to put constraints on StudiesofshearwaveanisotropyalongtheSAFindicatetheexis- w n the absolute plate motions in a hotspot reference frame based on tenceoftwolayeranisotropyalonga100–150kmwidezonefollow- lo a d observationsofshearwavesplittingorientations(GSRM-APM-1). ingthesurfacetraceofthefaultalongmostpartsofthePacific-North e d TheresultsofKreemer(2009)showamismatchbetweenobserved Americaplateboundary(Ozalaybey&Savage1994;Ozalaybey& fro anisotropy directions and resultant absolute plate velocity direc- Savage1995;Hartog&Schwartz2001;Polet&Kanamori2002). m tionsforcratons.TheNo-Net-Rotation(NNR)referenceframeof The lower, sublithospheric layer of this stack is characterized by http Kreemer&Holt(2001)incorporatesplatemotionswithrespectto EW-oriented polarization direction with delay times in the range s afixedmantle,withtheeffectsoflithosphericrotationremoved.In of0.85–1.70s(Hartog&Schwartz2001).Thesenseofanisotropy ://a c arecentstudyBecker(2008)pointedoutthereislikelytobeanet for this layer is subparallel to the absolute plate motion of the ad e rotation of lithosphere which affects the anisotropy in the mantle NorthAmericanPlate(Hartog&Schwartz2001;Gripp&Gordon m due to effects of basal shear forces applied on asthenosphere by 2002).Silver&Holt(2002)attributedthistodifferentialstrainbe- ic.o u moving stiff continental keels. In the Anatolia region all of these tweentheNorthAmericaplateandtheunderlyingasthenosphere. p .c referenceframesyielddifferentplatemotiondirectionsandthere Several studies argued that complications in this general pattern o m isnoconsensusonwhichoneofthesereferenceframesyieldsthe mightbeduetopastsubductionprocesses,small-scaleconvection /g trueabsoluteplatemotions.Thisuncertaintymakesitdifficultfor withintheslabwindow(Ozalaybey&Savage1994;Ozalaybey& ji/a us to compare plate motions in our study area with the observed Savage1995;Hartog&Schwartz2001;Polet&Kanamori2002), rtic anisotropydirections.Hence,weprefertoadoptanapproachthat oratoroidalmantleflowpatternrelatedtotheopeningoftheslab le-a isindependentofreferenceframeandincorporatescrustalstrains window (Zandt & Humphreys 2008). In contrast, the upper layer bs andstrainratesratherthanplatemotionvectors.Thus,weadopted (0to∼120kmdepth)displaysfastpolarizationdirectionsthatare tra c theuseofthepredictedstrainfieldforAnatoliacalculatedfromthe subparalleltothesurfacetraceoftheSAFwithrelativelysmaller t/1 8 GPSvelocityfield(Kreemeretal.2003;Allmendingeretal.2007). lag times, on the order of 0.50–1.25 s (thick, dark grey bars in 1 /3 RegionalstrainratesforAnatoliaindicatevariationintheprin- Fig.8b).Thecauseoftheanisotropyintheupperlayerisattributed /1 2 cipal infinitesimal shortening and extensional strain axes from toafinitestrainfieldorshearzoneinthemantlelithosphereasso- 0 1 easttowestfollowingthepatternofcounter-clockwiserotationof ciatedwiththerelativeplatemotionbetweenthePacificandNorth /6 0 Anatolianplate(Fig.7A).Thisvariationindirectionformaximum AmericanPlates(Ozalaybey&Savage1994;Ozalaybey&Savage 10 3 finiteshorteningandextensionisalsoinagreementwiththestruc- 1995;Hartog&Schwartz2001;Titusetal.2007).Thelateralextent 9 b turalfeaturesoftheAnatoliancrust,whereNE-andNW-striking oftheupperlayervariesbetween50and100kmaroundtheplate y g conjugatestrike-slipfaultsandEW-strikingthrustfaultsdominate boundaryanditappearsrelativelynarrowonthewesternsideofthe u e eastern Anatolia and nearly EW-striking normal faults dominate SAF(Ozalaybey&Savage1995;Silver1996). st o westernAnatolia.Asmentionedearlier,theLPOofolivineispar- Fig.8showsacomparisonofshearwavesplittingresultsforthe n 2 alleltotheflowdirectionandmaximumextensionaxisofthestrain NAFZandtheSAF(bothupperandlowerlayers).Althoughinboth 5 N ellipse.Inourstudyarea,thedirectionofmaximuminfinitesimal casesthereissimilaralignmentofthefastpolarizationdirections o v extensionalstrainforthecrustisgenerallyparalleltotheobserved obliquetothetracesoftheSAFandNAFZ(Fig.8),therearesome e m fast polarization direction, suggesting the associated lithospheric importantdifferencesbetweenthetwofaultsintermsofanisotropy. b e andasthenosphericstrainfieldsaretheresultofsimilarplatescale The angle between the anisotropy directions and the strike of the r 2 forces.Inthebroaderregion,weseethatthemaximuminfinitesi- NAFZ is ∼30◦ at the western part of the study area and is up to 01 8 malshorteningandextensionalstraindirectionsforthelithosphere 80◦ attheeasternend,duetothecurvatureofthefault.Wetested vary throughout Anatolia, whereas mantle deformation (fast po- varioustwolayeranisotropicmodelsforNAFZthataresimilarto larization)directionsremainuniform(Fig.7A).Thelagtimesfor those suggested for the SAF. Two of these models are shown in anisotropymeasurements,however,showsspatialvariationpatterns Fig.6.Thedashed,thinlinesinFig.6showthetheoreticaldistri- that resemble variation patterns in crustal strain axis orientations butionoftheapparentsplittingparametersfortwolayeranisotropic (Fig. 7B). Many studies state that the effect of Aegean slab roll- modelswiththefastdirectionsfortheupperlayerparallelingthe backincreasesfromeasttowestinAnatolianregion(i.e.Barka& strikeofNAF,andthefastdirectionsforthelowerlayerparalleling Reilinger1997;Meijer&Wortel1997;Allmendingeretal.2007) theNNRplatemotiondirection(30◦N).Forthemodelrepresented andthevariationinmaximumfinitestrainaxesshowsthisclearly bythethin,blackdashedline(Model1)thedelaytimeassociated (Figs7AandB).Observeddifferencesbetweenmantleanisotropy withthelowerlayeris0.8sandfortheupperlayeritis0.5s.For directionsandcrustalstrainaxistrendsmightbeassociatedwithdif- the model represented by the grey, dashed line (Model 2), how- ferencesinresponsesoflithosphereandasthenospheretoasimilar ever,delaytimeassociatedwiththelowerlayeris1.1sandforthe (cid:2)C 2010TheAuthors,GJI,181,1201–1213 Journalcompilation(cid:2)C 2010RAS 1210 C.B.Biryoletal. a N 1.5 sec. km 44˚ E 1 sec. 0 100 200 W 0.5 sec. S 42˚ D 30 32 34 36 38 40 ow ˚ ˚ ˚ ˚ ˚ ˚ n lo a b de d W km fro S m 0 100 200 h 30˚ E N ttps 244˚ ://ac a d e m ic .o u p .c o 32˚ 246˚ 34˚ 244˚ 36˚ 242˚ 38˚ 240˚ 40˚ 238˚ m/g ji/a Figure8. Mapsfor(a)NAFZand(b)SAF,showingcharacteristicsofobservedanisotropyaroundplateboundaryzones.ThedarkgreyfilledcirclesforNAFZ rtic mapindicatemeasurementsofsplittingfromtheETSE(Sandvoletal.2003).ThethickblackbarsfortheSAFmapindicateanisotropyobservedintheupper le layerofthetwolayeredstack(Liuetal.1995;Silver1996;Obrebskietal.2006).SplittingmeasurementsforSAFandwesternNorthAmericaaretakenfrom -ab s Liu(2009). tra c t/1 upper layer it is 0.2 s. Although the backazimuthal distribution formationhasyetaccumulatedtoprovideasignificantcontribution 81 ofourmeasurementsareratherlimited,noneofthesemodelscan totheanisotropy. /3/1 uniquely and robustly explain the distribution of measured delay 20 1 timesandfastpolarizationdirections.Inthecaseoffastpolariza- /6 5 CONCLUSIONS 0 tiondirections,model2withtheupperlayerhavingsmallerdelay 1 0 times(greydashedline)showsarelativelybetterfit.However,in AnalysisofshearwavesplittinginthecentralpartoftheAnatolia- 39 termsofdelaytimes,noneofthemodelsfitsthetheoreticaldistri- Eurasia plate boundary, around the northward convex part of the by bution.Theupperlayerwillhaveathicknessof15–20km,ifwe NAFZ, reveals fairly uniform NE–SW trending anisotropy direc- gu e aosbssuemrveedfofuarsttpoofilavreizpaetironcednitreacntiisoontsrobpyym.Bodaeseld2,ownetchaenbneottterurlfietoouft toifonsisgwniifithcadnetcarnedasuinngifodremlayantiimsoetsrofproymacwroessstmtoaejoarstt.eTcthoeniecxbisotuenncde- st on the existence of a thinner anisotropic layer with fast polarization ariesandplatemarginsinthestudyareaarguesforanasthenospheric 25 directionsparallelingtheshearzoneassociatedwithNAFZ.How- sourcefortheanisotropyratherthanalithosphericsource. No ever,itisdifficulttoresolveanisotropicpropertiesofsuchathin We suggest the slab roll-back taking place along the Aegean ve m layergiventheerrorsassociatedwithsplittingmeasurements.Even trench and the different amounts of trench retreat for the Aegean b e ifthislayerexists,itwillbemuchthinnerthanthesuggestedupper andCypreantrenchescontributessignificantlytotheupper-mantle r 2 layer for the SAF. Thus, we believe the simplest model that best dynamicsoftheregionandinducesaSW-directedastheonospheric 01 8 explainsourobservationsisasinglelayeranisotropicsource. flowwithdifferentialstrengthsfromeasttowest.Thesimilarpat- TheNAFZhasbeenactivesince∼5Ma(Barka&Kandinsky- terns of variation for both crustal strain field and observed fast Cade1988;Barka&Gu¨len1989;Koc¸yig˘it1989,1990;Dirik1993; polarizationdirectionsalsosupporttheideaofSWasthenospheric Bozkurt & Koc¸yig˘it 1996; Barka et al. 2000; Bozkurt 2001) and flowundertheeffectsofAegeanandCypreanslabroll-backpro- accommodates75–125kmofcumulativedisplacement(Westaway cesses. 1994;Armijoetal.1999;Barkaetal.2000).Thesevaluesofage ComparisonoftheNAFZandSAFintermsofanisotropysug- andoffsetforNAFZaresignificantlylowerthanthosefortheSAF gestssomeimportantdifferencesexistbetweenthesefaults.Many (∼315–730 km offset with an age of ∼17–30 Ma) (McKenzie & studiessuggestdoublelayeranisotropyfortheSAF,wheretheup- Morgan1969;Atwater1970;Grahametal.1989;Dickinson1996; per layer fast polarization direction is parallel to the strike of the Dickinson&Wernicke1997).Thismightimplythatthedeforma- faultandthelowerlayerfastpolarizationdirectionisparalleltothe tionalongtheNAFZisatanearlydevelopmentstagecomparedto absoluteplatemotionintheregion.Aftertestingvarioustwolayer theSAF,sothatnodominant,overprintingeffectoflithosphericde- modelssimilartowhatisobservedalongtheSAF,wecouldnotfit (cid:2)C 2010TheAuthors,GJI,181,1201–1213 Journalcompilation(cid:2)C 2010RAS
Description: