ebook img

Sharp regularity estimates for second order fully nonlinear parabolic equations PDF

0.18 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Sharp regularity estimates for second order fully nonlinear parabolic equations

SHARP REGULARITY ESTIMATES FOR SECOND ORDER FULLY NONLINEAR PARABOLIC EQUATIONS 6 1 JOÃOVÍTORDASILVAANDEDUARDOV.TEIXEIRA 0 2 n a J ABSTRACT. Weprovesharpregularityestimatesforviscositysolutionsoffullynonlinear 2 parabolicequationsoftheform 2 (Eq) ut−F(D2u,Du,X,t)= f(X,t) in Q1, ] whereF isellipticwithrespecttotheHessianargumentand f ∈Lp,q(Q1). Thequantity P k (n,p,q):= n+2 determinestowhichregularityregimeasolutionof(Eq)belongs. We p q A provethatwhen1<k (n,p,q)<2−eF,solutionsareparabolic-Höldercontinuousfora sharp,quantitative exponent0<a (n,p,q)<1. Preciselyatthecriticalborderlinecase, . h k (n,p,q)=1,weobtainsharpLog-Lipschitzregularityestimates.When0<k (n,p,q)< at 1,solutionsarelocallyofclassC1+s ,1+2s andinthelimitingcasek (n,p,q)=0,weshow m C1,Log-LipregularityestimatesprovidedFhas“better”aprioriestimates. Keywords: Fullynonlinearparabolic equations, optimalborderline estimates, sharp [ moduliofcontinuity. 1 v 1. INTRODUCTION 9 9 Thestudyofsecondorderparabolicequationsplaysafundamentalroleinthede- 0 velopmentof severalfieldsin pureandappliedmathematics,such asdifferentialgeome- 6 0 try,functionalandharmonicanalysis,infinitedimensionaldynamicalsystems,probability, . as well as in mechanics, thermodynamics, electromagnetism, among others. The non- 1 0 homogeneousheatequation, 6 (1.1) u −D u= f in Q =B ×(−1,0], 1 t 1 1 v: f ∈Lp(Q1), p> n+22, representsthesimplestlinearprototype. Itsmathematicalanalysis i goesbackto19thcenturyandtheregularitytheoryforsuchanequationisnowadaysfairly X complete. The fully nonlinear parabolic theory is quite more recent. The fundamental r a worksofKrylovandSafonov,[10],[11]onlinear,non-divergenceformellipticequations setthebeginningofthedevelopmentoftheregularitytheoryforviscositysolutionstofully nonlinearparabolicequations.Sincethenthishasbeenacentralsubjectofresearch.Wang in[15,16]provesHarnackinequalityandC1+a ,1+2a estimatesforfullynonlinearparabolic equations,andCrandalletalin[2]developanLp-viscositytheory.Krylovin[6,7]obtains C2+a ,2+2a estimates for solutions to ut−F(D2u)=0, under convexity assumptions, and CaffarelliandStefanelliin[1]exhibitsolutionstouniformparabolicequationsthatarenot C2,1. Non-divergence form parabolic equations involving sources with mixed integrability conditions f ∈Lp,q(Q ), as in (Eq) have also been fairly well studied in the literature. 1 ExistenceinsuitableparabolicSobolevspaceshasbeenprovenbyKrylov,see[8,9],see 1991MathematicsSubjectClassification. 35K10,35B65. 1 2 JOÃOVÍTORDASILVAANDEDUARDOV.TEIXEIRA also the sequenceof worksby Kim [4, 5]. Insofarasregularityestimates are concerned, only qualitative results are available when p and q are sufficient large. Nonetheless, as ina numberofphysical, geometricandfreeboundaryproblems,obtaininga quantitative sharpregularityestimateforsolutionsisdecisiveforarefineanalysis. Hence,thepurpose thispaperis to obtainsharp moduliofcontinuityto solutionsforsecond orderparabolic equation(Eq),involvingsourceswithmixednorms,whichdependsonlyondimension, p andq. Hereafterwedenoteby n 2 k =k (n,p,q):= + . p q Thefirst quantitativeregularityresult we show states that if 1<k (n,p,q)< n+2, where nP n+2 <n <n+1isuniversal,thensolutionsareparabolicallya -Höldercontinuousforthe 2 P sharpexponenta :=2− n+2 . p q Intuitively,ask (n,p,q(cid:16))decre(cid:17)ases,oneshouldexpectthatregularityestimatesofsolu- tionsimprove. Theborderlineisk (n,p,q)=1,whereweprovethatsolutionsareparabol- ically Log-Lipschitz continuous. The result is a further quantitative improvementto the factthatu∈Ca ,a2(Q )forany0<a <1. loc 1 When 0<k (n,p,q)<1, we showthatsolutionsareC1+b ,1+2b , forb .1− n+2 . p q Qualitativeresults,whenp=q>n+1,werepreviouslyobtainedbyCrandalleta(cid:16)l[2]an(cid:17)d Wang[16]. Finally, we deal with the upper borderline case, f ∈BMO(Q ). Under appropriate 1 higher a priori estimates on F, we show that solutions are C1,Log-Lip(Q ). Particularly, loc 1 u∈C1+a ,1+2a (Q )forany0<a <1. loc 1 Thetablebelowprovidesaglobalpictureoftheparabolicregularitytheoryforequations withanisotropicsources,incomparisonwiththesharpellipticestimatefrom[13]: f ∈Lp(B ) Regularityofu f ∈Lp,q(Q ) Regularityofu 1 1 n−e ≤p<n C0,2−np(B ) 1< n+2 < n+2 CV,V2(Q ) loc 1 p q nP loc 1 p=n C0,Log-Lip(B ) n+2 =1 C0,Log-Lip(Q ) loc 1 p q loc 1 p>n C1,min a −,1−np (B ) 0< n+2 <1 C1+m ,1+2m (Q ) loc n o 1 p q loc 1 BMO!L¥ C1,Log-Lip(B ) BMO!L¥ C1,Log-Lip(Q ) loc 1 loc 1 EllipticTheory X ParabolicTheory where V :=2− n+2 and m :=min a −,1− n+2 , and a − means a −e for p q p q every0<e . (cid:16) (cid:17) n (cid:16) (cid:17)o It is interesting to note that the parabolic regularity estimates agree with its elliptic counterpartprovided f ∈Lp,¥ (Q ). 1 Next picture shows the critical surfaces and the regions they define for the optimal regularityestimatesavailableforsolutionsto(Eq). SHARPREGULARITYESTIMATESFORSECONDORDERFULLYNONLINEARPARABOLICEQUATIONS 3 q u 0< n+2 <1 p q 1< n+2 < n+2 n+2 =1 p q nP p q 2 n+2 = n+2 p q nP 1 n2 n pu FIGURE 1. Criticalsurfacesforoptimalregularityestimates. Acknowledgement. This article is part of the first author’s Ph.D thesis. He would like tothanktheDepartmentofMathematicsatUniversidadeFederaldoCearáforfosteringa pleasantandproductivescientificatmosphere,whichhasbenefitedalotthefinaloutcome ofthiscurrentproject.ThisworkhasbeenpartiallysupportedbyCapesandCNPq,Brazil. 2. DEFINITIONS AND PRELIMINARY RESULTS ThroughoutthispaperF: Sym(n)×Rn×B (0)×(−1,0]−→Risafullynonlinear 1 uniformlyellipticoperatorwithrespecttotheHessianargumentandLipschitzwithrespect to gradientdependence. That is, there are constants L ≥l >0 and u ≥0 such that for allZ,W ∈Rn andM,N ∈Sym(n),spaceofn×nsymmetricmatrices,withM≥N,there holds (2.1) M− (M−N)−u |Z−W|≤F(M,Z,X,t)−F(N,W,X,t)≤M+ (M−N)+u |Z−W|. l ,L l ,L Hereafter,M± denotethePucci’sextremaloperators: l ,L M+ (M):=l · (cid:229) e +L · (cid:229) e and M− (M):=l · (cid:229) e +L · (cid:229) e l ,L i i l ,L i i ei<0 ei>0 ei>0 ei<0 where{e :1≤i≤n}aretheeigenvaluesofM. Wecan(andwill)alwaysassumethatF is i normalizedasF(0,0,X,t)=0. AnyoperatorF whichsatisfiesthecondition(2.1)willbe referredinthisarticleasa(l ,L ,u )-parabolicoperator. Followingclassicalterminology, anyconstantormathematicaltermwhichdependsonlyondimensionandoftheparabolic parametersl ,L andu willbecalleduniversal. 4 JOÃOVÍTORDASILVAANDEDUARDOV.TEIXEIRA Equationsandproblemsstudiedherearedesignedinthe(n+1)-dimensionalEuclidean space,Rn+1. Thesemi-opencylinderisdenotedbyQ (X ,t )=B (X )×(t −r2,t ]. For r 0 r 0 simplicitywereferQ (0,0)=Q . TheparabolicdistancebetweenthepointsP =(X ,t ) 1 1 1 1 1 andP =(X ,t )∈Q isdefinedby 2 2 2 1 d (P ,P):= |X −X |2+|t −t |. par 1 2 1 2 1 2 q Forafunctionu: Q →Rthesemi-normandnormfortheparabolicHölderspaceare 1 definedrespectivelyby (2.2) |u(X,t)−u(Y,s)| [u]Ca ,a2(Q1):=(X,t)s,(uY,ps)∈Q1 dpar((X,t),(Y,s))a and kukCa ,a2(Q1):=kukC0(Q1)+[u]Ca ,a2(Q1). (X,t)6=(Y,s) Underfinitenessofsuchanormoneconcludesthatuisa -Hödercontinuouswithrespect tothespatialvariablesand a2−Höderwithrespecttothetemporalvariable.C1+a ,1+2a (Q1) isthespaceofuwhosespacialgradientDu(X,t)thereexistsintheclassicalsenseforevery (X,t)∈Q andsuchthat 1 kukC1+a ,1+2a (Q1) := kukL¥ (Q1)+|uk(XD,utk)L−¥ (uQ(1Y),t )−Du(X,t)·(X−Y)| + sup d1+a ((X,t),(Y,s)) (X,t),(Y,s)∈Q1 par (X,t)6=(Y,s) is finite. It is easy to verify that u∈C1+a ,1+2a (Q1) implies every component of Du is C0,a (Q ),anduis 1+a −Höldercontinuousinthevariablet,seeforinstance[2]. 1 2 A function u belongs to the Sobolev space W2,1,p(Q ) if it satisfies u,Du,D2u,u ∈ 1 t Lp(Q ). Thecorrespondingnormisgivenby 1 kukW2,1,p(Q1)=[kukLpp(Q1)+kutkLpp(Q1)+kDukLpp(Q1)+kD2ukLpp(Q1)]1p ItfollowsbySobolevembeddingthatif p> n+2 thenW2,1,p(Q )iscontinuouslyembed- 2 1 ded inC0(Q ). Also, u∈W2,1,p(Q ) implies that u is twice parabolically differentiable 1 loc 1 a.e.,seeformoredetails[2]. Definition2.1(LP-viscositysolutions). LetG: Sym(n)×Rn×R×B (0)×(−1,0]→Rbe 1 auniformlyellipticoperator,P> n+2 and f ∈LP (Q ). Wesaythatafunctionu∈C0(Q ) 2 loc 1 1 isanLP-viscositysubsolution(respectivelysupersolution)to (2.3) u −G(D2u(X,t),Du(x,t),u(X,t),X,t)= f(X,t) in Q t 1 ifforallj ∈W2,1,P(Q )whenevere >0andO⊂Q isanopenand loc 1 1 j −G(D2j (X,t),Dj (x,t),j (X,t),X,t)−f(X,t)≥e (resp.≤−e ) a.e. in O t then u−j cannot attains a local maximum (resp. minimum) in O. In an equivalent manner, u is an LP−viscosity subsolution (resp. supersolution) if for all test function j ∈W1,2,P(Q )and(X ,t )∈Q atwhichu−j attainalocalmaximum(resp.minimum) loc 1 0 0 1 onehas SHARPREGULARITYESTIMATESFORSECONDORDERFULLYNONLINEARPARABOLICEQUATIONS 5 essliminf [j −G(D2j (X,t),Dj (x,t),j (X,t),X,t)−f(X,t)]≤0 t (X,t)→(X0,t0) esslimsup [j −G(D2j (X,t),Dj (x,t),j (X,t),X,t)−f(X,t)]≥0 t (X,t)→(X0,t0) FinallywesaythatuisanLP-viscositysolutionto(2.3)ifitisbothanLP-viscositysuper- solutionandanLP-viscositysubsolution. According to [2] and [15] for a fixed (X ,t )∈Q , we measure the oscillation of the 0 1 coefficientsofF around(X ,t )bythequantity 0 |F(M,0,X,t)−F(M,0,X ,t )| (2.4) Q (X ,t ,X,t):= sup 0 . F 0 kMk+1 M∈Sym(n) Fornotationpurposes,weshalloftenwriteQ (0,0,X,t)=Q (X,t). F F Werecallthatafunction f issaidtobelongtotheanisotropicLebesguespace,Lp,q(Q ) 1 if 0 qp 1q kfkLp,q(Q1):= ˆ ˆ |f(X,t)|pdX dt =kkf(·,t)kLp(B1)kLq((−1,0])<+¥ . −1(cid:18) B1 (cid:19) ! This is a Banach space when endowed with the norm above. When p=q, this is the standarddefinitionofLp spaces. Thedefinitionarenaturallyextendedwheneither porq areinfinity.ItisplaintoverifythatLp,q(Q )⊂Ls(Q )fors:=min{p,q}. 1 1 Werecalltheexistenceofaconstantn ,satisfying n+2 ≤n <n+1,forwhichHarnack P 2 P inequality holds for LP-viscosity solutions, provided P>n , see for instance [2]. The P followingcompactnessresultbecomesthenavailable: Proposition2.2(Compactnessofsolutions). Letu∈C0(Q )beanLP-viscositysolution 1 to(Eq)undertheassumptionP≥min{p,q}>nP. ThenuislocallyofclassCb ,b2 forsome 0<b <1and kukCb,b2(Qr)≤C(n,l ,L )r−b (cid:18)kukL¥ (Q2r)+r2−(cid:16)np+q2(cid:17)kfkLp,q(Q2r)(cid:19). Inthesequel,weobtainaLemmawhichprovidesatangentialpathtowardtheregularity theoryavailableforconstantcoefficient,homogeneousF-caloricfunctions. Lemma2.3(F-caloricapproximationLemma). Letu∈C0(Q )beanLP-viscositysolution 1 to(Eq)with|u|≤1and f ∈Lp,q(Q )withP:=min{p,q}>n . Givend >0,thereexists 1 P h =h (n,L ,l ,d )>0suchthatif 1 P max ˆ Q PF(X,t) ,kfkLp,q(Q1),u ≤h , ((cid:18)Q1 (cid:19) ) thenwecanfindafunctionh: Q →Randa(l ,L ,0)−parabolic,constantcoefficients 1/2 operatorF: Sym(n)→R,suchthat (2.5) h −F(D2h)=0, in Q t 1/2 intheLP-viscositysense,and,moreover 6 JOÃOVÍTORDASILVAANDEDUARDOV.TEIXEIRA (2.6) sup |(u−h)(X,t)|≤d . (X,t)∈Q1/2 Proof. Theproofisbasedonacontradictionargument.Supposethatthereexistsad >0 0 forwhichthethesisofLemma2.6isnottrue.Thatis,wecouldfindasequenceoffunctions (u ) ,with|u |≤1inQ ,asequenceof(l ,L ,u )-operatorsF : Sym(n)×Rn×Q →R j j≥1 j 1 j j 1 andasequenceoffunctions(f ) satisfying j j≥1 (2.7) (u ) −F(D2u ,Du ,X,t)= f (X,t) in Q j t j j j j 1 intheLP-viscositysense,with 1 P (2.8) max ˆ Q PFj(X,t) ,kfjkLp,q(Q1),u j =o(1) as j→¥ , ((cid:18)Q1 (cid:19) ) however (2.9) sup |(u −h)(X,t)|>d j 0 (X,t)∈Q1/2 forallhwhichsatisfies(2.5)andall(l ,L ,0)-operatorF. ByHölderregularityofthese- quence(u ) , Proposition2.2, we mayassume, passingto a subsequenceif necessary, j j≥1 that u →u locally uniformly in Q . Furthermore, it follows from structural condition j 0 1 (2.1)ofthesequenceofoperators(F) thatF(M,Z,X,t)→F (M,Z,X,t)locallyuni- j j≥1 j 0 formlyinthespaceSym(n)×Rnforeach(X,t)∈Q fixed.Moreover,byhypothesis(2.8), 1 F isa(l ,L ,0)constantcoefficientsoperator,seeforinstance[2]and[15]. Toconclude 0 theproof,weusestabilityarguments,see[2,Section6],astodeducethat (u ) −F (D2u )=0 in Q , 0 t 0 0 1/2 intheLP-viscositysense,Thisgivesacontradictionto(2.9)to j≫1andtheproofofthe Lemmaisconcluded. (cid:3) Weconcludethissectionbycommentingonreductionprocessestobeusedthroughout theproof. Remark2.4. [Preservingellipticity]IfF isa(l ,L ,u )-parabolicoperatorthen −→ −→ M Z G(M, Z,X,t)=k 2F , X,t k 2 k ! isa(l ,L ,ku )-parabolicoperator. Remark2.5. [Normalizationandscaling]We canalwayssuppose,withoutlossofgener- ality,thatviscositysolutionsof u −F(D2u,Du,X,t)= f(X,t) in Q t 1 skaftkisLfpy,q(kQu1k)L<¥ (2Qe1)0.≤In1f.acAt,lsfoorgkive:=n ae0skmukaL¥ll(Qn1u)e+0mkbfkeLrp,eq(0Q1>) a0n,dwRe>camnaaxlso1s,ueup0po,sdeefithnaitngu + v(X,t):=k u(R−1X,R−2t) (cid:8) (cid:9) wereadilyverifythat SHARPREGULARITYESTIMATESFORSECONDORDERFULLYNONLINEARPARABOLICEQUATIONS 7 (1) kvkL¥ (Q1)≤1; (2) v −G(D2v,Dv,X,t)=g(X,t)inQ ,intheLP-viscositysense,where t 1 −→ k R2 R−→ k G(M, Z,X,t)= F M, Z,R−1X,R−2t and g(X,t)= f(R−1X,R−2t); R2 k k R2 (cid:18) (cid:19) (3) Gisa(l ,L ,u )-parabolicoperator,withu <e ; 0 (4) kgkLp,q(Q1)≤e0. 3. OPTIMALCa ,a2 REGULARITY Our strategy for proving optimalCa ,a2 regularity estimates is based on a refined compactness method as in [2, 13, 15, 16]. It relies on a control of decay of oscillation based on the regularity theory available for a nice limiting equation. Roughly speaking the geometric tangential analysis of the limit arising from of family of fully nonlinear parabolicoperatorsF aswe areinsmallestregimeonthe sourcetermandonoscillation i of coefficients of the respective operators. Next lemma is the key access point for the approach,asitprovidesthefirststepintheiterationprocesstobeimplemented. Lemma3.1. Letu∈C0(Q )beanormalizedLP-viscositysolutionfor(Eq),thatis,|u|≤1 1 inQ . Given0<g <1,thereexisth (L ,l ,n,g )>0and0<r (L ,l ,n,g )≪ 1,suchthat 1 2 if 1 P n 2 n+2 max ˆ Q PF(X,t) ,kfkLp,q(Q1),u ≤h with 1< p+q < n ((cid:18)Q1 (cid:19) ) P then,forsomeV ∈R,with|V |≤C(L ,l ,n)thereholds (3.1) sup|u−V |≤r g. Qr Proof. For a d >0 to be chosen a posteriori, let h be a solution to a homogeneousuni- formlyparabolicequationwithconstantcoefficients, thatisd -closeto uintheL¥ -norm, i.e., (3.2) h −F(D2h)=0 in Q and sup|(u−h)(X,t)|≤d . t 1 Q 1/2 Lemma2.3assurestheexistenceofsuchafunction.Onceourchoiceford ,tobesetofthe endofthisproof,isuniversal,thenthechoiceofh (n,l ,L ,d ) istoouniversal. Fromthe regularitytheoryavailableforh,seeforinstance[2]or[16],wecanestimate 1 (3.3) |h(X,t)−h(0,0)|≤C(n,l ,L )d ((X,t),(0,0)) ∀ |X|2+|t|< , par 3 andalso, (3.4) |h(0,0)|≤C. ForV =h(0,0)itfollowsfromequations(3.2)and(3.3)viatriangularinequalitythat (3.5) sup|u(X,t)−V |≤d +C(n,l ,L )r . Qr 8 JOÃOVÍTORDASILVAANDEDUARDOV.TEIXEIRA Wemakethefollowinguniversalselections: 1 (3.6) r := 1 1−g and d := 1r g 2C 2 (cid:18) (cid:19) whereC >0 is a universal constant from equation (3.3). Let us stress that the choices abovedependonlyupondimension, ellipticity parametersand the fixed exponent. From theabovechoicesweobtain sup|u(X,t)−V | ≤r g . Qr andtheLemmaisconcluded. (cid:3) Theorem3.2. Letu∈C0(Q )beanLP-viscositysolutionof (Eq)with f ∈Lp,q(Q )with 1 1 n 2 n+2 1< + < . p q n P Thereexistsauniversalconstantq >0suchthatif 0 1 P sup Q P(Y,t ,X,t) ≤q , ˆ F 0 (Y,t)∈Q1/2(cid:18)Q1 (cid:19) then,forauniversalconstantC>0anda :=2− n+2 ,thereholds p q (cid:16) (cid:17) kukCa ,a2(Q1/2)≤C{kukL¥ (Q1)+kfkLp,q(Q1)}. Proof. Through normalization and scaling processes, see Remark 2.5, we can suppose withoutlosinggeneralitythat|u|≤1andkfkLp,q(Q1)≤h ,whereh istheuniversalconstant from Lemma 3.1 when we set g =x (n,p,q)=2− n+2 . Once selected q =h the p q 0 goalwillbetoiteratetheLemma3.1. Forafixed(Y,(cid:16)t )∈Q(cid:17)1/2 weclaimthatthereexists aconvergentsequenceofrealnumbers{V } ,suchthat k k≥1 (3.7) sup |u(X,t)−V |≤r kx (n,p,q) k Qrk(Y,t) wheretheradius0<r ≪ 1 isgivenbyLemma3.1,upontheselectionofg asabove. 2 The proofof (3.7) will follow by inductionprocess. Lemma3.1givesthe first step of induction,k=1. Nowsupposeverifiedthekth stepin(3.7). Wedefine u(Y+r kX,t +r 2kt) v (X,t)= k r kx (n,p,q) and 1 1 F(M,Z,X,t):=r k[2−x (n,p,q)]F M, Z,Y+r kX,t +r 2kt . k r k[2−x (n,p,q)] r k[1−x (n,p,q)] (cid:18) (cid:19) Ascommentedbefore,seeRemark2.4,F is(l ,L ,u )-parabolicoperator,moreoverbythe k inductionhypothesis,|v |≤1and k (v ) −F(D2v ,Dv ,X,t)=r k.[2−x (n,p,q)]f(Y+r kX,t +r 2kt)=: f (X,t), k t k k k k SHARPREGULARITYESTIMATESFORSECONDORDERFULLYNONLINEARPARABOLICEQUATIONS 9 intheLP-viscositysense. Oneeasilycomputes, t qp q1 kfkkLp,q(Q1) = r k(2−x (n,p,q))r −k(cid:16)np+q2(cid:17)ˆt−r 2k ˆBrk(Y)|f(Z,s)|pdZ! ds .   Duetothesharpchoiceofx (n,p,q)=2− n+2 ,wehavethat p q kfkkLp,q(Q1)=kfkLp,q(Brk(Y(cid:16))×(t−r 2(cid:17)k,t])≤kfkLp,q(Q1)≤h , aswellas 1 1 P P Q P(X,t) ≤ Q P(X,t) ≤h . ˆ Fk ˆ F (cid:18)Q1 (cid:19) (cid:18)Q1 (cid:19) Inconclusion,weareallowedtoemployedLemma3.1tov ,whichprovidestheexistence k ofauniversallyboundedrealnumberV with|V |≤C,suchthat k k (3.8) sup|v −V |≤r x (n,p,q). k k Qr Finally,ifweselect (3.9) V :=V +r kx (n,p,q)V k+1 k k and rescale (3.8) back to the unit picture, we obtain the (k+1)th step in the induction process(3.7). Inaddition,wehavethat (3.10) |V −V |≤Cr kx (n,p,q), k+1 k andhencethesequence{V } isCauchy,andsoitconverges. From(3.7)V →u(Y,t ). k k≥1 k Aswellasfrom(3.10)itfollowsthat (3.11) |u(Y,t )−V |≤ C r kx (n,p,q), k 1−r x (n,p,q) Finally,for0<r<r ,letkthesmallestintegersuchthat(X,t)∈Qr k(Y,t )\Qr k+1(Y,t ). Itfollowsfrom(3.7)and(3.11)that |u(X,t)−u(Y,t )| |u(X,t)−V |+|u(Y,t )−V | k k sup ≤ sup Qr(Y,t)dpar((X,t),(Y,t ))x (n,p,q) Qr(Y,t) dpar((X,t),(Y,t ))x (n,p,q) C r kx (n,p,q) ≤ 1+ sup (cid:18) 1−r x (n,p,q)(cid:19)Qr(Y,t)dpar((X,t),(Y,t ))x (n,p,q) C 1 ≤ 1+ . 1−r x (n,p,q) r x (n,p,q) (cid:18) (cid:19) Thelastestimateprovides kukCx(n,p,q),x(n2,p,q)(Q1/2)≤C andhencetheproofofTheoremisconcluded. (cid:3) Remark3.3. TheexponentofHölderregularityofourresultissharp.Thisiscanbeverify throughoffollowingexamplefrom[14]:Letu∈C ((−1,0];L2 (B ))∩L2 ((−1,0];W1,2(B )) loc loc 1 loc loc 1 beaweaksolutionto u −D u= f in Q t 1 Supposethat1< n+2<2thenfora :=2− 2+n wehavethatu∈Ca ,a2(Q ). Remark p q p q loc 1 thatinthiscasen = n+2. (cid:16) (cid:17) P 2 10 JOÃOVÍTORDASILVAANDEDUARDOV.TEIXEIRA Remark3.4. UnderVMOassumptionofthecoefficientsoftheoperatorF: Q P(X,t)=o(1), ˆ F Qr asr→0,Theorem3.2holdswithoutthesmallnessoscillationcondition,asitcanalways beassumeduponanappropriatescaling. Remark3.5. Undernoassumptionsonthecoefficients,ratherthanellipticity,adjustments in the proof of previous Theorem yieldsCa ,a2(Q ) where a :=min b −,2− n+2 loc 1 p q where0<b <1isthemaximalexponentfromPreposition2.2. n (cid:16) (cid:17)o 4. PARABOLIC LOG-LIPSCHITZ TYPEESTIMATES Inthissectionweaddressthequestionoffindingtheoptimalanduniversalmodulus ofcontinuityforsolutionsofuniformlyparabolicequationsoftheform(Eq)whoseright handsideliesintheborderlinespaceLp,q(Q ),when pandqlieonthecriticalsurface: 1 n 2 + =1. p q Such estimate is particularlyimportantto the generaltheoryof fully nonlinearparabolic equations.Throughasimpleanalysisoneverifiesthatsolutionsof(Eq),withsourcesunder theaboveborderlineintegrabilityconditionshouldbeasymptoticallyLipschitzcontinuous. Indeed,as n+2 →1+,solutionsareparabolicallyHöldercontinuousforeveryexponent p q 0<a <1. The key goal in this section is to obtain the sharp, quantitative modulus of continuityforu. Lemma 4.1. Let u∈C0(Q ) be a normalized LP-viscosity solution to (Eq). There exist 1 h (L ,l ,n)>0and0<r (L ,l ,n)≪ 1,suchthatif 2 1 P (4.1) max ˆ Q PF(X,t) ,kfkLp,q(Q1),u ≤h ((cid:18)Q1 (cid:19) ) underthecondition n+2 =1,then,wecanfindanaffinefunctionL(X,t):=A+hB,Xi, p q withuniversallyboundedcoefficients,|A|+|B|≤C(l ,L ,n),suchthat (4.2) sup|(u−L)(X,t)|≤r . Qr Proof. For a d >0 which will be chosen a posteriori, we apply Lemma 2.3 and find a functionh: Q →Rsatisfying 1 2 h −F(D2h)=0 in Q , t 1 2 intheLP-viscositysensesuchthat (4.3) sup|(u−h)(X,t)|≤d . Q 1/2 Wenowdefine (4.4) L(X,t)=h(0,0)+hDh(0,0),Xi,

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.