SHARP REGULARITY ESTIMATES FOR SECOND ORDER FULLY NONLINEAR PARABOLIC EQUATIONS 6 1 JOÃOVÍTORDASILVAANDEDUARDOV.TEIXEIRA 0 2 n a J ABSTRACT. Weprovesharpregularityestimatesforviscositysolutionsoffullynonlinear 2 parabolicequationsoftheform 2 (Eq) ut−F(D2u,Du,X,t)= f(X,t) in Q1, ] whereF isellipticwithrespecttotheHessianargumentand f ∈Lp,q(Q1). Thequantity P k (n,p,q):= n+2 determinestowhichregularityregimeasolutionof(Eq)belongs. We p q A provethatwhen1<k (n,p,q)<2−eF,solutionsareparabolic-Höldercontinuousfora sharp,quantitative exponent0<a (n,p,q)<1. Preciselyatthecriticalborderlinecase, . h k (n,p,q)=1,weobtainsharpLog-Lipschitzregularityestimates.When0<k (n,p,q)< at 1,solutionsarelocallyofclassC1+s ,1+2s andinthelimitingcasek (n,p,q)=0,weshow m C1,Log-LipregularityestimatesprovidedFhas“better”aprioriestimates. Keywords: Fullynonlinearparabolic equations, optimalborderline estimates, sharp [ moduliofcontinuity. 1 v 1. INTRODUCTION 9 9 Thestudyofsecondorderparabolicequationsplaysafundamentalroleinthede- 0 velopmentof severalfieldsin pureandappliedmathematics,such asdifferentialgeome- 6 0 try,functionalandharmonicanalysis,infinitedimensionaldynamicalsystems,probability, . as well as in mechanics, thermodynamics, electromagnetism, among others. The non- 1 0 homogeneousheatequation, 6 (1.1) u −D u= f in Q =B ×(−1,0], 1 t 1 1 v: f ∈Lp(Q1), p> n+22, representsthesimplestlinearprototype. Itsmathematicalanalysis i goesbackto19thcenturyandtheregularitytheoryforsuchanequationisnowadaysfairly X complete. The fully nonlinear parabolic theory is quite more recent. The fundamental r a worksofKrylovandSafonov,[10],[11]onlinear,non-divergenceformellipticequations setthebeginningofthedevelopmentoftheregularitytheoryforviscositysolutionstofully nonlinearparabolicequations.Sincethenthishasbeenacentralsubjectofresearch.Wang in[15,16]provesHarnackinequalityandC1+a ,1+2a estimatesforfullynonlinearparabolic equations,andCrandalletalin[2]developanLp-viscositytheory.Krylovin[6,7]obtains C2+a ,2+2a estimates for solutions to ut−F(D2u)=0, under convexity assumptions, and CaffarelliandStefanelliin[1]exhibitsolutionstouniformparabolicequationsthatarenot C2,1. Non-divergence form parabolic equations involving sources with mixed integrability conditions f ∈Lp,q(Q ), as in (Eq) have also been fairly well studied in the literature. 1 ExistenceinsuitableparabolicSobolevspaceshasbeenprovenbyKrylov,see[8,9],see 1991MathematicsSubjectClassification. 35K10,35B65. 1 2 JOÃOVÍTORDASILVAANDEDUARDOV.TEIXEIRA also the sequenceof worksby Kim [4, 5]. Insofarasregularityestimates are concerned, only qualitative results are available when p and q are sufficient large. Nonetheless, as ina numberofphysical, geometricandfreeboundaryproblems,obtaininga quantitative sharpregularityestimateforsolutionsisdecisiveforarefineanalysis. Hence,thepurpose thispaperis to obtainsharp moduliofcontinuityto solutionsforsecond orderparabolic equation(Eq),involvingsourceswithmixednorms,whichdependsonlyondimension, p andq. Hereafterwedenoteby n 2 k =k (n,p,q):= + . p q Thefirst quantitativeregularityresult we show states that if 1<k (n,p,q)< n+2, where nP n+2 <n <n+1isuniversal,thensolutionsareparabolicallya -Höldercontinuousforthe 2 P sharpexponenta :=2− n+2 . p q Intuitively,ask (n,p,q(cid:16))decre(cid:17)ases,oneshouldexpectthatregularityestimatesofsolu- tionsimprove. Theborderlineisk (n,p,q)=1,whereweprovethatsolutionsareparabol- ically Log-Lipschitz continuous. The result is a further quantitative improvementto the factthatu∈Ca ,a2(Q )forany0<a <1. loc 1 When 0<k (n,p,q)<1, we showthatsolutionsareC1+b ,1+2b , forb .1− n+2 . p q Qualitativeresults,whenp=q>n+1,werepreviouslyobtainedbyCrandalleta(cid:16)l[2]an(cid:17)d Wang[16]. Finally, we deal with the upper borderline case, f ∈BMO(Q ). Under appropriate 1 higher a priori estimates on F, we show that solutions are C1,Log-Lip(Q ). Particularly, loc 1 u∈C1+a ,1+2a (Q )forany0<a <1. loc 1 Thetablebelowprovidesaglobalpictureoftheparabolicregularitytheoryforequations withanisotropicsources,incomparisonwiththesharpellipticestimatefrom[13]: f ∈Lp(B ) Regularityofu f ∈Lp,q(Q ) Regularityofu 1 1 n−e ≤p<n C0,2−np(B ) 1< n+2 < n+2 CV,V2(Q ) loc 1 p q nP loc 1 p=n C0,Log-Lip(B ) n+2 =1 C0,Log-Lip(Q ) loc 1 p q loc 1 p>n C1,min a −,1−np (B ) 0< n+2 <1 C1+m ,1+2m (Q ) loc n o 1 p q loc 1 BMO!L¥ C1,Log-Lip(B ) BMO!L¥ C1,Log-Lip(Q ) loc 1 loc 1 EllipticTheory X ParabolicTheory where V :=2− n+2 and m :=min a −,1− n+2 , and a − means a −e for p q p q every0<e . (cid:16) (cid:17) n (cid:16) (cid:17)o It is interesting to note that the parabolic regularity estimates agree with its elliptic counterpartprovided f ∈Lp,¥ (Q ). 1 Next picture shows the critical surfaces and the regions they define for the optimal regularityestimatesavailableforsolutionsto(Eq). SHARPREGULARITYESTIMATESFORSECONDORDERFULLYNONLINEARPARABOLICEQUATIONS 3 q u 0< n+2 <1 p q 1< n+2 < n+2 n+2 =1 p q nP p q 2 n+2 = n+2 p q nP 1 n2 n pu FIGURE 1. Criticalsurfacesforoptimalregularityestimates. Acknowledgement. This article is part of the first author’s Ph.D thesis. He would like tothanktheDepartmentofMathematicsatUniversidadeFederaldoCearáforfosteringa pleasantandproductivescientificatmosphere,whichhasbenefitedalotthefinaloutcome ofthiscurrentproject.ThisworkhasbeenpartiallysupportedbyCapesandCNPq,Brazil. 2. DEFINITIONS AND PRELIMINARY RESULTS ThroughoutthispaperF: Sym(n)×Rn×B (0)×(−1,0]−→Risafullynonlinear 1 uniformlyellipticoperatorwithrespecttotheHessianargumentandLipschitzwithrespect to gradientdependence. That is, there are constants L ≥l >0 and u ≥0 such that for allZ,W ∈Rn andM,N ∈Sym(n),spaceofn×nsymmetricmatrices,withM≥N,there holds (2.1) M− (M−N)−u |Z−W|≤F(M,Z,X,t)−F(N,W,X,t)≤M+ (M−N)+u |Z−W|. l ,L l ,L Hereafter,M± denotethePucci’sextremaloperators: l ,L M+ (M):=l · (cid:229) e +L · (cid:229) e and M− (M):=l · (cid:229) e +L · (cid:229) e l ,L i i l ,L i i ei<0 ei>0 ei>0 ei<0 where{e :1≤i≤n}aretheeigenvaluesofM. Wecan(andwill)alwaysassumethatF is i normalizedasF(0,0,X,t)=0. AnyoperatorF whichsatisfiesthecondition(2.1)willbe referredinthisarticleasa(l ,L ,u )-parabolicoperator. Followingclassicalterminology, anyconstantormathematicaltermwhichdependsonlyondimensionandoftheparabolic parametersl ,L andu willbecalleduniversal. 4 JOÃOVÍTORDASILVAANDEDUARDOV.TEIXEIRA Equationsandproblemsstudiedherearedesignedinthe(n+1)-dimensionalEuclidean space,Rn+1. Thesemi-opencylinderisdenotedbyQ (X ,t )=B (X )×(t −r2,t ]. For r 0 r 0 simplicitywereferQ (0,0)=Q . TheparabolicdistancebetweenthepointsP =(X ,t ) 1 1 1 1 1 andP =(X ,t )∈Q isdefinedby 2 2 2 1 d (P ,P):= |X −X |2+|t −t |. par 1 2 1 2 1 2 q Forafunctionu: Q →Rthesemi-normandnormfortheparabolicHölderspaceare 1 definedrespectivelyby (2.2) |u(X,t)−u(Y,s)| [u]Ca ,a2(Q1):=(X,t)s,(uY,ps)∈Q1 dpar((X,t),(Y,s))a and kukCa ,a2(Q1):=kukC0(Q1)+[u]Ca ,a2(Q1). (X,t)6=(Y,s) Underfinitenessofsuchanormoneconcludesthatuisa -Hödercontinuouswithrespect tothespatialvariablesand a2−Höderwithrespecttothetemporalvariable.C1+a ,1+2a (Q1) isthespaceofuwhosespacialgradientDu(X,t)thereexistsintheclassicalsenseforevery (X,t)∈Q andsuchthat 1 kukC1+a ,1+2a (Q1) := kukL¥ (Q1)+|uk(XD,utk)L−¥ (uQ(1Y),t )−Du(X,t)·(X−Y)| + sup d1+a ((X,t),(Y,s)) (X,t),(Y,s)∈Q1 par (X,t)6=(Y,s) is finite. It is easy to verify that u∈C1+a ,1+2a (Q1) implies every component of Du is C0,a (Q ),anduis 1+a −Höldercontinuousinthevariablet,seeforinstance[2]. 1 2 A function u belongs to the Sobolev space W2,1,p(Q ) if it satisfies u,Du,D2u,u ∈ 1 t Lp(Q ). Thecorrespondingnormisgivenby 1 kukW2,1,p(Q1)=[kukLpp(Q1)+kutkLpp(Q1)+kDukLpp(Q1)+kD2ukLpp(Q1)]1p ItfollowsbySobolevembeddingthatif p> n+2 thenW2,1,p(Q )iscontinuouslyembed- 2 1 ded inC0(Q ). Also, u∈W2,1,p(Q ) implies that u is twice parabolically differentiable 1 loc 1 a.e.,seeformoredetails[2]. Definition2.1(LP-viscositysolutions). LetG: Sym(n)×Rn×R×B (0)×(−1,0]→Rbe 1 auniformlyellipticoperator,P> n+2 and f ∈LP (Q ). Wesaythatafunctionu∈C0(Q ) 2 loc 1 1 isanLP-viscositysubsolution(respectivelysupersolution)to (2.3) u −G(D2u(X,t),Du(x,t),u(X,t),X,t)= f(X,t) in Q t 1 ifforallj ∈W2,1,P(Q )whenevere >0andO⊂Q isanopenand loc 1 1 j −G(D2j (X,t),Dj (x,t),j (X,t),X,t)−f(X,t)≥e (resp.≤−e ) a.e. in O t then u−j cannot attains a local maximum (resp. minimum) in O. In an equivalent manner, u is an LP−viscosity subsolution (resp. supersolution) if for all test function j ∈W1,2,P(Q )and(X ,t )∈Q atwhichu−j attainalocalmaximum(resp.minimum) loc 1 0 0 1 onehas SHARPREGULARITYESTIMATESFORSECONDORDERFULLYNONLINEARPARABOLICEQUATIONS 5 essliminf [j −G(D2j (X,t),Dj (x,t),j (X,t),X,t)−f(X,t)]≤0 t (X,t)→(X0,t0) esslimsup [j −G(D2j (X,t),Dj (x,t),j (X,t),X,t)−f(X,t)]≥0 t (X,t)→(X0,t0) FinallywesaythatuisanLP-viscositysolutionto(2.3)ifitisbothanLP-viscositysuper- solutionandanLP-viscositysubsolution. According to [2] and [15] for a fixed (X ,t )∈Q , we measure the oscillation of the 0 1 coefficientsofF around(X ,t )bythequantity 0 |F(M,0,X,t)−F(M,0,X ,t )| (2.4) Q (X ,t ,X,t):= sup 0 . F 0 kMk+1 M∈Sym(n) Fornotationpurposes,weshalloftenwriteQ (0,0,X,t)=Q (X,t). F F Werecallthatafunction f issaidtobelongtotheanisotropicLebesguespace,Lp,q(Q ) 1 if 0 qp 1q kfkLp,q(Q1):= ˆ ˆ |f(X,t)|pdX dt =kkf(·,t)kLp(B1)kLq((−1,0])<+¥ . −1(cid:18) B1 (cid:19) ! This is a Banach space when endowed with the norm above. When p=q, this is the standarddefinitionofLp spaces. Thedefinitionarenaturallyextendedwheneither porq areinfinity.ItisplaintoverifythatLp,q(Q )⊂Ls(Q )fors:=min{p,q}. 1 1 Werecalltheexistenceofaconstantn ,satisfying n+2 ≤n <n+1,forwhichHarnack P 2 P inequality holds for LP-viscosity solutions, provided P>n , see for instance [2]. The P followingcompactnessresultbecomesthenavailable: Proposition2.2(Compactnessofsolutions). Letu∈C0(Q )beanLP-viscositysolution 1 to(Eq)undertheassumptionP≥min{p,q}>nP. ThenuislocallyofclassCb ,b2 forsome 0<b <1and kukCb,b2(Qr)≤C(n,l ,L )r−b (cid:18)kukL¥ (Q2r)+r2−(cid:16)np+q2(cid:17)kfkLp,q(Q2r)(cid:19). Inthesequel,weobtainaLemmawhichprovidesatangentialpathtowardtheregularity theoryavailableforconstantcoefficient,homogeneousF-caloricfunctions. Lemma2.3(F-caloricapproximationLemma). Letu∈C0(Q )beanLP-viscositysolution 1 to(Eq)with|u|≤1and f ∈Lp,q(Q )withP:=min{p,q}>n . Givend >0,thereexists 1 P h =h (n,L ,l ,d )>0suchthatif 1 P max ˆ Q PF(X,t) ,kfkLp,q(Q1),u ≤h , ((cid:18)Q1 (cid:19) ) thenwecanfindafunctionh: Q →Randa(l ,L ,0)−parabolic,constantcoefficients 1/2 operatorF: Sym(n)→R,suchthat (2.5) h −F(D2h)=0, in Q t 1/2 intheLP-viscositysense,and,moreover 6 JOÃOVÍTORDASILVAANDEDUARDOV.TEIXEIRA (2.6) sup |(u−h)(X,t)|≤d . (X,t)∈Q1/2 Proof. Theproofisbasedonacontradictionargument.Supposethatthereexistsad >0 0 forwhichthethesisofLemma2.6isnottrue.Thatis,wecouldfindasequenceoffunctions (u ) ,with|u |≤1inQ ,asequenceof(l ,L ,u )-operatorsF : Sym(n)×Rn×Q →R j j≥1 j 1 j j 1 andasequenceoffunctions(f ) satisfying j j≥1 (2.7) (u ) −F(D2u ,Du ,X,t)= f (X,t) in Q j t j j j j 1 intheLP-viscositysense,with 1 P (2.8) max ˆ Q PFj(X,t) ,kfjkLp,q(Q1),u j =o(1) as j→¥ , ((cid:18)Q1 (cid:19) ) however (2.9) sup |(u −h)(X,t)|>d j 0 (X,t)∈Q1/2 forallhwhichsatisfies(2.5)andall(l ,L ,0)-operatorF. ByHölderregularityofthese- quence(u ) , Proposition2.2, we mayassume, passingto a subsequenceif necessary, j j≥1 that u →u locally uniformly in Q . Furthermore, it follows from structural condition j 0 1 (2.1)ofthesequenceofoperators(F) thatF(M,Z,X,t)→F (M,Z,X,t)locallyuni- j j≥1 j 0 formlyinthespaceSym(n)×Rnforeach(X,t)∈Q fixed.Moreover,byhypothesis(2.8), 1 F isa(l ,L ,0)constantcoefficientsoperator,seeforinstance[2]and[15]. Toconclude 0 theproof,weusestabilityarguments,see[2,Section6],astodeducethat (u ) −F (D2u )=0 in Q , 0 t 0 0 1/2 intheLP-viscositysense,Thisgivesacontradictionto(2.9)to j≫1andtheproofofthe Lemmaisconcluded. (cid:3) Weconcludethissectionbycommentingonreductionprocessestobeusedthroughout theproof. Remark2.4. [Preservingellipticity]IfF isa(l ,L ,u )-parabolicoperatorthen −→ −→ M Z G(M, Z,X,t)=k 2F , X,t k 2 k ! isa(l ,L ,ku )-parabolicoperator. Remark2.5. [Normalizationandscaling]We canalwayssuppose,withoutlossofgener- ality,thatviscositysolutionsof u −F(D2u,Du,X,t)= f(X,t) in Q t 1 skaftkisLfpy,q(kQu1k)L<¥ (2Qe1)0.≤In1f.acAt,lsfoorgkive:=n ae0skmukaL¥ll(Qn1u)e+0mkbfkeLrp,eq(0Q1>) a0n,dwRe>camnaaxlso1s,ueup0po,sdeefithnaitngu + v(X,t):=k u(R−1X,R−2t) (cid:8) (cid:9) wereadilyverifythat SHARPREGULARITYESTIMATESFORSECONDORDERFULLYNONLINEARPARABOLICEQUATIONS 7 (1) kvkL¥ (Q1)≤1; (2) v −G(D2v,Dv,X,t)=g(X,t)inQ ,intheLP-viscositysense,where t 1 −→ k R2 R−→ k G(M, Z,X,t)= F M, Z,R−1X,R−2t and g(X,t)= f(R−1X,R−2t); R2 k k R2 (cid:18) (cid:19) (3) Gisa(l ,L ,u )-parabolicoperator,withu <e ; 0 (4) kgkLp,q(Q1)≤e0. 3. OPTIMALCa ,a2 REGULARITY Our strategy for proving optimalCa ,a2 regularity estimates is based on a refined compactness method as in [2, 13, 15, 16]. It relies on a control of decay of oscillation based on the regularity theory available for a nice limiting equation. Roughly speaking the geometric tangential analysis of the limit arising from of family of fully nonlinear parabolicoperatorsF aswe areinsmallestregimeonthe sourcetermandonoscillation i of coefficients of the respective operators. Next lemma is the key access point for the approach,asitprovidesthefirststepintheiterationprocesstobeimplemented. Lemma3.1. Letu∈C0(Q )beanormalizedLP-viscositysolutionfor(Eq),thatis,|u|≤1 1 inQ . Given0<g <1,thereexisth (L ,l ,n,g )>0and0<r (L ,l ,n,g )≪ 1,suchthat 1 2 if 1 P n 2 n+2 max ˆ Q PF(X,t) ,kfkLp,q(Q1),u ≤h with 1< p+q < n ((cid:18)Q1 (cid:19) ) P then,forsomeV ∈R,with|V |≤C(L ,l ,n)thereholds (3.1) sup|u−V |≤r g. Qr Proof. For a d >0 to be chosen a posteriori, let h be a solution to a homogeneousuni- formlyparabolicequationwithconstantcoefficients, thatisd -closeto uintheL¥ -norm, i.e., (3.2) h −F(D2h)=0 in Q and sup|(u−h)(X,t)|≤d . t 1 Q 1/2 Lemma2.3assurestheexistenceofsuchafunction.Onceourchoiceford ,tobesetofthe endofthisproof,isuniversal,thenthechoiceofh (n,l ,L ,d ) istoouniversal. Fromthe regularitytheoryavailableforh,seeforinstance[2]or[16],wecanestimate 1 (3.3) |h(X,t)−h(0,0)|≤C(n,l ,L )d ((X,t),(0,0)) ∀ |X|2+|t|< , par 3 andalso, (3.4) |h(0,0)|≤C. ForV =h(0,0)itfollowsfromequations(3.2)and(3.3)viatriangularinequalitythat (3.5) sup|u(X,t)−V |≤d +C(n,l ,L )r . Qr 8 JOÃOVÍTORDASILVAANDEDUARDOV.TEIXEIRA Wemakethefollowinguniversalselections: 1 (3.6) r := 1 1−g and d := 1r g 2C 2 (cid:18) (cid:19) whereC >0 is a universal constant from equation (3.3). Let us stress that the choices abovedependonlyupondimension, ellipticity parametersand the fixed exponent. From theabovechoicesweobtain sup|u(X,t)−V | ≤r g . Qr andtheLemmaisconcluded. (cid:3) Theorem3.2. Letu∈C0(Q )beanLP-viscositysolutionof (Eq)with f ∈Lp,q(Q )with 1 1 n 2 n+2 1< + < . p q n P Thereexistsauniversalconstantq >0suchthatif 0 1 P sup Q P(Y,t ,X,t) ≤q , ˆ F 0 (Y,t)∈Q1/2(cid:18)Q1 (cid:19) then,forauniversalconstantC>0anda :=2− n+2 ,thereholds p q (cid:16) (cid:17) kukCa ,a2(Q1/2)≤C{kukL¥ (Q1)+kfkLp,q(Q1)}. Proof. Through normalization and scaling processes, see Remark 2.5, we can suppose withoutlosinggeneralitythat|u|≤1andkfkLp,q(Q1)≤h ,whereh istheuniversalconstant from Lemma 3.1 when we set g =x (n,p,q)=2− n+2 . Once selected q =h the p q 0 goalwillbetoiteratetheLemma3.1. Forafixed(Y,(cid:16)t )∈Q(cid:17)1/2 weclaimthatthereexists aconvergentsequenceofrealnumbers{V } ,suchthat k k≥1 (3.7) sup |u(X,t)−V |≤r kx (n,p,q) k Qrk(Y,t) wheretheradius0<r ≪ 1 isgivenbyLemma3.1,upontheselectionofg asabove. 2 The proofof (3.7) will follow by inductionprocess. Lemma3.1givesthe first step of induction,k=1. Nowsupposeverifiedthekth stepin(3.7). Wedefine u(Y+r kX,t +r 2kt) v (X,t)= k r kx (n,p,q) and 1 1 F(M,Z,X,t):=r k[2−x (n,p,q)]F M, Z,Y+r kX,t +r 2kt . k r k[2−x (n,p,q)] r k[1−x (n,p,q)] (cid:18) (cid:19) Ascommentedbefore,seeRemark2.4,F is(l ,L ,u )-parabolicoperator,moreoverbythe k inductionhypothesis,|v |≤1and k (v ) −F(D2v ,Dv ,X,t)=r k.[2−x (n,p,q)]f(Y+r kX,t +r 2kt)=: f (X,t), k t k k k k SHARPREGULARITYESTIMATESFORSECONDORDERFULLYNONLINEARPARABOLICEQUATIONS 9 intheLP-viscositysense. Oneeasilycomputes, t qp q1 kfkkLp,q(Q1) = r k(2−x (n,p,q))r −k(cid:16)np+q2(cid:17)ˆt−r 2k ˆBrk(Y)|f(Z,s)|pdZ! ds . Duetothesharpchoiceofx (n,p,q)=2− n+2 ,wehavethat p q kfkkLp,q(Q1)=kfkLp,q(Brk(Y(cid:16))×(t−r 2(cid:17)k,t])≤kfkLp,q(Q1)≤h , aswellas 1 1 P P Q P(X,t) ≤ Q P(X,t) ≤h . ˆ Fk ˆ F (cid:18)Q1 (cid:19) (cid:18)Q1 (cid:19) Inconclusion,weareallowedtoemployedLemma3.1tov ,whichprovidestheexistence k ofauniversallyboundedrealnumberV with|V |≤C,suchthat k k (3.8) sup|v −V |≤r x (n,p,q). k k Qr Finally,ifweselect (3.9) V :=V +r kx (n,p,q)V k+1 k k and rescale (3.8) back to the unit picture, we obtain the (k+1)th step in the induction process(3.7). Inaddition,wehavethat (3.10) |V −V |≤Cr kx (n,p,q), k+1 k andhencethesequence{V } isCauchy,andsoitconverges. From(3.7)V →u(Y,t ). k k≥1 k Aswellasfrom(3.10)itfollowsthat (3.11) |u(Y,t )−V |≤ C r kx (n,p,q), k 1−r x (n,p,q) Finally,for0<r<r ,letkthesmallestintegersuchthat(X,t)∈Qr k(Y,t )\Qr k+1(Y,t ). Itfollowsfrom(3.7)and(3.11)that |u(X,t)−u(Y,t )| |u(X,t)−V |+|u(Y,t )−V | k k sup ≤ sup Qr(Y,t)dpar((X,t),(Y,t ))x (n,p,q) Qr(Y,t) dpar((X,t),(Y,t ))x (n,p,q) C r kx (n,p,q) ≤ 1+ sup (cid:18) 1−r x (n,p,q)(cid:19)Qr(Y,t)dpar((X,t),(Y,t ))x (n,p,q) C 1 ≤ 1+ . 1−r x (n,p,q) r x (n,p,q) (cid:18) (cid:19) Thelastestimateprovides kukCx(n,p,q),x(n2,p,q)(Q1/2)≤C andhencetheproofofTheoremisconcluded. (cid:3) Remark3.3. TheexponentofHölderregularityofourresultissharp.Thisiscanbeverify throughoffollowingexamplefrom[14]:Letu∈C ((−1,0];L2 (B ))∩L2 ((−1,0];W1,2(B )) loc loc 1 loc loc 1 beaweaksolutionto u −D u= f in Q t 1 Supposethat1< n+2<2thenfora :=2− 2+n wehavethatu∈Ca ,a2(Q ). Remark p q p q loc 1 thatinthiscasen = n+2. (cid:16) (cid:17) P 2 10 JOÃOVÍTORDASILVAANDEDUARDOV.TEIXEIRA Remark3.4. UnderVMOassumptionofthecoefficientsoftheoperatorF: Q P(X,t)=o(1), ˆ F Qr asr→0,Theorem3.2holdswithoutthesmallnessoscillationcondition,asitcanalways beassumeduponanappropriatescaling. Remark3.5. Undernoassumptionsonthecoefficients,ratherthanellipticity,adjustments in the proof of previous Theorem yieldsCa ,a2(Q ) where a :=min b −,2− n+2 loc 1 p q where0<b <1isthemaximalexponentfromPreposition2.2. n (cid:16) (cid:17)o 4. PARABOLIC LOG-LIPSCHITZ TYPEESTIMATES Inthissectionweaddressthequestionoffindingtheoptimalanduniversalmodulus ofcontinuityforsolutionsofuniformlyparabolicequationsoftheform(Eq)whoseright handsideliesintheborderlinespaceLp,q(Q ),when pandqlieonthecriticalsurface: 1 n 2 + =1. p q Such estimate is particularlyimportantto the generaltheoryof fully nonlinearparabolic equations.Throughasimpleanalysisoneverifiesthatsolutionsof(Eq),withsourcesunder theaboveborderlineintegrabilityconditionshouldbeasymptoticallyLipschitzcontinuous. Indeed,as n+2 →1+,solutionsareparabolicallyHöldercontinuousforeveryexponent p q 0<a <1. The key goal in this section is to obtain the sharp, quantitative modulus of continuityforu. Lemma 4.1. Let u∈C0(Q ) be a normalized LP-viscosity solution to (Eq). There exist 1 h (L ,l ,n)>0and0<r (L ,l ,n)≪ 1,suchthatif 2 1 P (4.1) max ˆ Q PF(X,t) ,kfkLp,q(Q1),u ≤h ((cid:18)Q1 (cid:19) ) underthecondition n+2 =1,then,wecanfindanaffinefunctionL(X,t):=A+hB,Xi, p q withuniversallyboundedcoefficients,|A|+|B|≤C(l ,L ,n),suchthat (4.2) sup|(u−L)(X,t)|≤r . Qr Proof. For a d >0 which will be chosen a posteriori, we apply Lemma 2.3 and find a functionh: Q →Rsatisfying 1 2 h −F(D2h)=0 in Q , t 1 2 intheLP-viscositysensesuchthat (4.3) sup|(u−h)(X,t)|≤d . Q 1/2 Wenowdefine (4.4) L(X,t)=h(0,0)+hDh(0,0),Xi,