SHARED APERTURE ARRAY ANTENNAS COMPOSED OF DIFFERENTLY SIZED ELEMENTS ARRANGED IN SPARSE SUB-ARRAYS SHARED APERTURE ARRAY ANTENNAS COMPOSED OF DIFFERENTLY SIZED ELEMENTS ARRANGED IN SPARSE SUB-ARRAYS PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Technische Universiteit Delft, op gezag van de Rector Magnificus prof. dr. ir. J.T. Fokkema, voorzitter van het College voor Promoties, in het openbaar te verdedigen op maandag 23 januari 2006 om 13.00 uur door Cristian Ioan COMAN inginer, Academia Tehnica˘ Militara˘ – Bucure¸sti geboren te Tˆırna˘veni, Roemeni¨e Dit proefschrift is goedgekeurd door de promotor: Prof.dr.ir. L.P. Ligthart Samenstelling promotiecommissie: Rector Magnificus, voorzitter Prof.dr.ir. L.P. Ligthart, Technische Universiteit Delft, promotor Prof.ir. P. van Genderen Technische Universiteit Delft Prof.dr.ing. R. Sorrentino, Universita` degli Studi di Perugia, Itali¨e Prof.dr. A.G. Tijhuis, Technische Universiteit Eindhoven Prof.dr.ir. G. Vandenbosch, Katholieke Universiteit Leuven, Belgi¨e Dr.ing. I.E. Lager, Technische Universiteit Delft, Col.dr.ing. S¸. Cantaragiu, Ministry of National Defence, Roemeni¨e Prof.dr.ir. P.M. van den Berg, Technische Universiteit Delft, reservelid Shared Aperture Array Antennas Composed of Differently Sized Elements Arranged in Sparse Sub-Arrays Cristian Ioan Coman. Thesis Delft University of Technology. With references and with summary in Dutch. ISBN 90–76928–09–6 Subject headings: shared aperture antenna; sparse array antenna; cavity- backed, stacked-patch antenna; mode matching method. Printed in The Netherlands Copyright (cid:2)c 2006 byC.I. Coman All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, includ- ing photocopying, recording or by any information storage and retrieval system, without permission from thecopyright owner. The work presented in this thesis was financially supported by the Ministry of Defence in The Netherlands. To Valentina, Radu and Tudor Contents 1 Introduction 1 1.1 Wide band array antennas – a survey . . . . . . . . . . . . . 2 1.2 Research objective . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Research lines . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Novelties and main results . . . . . . . . . . . . . . . . . . . . 5 1.5 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . 7 2 Modal analysis of waveguide structures 9 2.1 Electromagnetic field expansion in hollow waveguides . . . . . 9 2.1.1 TE, TM and TEM modes . . . . . . . . . . . . . . . 13 2.1.2 Properties of modal vectors . . . . . . . . . . . . . . . 16 2.1.3 Modes of rectangular waveguides . . . . . . . . . . . . 18 2.2 Boundary Integral - Resonant Mode Expansion (BI-RME) method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.1 Modes of waveguides having arbitrary cross-sections . 22 2.2.2 Calculation of TE modes . . . . . . . . . . . . . . . . 26 2.2.3 Calculation of TM modes . . . . . . . . . . . . . . . . 29 2.2.4 Calculation of TEM modes . . . . . . . . . . . . . . . 31 2.2.5 Field representation . . . . . . . . . . . . . . . . . . . 32 2.2.6 Selection of the modes . . . . . . . . . . . . . . . . . . 34 2.2.7 Quasi-orthogonality of the eigenfunctions . . . . . . . 37 2.2.8 Computer implementation and numerical validation . 39 2.3 Mode Matching analysis of planar discontinuities . . . . . . . 49 2.3.1 Network formalism of waveguide discontinuities . . . . 49 II CONTENTS 2.3.2 Analysis of a step junction . . . . . . . . . . . . . . . 52 2.3.3 Thecouplingmatrixbetweendifferentwaveguides sec- tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3 Modal analysis of radiating apertures 61 3.1 Aperture antennas . . . . . . . . . . . . . . . . . . . . . . . . 61 3.2 Evaluating of the mutual coupling between rectangular aper- tures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.2.1 Fourier approach . . . . . . . . . . . . . . . . . . . . . 65 3.2.2 Green’s function approach . . . . . . . . . . . . . . . . 66 3.2.3 Key mathematical steps in evaluating mutual admit- tances . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.3 Computer implementation and numerical validation . . . . . 72 3.4 Fast evaluation of the mutual coupling effect . . . . . . . . . 83 3.4.1 Polynomial interpolation . . . . . . . . . . . . . . . . . 85 3.4.2 Numerical study . . . . . . . . . . . . . . . . . . . . . 88 3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4 Elementary antennas 93 4.1 Elementary radiators for array antennas . . . . . . . . . . . . 93 4.2 Dielectric filled waveguide antennas . . . . . . . . . . . . . . . 95 4.2.1 Analysis procedure . . . . . . . . . . . . . . . . . . . . 95 4.2.2 Design methodology . . . . . . . . . . . . . . . . . . . 97 4.2.3 Numerical and experimental results . . . . . . . . . . 99 4.2.4 Conclusions and discussion . . . . . . . . . . . . . . . 104 4.3 Cavity-backed patch antennas . . . . . . . . . . . . . . . . . . 105 4.3.1 Analysis procedure . . . . . . . . . . . . . . . . . . . . 105 4.3.2 Design methodology . . . . . . . . . . . . . . . . . . . 107 4.4 Technological aspects and experimental results . . . . . . . . 114 4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 5 Sparse array antennas 127 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 CONTENTS III 5.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . 129 5.3 Specific aspects . . . . . . . . . . . . . . . . . . . . . . . . . . 131 5.4 Design techniques . . . . . . . . . . . . . . . . . . . . . . . . . 134 5.4.1 Spatial tapering . . . . . . . . . . . . . . . . . . . . . 135 5.4.2 Mathematical programming . . . . . . . . . . . . . . . 135 5.4.3 Stochastic algorithms . . . . . . . . . . . . . . . . . . 137 5.4.4 Combinatorial approaches . . . . . . . . . . . . . . . . 137 5.4.5 Fractal theory. . . . . . . . . . . . . . . . . . . . . . . 140 5.4.6 Signal processing . . . . . . . . . . . . . . . . . . . . . 140 5.5 Numerical and experimental results . . . . . . . . . . . . . . . 141 5.5.1 Linear sparse arrays . . . . . . . . . . . . . . . . . . . 142 5.5.2 Sparse SAR . . . . . . . . . . . . . . . . . . . . . . . . 146 5.5.3 Planar sparse arrays . . . . . . . . . . . . . . . . . . . 152 5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 6 Shared aperture array antennas 165 6.1 Interleaving sparse configurations . . . . . . . . . . . . . . . . 165 6.1.1 Random placement . . . . . . . . . . . . . . . . . . . . 167 6.1.2 Complementary solution . . . . . . . . . . . . . . . . . 168 6.1.3 Multi grid approach . . . . . . . . . . . . . . . . . . . 169 6.2 Design of shared aperture antennas . . . . . . . . . . . . . . . 170 6.2.1 Rationale and design philosophy . . . . . . . . . . . . 170 6.2.2 Design strategy . . . . . . . . . . . . . . . . . . . . . . 171 6.2.3 Implementation of the design strategy . . . . . . . . . 173 6.3 Conclusions and discussions . . . . . . . . . . . . . . . . . . . 184 7 General conclusions and discussion 187 A Quasi-static 2-D Green’s function for rectangular domains 195 A.1 Eigenfunction expansions . . . . . . . . . . . . . . . . . . . . 196 A.2 Rapidly converging series . . . . . . . . . . . . . . . . . . . . 197 A.3 Order of the singularity in the scalar Green’s function . . . . 198 IV CONTENTS B Base functions and matrix calculation in BI-RME 201 B.1 Base functions . . . . . . . . . . . . . . . . . . . . . . . . . . 201 B.2 Matrix calculation . . . . . . . . . . . . . . . . . . . . . . . . 203 C Coupling integrals at steps on rectangular waveguides 213 D Near field analysis of the waveguide-end antennas 215 E Coupling admittances between rectangular apertures 221 F Evaluation of the field radiated by an array of apertures 225 Summary 245 Samenvatting 249 Acknowledgements 253 About the author 257
Description: