Tracts in Mathematics 28 MA Tracts in Mathematics 28 n i ct ho ei n l e P iH e re rn e r Antoine Henrot o Antoine Henrot t Michel Pierre Michel Pierre Shape Variation and Optimization A Geometrical Analysis Optimizing the shape of an object to make it the most efficient, resistant, S Shape Variation streamlined, lightest, noiseless, stealthy or the cheapest is clearly a very h old task. But the recent explosion of modeling and scientific computing a have given this topic new life. Many new and interesting questions have p and Optimization been asked. A mathematical topic was born – shape optimization (or e optimum design). V a This book provides a self-contained introduction to modern mathematical r approaches to shape optimization, relying only on undergraduate level ia A Geometrical Analysis prerequisite but allowing to tackle open questions in this vibrant field. The t analytical and geometrical tools and methods for the study of shapes are io developed. In particular, the text presents a systematic treatment of n shape variations and optimization associated with the Laplace operator a and the classical capacity. Emphasis is also put on differentiation with n respect to domains and a FAQ on the usual topologies of domains is d provided. The book ends with geometrical properties of optimal shapes, including the case where they do not exist. O p t i m i z a t i o n ISBN 978-3-03719-178-1 www.ems-ph.org Henrot_Pierre | Tracts in Mathematics 28 | Fonts Nuri /Helvetica Neue | Farben Pantone 116 / Pantone 287 | RB 32.8 mm EMS Tracts in Mathematics 28 EMS Tracts in Mathematics Editorial Board: Michael Farber (Queen Mary University of London, Great Britain) Carlos E. Kenig (The University of Chicago, USA) Michael Röckner (Universität Bielefeld, Germany, and Purdue University, USA) Vladimir Turaev (Indiana University, Bloomington, USA) Alexander Varchenko (The University of North Carolina at Chapel Hill, USA) This series includes advanced texts and monographs covering all fields in pure and applied mathematics. Tracts will give a reliable introduction and reference to special fields of current research. The books in the series will in most cases be authored monographs, although edited volumes may be published if appropriate. They are addressed to graduate students seeking access to research topics as well as to the experts in the field working at the frontier of research. For a complete listing see our homepage at www.ems-ph.org. 10 Vladimir Turaev, Homotopy Quantum Field Theory 11 Hans Triebel, Bases in Function Spaces, Sampling, Discrepancy, Numerical Integration 12 Erich Novak and Henryk Woz´niakowski, Tractability of Multivariate Problems. Volume II: Standard Information for Functionals 13 Laurent Bessières et al., Geometrisation of 3-Manifolds 14 Steffen Börm, Efficient Numerical Methods for Non-local Operators. 2-Matrix Compression, Algorithms and Analysis 15 Ronald Brown, Philip J. Higgins and Rafael Sivera, Nonabelian Algebraic Topology. Filtered Spaces, Crossed Complexes, Cubical Homotopy Groupoids 16 Marek Janicki and Peter Pflug, Separately Analytical Functions 17 Anders Björn and Jana Björn, Nonlinear Potential Theory on Metric Spaces 18 Erich Novak and Henryk Woz´niakowski, Tractability of Multivariate Problems. Volume III: Standard Information for Operators 19 Bogdan Bojarski, Vladimir Gutlyanskii, Olli Martio and Vladimir Ryazanov, Infinitesimal Geometry of Quasiconformal and Bi-Lipschitz Mappings in the Plane 20 Hans Triebel, Local Function Spaces, Heat and Navier–Stokes Equations 21 Kaspar Nipp and Daniel Stoffer, Invariant Manifolds in Discrete and Continuous Dynamical Systems 22 Patrick Dehornoy with François Digne, Eddy Godelle, Daan Kramer and Jean Michel, Foundations of Garside Theory 23 Augusto C. Ponce, Elliptic PDEs, Measures and Capacities. From the Poisson Equation to Nonlinear Thomas–Fermi Problems 24 Hans Triebel, Hybrid Function Spaces, Heat and Navier-Stokes Equations 25 Yves Cornulier and Pierre de la Harpe, Metric Geometry of Locally Compact Groups 26 Vincent Guedj and Ahmed Zeriahi, Degenerate Complex Monge–Ampère Equations 27 Nicolas Raymond, Bound States of the Magnetic Schrödinger Operator Antoine Henrot Michel Pierre Shape Variation and Optimization A Geometrical Analysis Authors: Antoine Henrot Michel Pierre Institut Elie Cartan, UMR CNRS 7502 Univ Rennes Université de Lorraine École Normale Supérieure de Rennes Boulevard des Aiguillettes, B.P. 70239 Institut de Recherche Mathématique de Rennes 54506 Vandœuvre-lès-Nancy Cedex Campus de Ker Lann France 35170 Bruz E-mail: [email protected] France E-mail: [email protected] 2010 Mathematical Subject Classification: 49Q10, 49Q05, 49Q12, 49K20, 49K40, 53A10, 35R35, 35J20, 58E25, 31B15, 65K10, 93B27, 74P20, 74P15, 74G65, 76M30. Key words: Shape optimization, optimum design, calculus of variations, variations of domains, Haus- dorff convergence, continuity with respect to domains, G-convergence, shape derivative, geometry of optimal shapes, Laplace-Dirichlet problem, Neumann problem, overdetermined problems, isoperimet- ric inequality, capacity, potential theory, spectral theory, homogenization. ISBN 978-3-03719-178-1 The Swiss National Library lists this publication in The Swiss Book, the Swiss national bibliography, and the detailed bibliographic data are available on the Internet at http://www.helveticat.ch. This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broad- casting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permission of the copyright owner must be obtained. © 2018 European Mathematical Society Contact address: European Mathematical Society Publishing House Seminar for Applied Mathematics ETH-Zentrum SEW A21 CH-8092 Zürich Switzerland Email: [email protected] Homepage: www.ems-ph.org Typeset using the authors’ TEX files: Alison Durham, Manchester, UK Printing and binding: Beltz Bad Langensalza GmbH, Bad Langensalza, Germany ∞ Printed on acid free paper 9 8 7 6 5 4 3 2 1 Foreword ThisbookisessentiallytheEnglishversionoftheonepublishedinFrenchbythesame authors [188], except for some additions and updates. It originated from graduate courses given in past years at the Universities of Nancy, Besançon, and Rennes in France. Thegoalofthesegraduatecourseswastoprovideanintroductiontomodernap- proachestoshapeoptimization,relyingonlyonundergraduatelevelasaprerequisite, butreachingactual,currentopenquestionsofthisveryactivedomain. Thebookiswritteninthissameinitialspirit. Somespecificdirectionsaremore particularly developed, but all necessary mathematical tools and proofs are then providedinordertoofferaself-containedpresentation. For instance, we provide all necessary knowledge on the classical capacity as- sociated with the energy space H1. We also develop the particular case of shape optimizationassociatedwiththeDirichletproblemfortheLaplaceoperator: thisisa simplebuttypicalexamplethatissignificantamongallthemainquestionsthatarise in shape optimization associated with more complex systems of partial differential equations. As apparent from this model example, it is important to understand the behaviorofthesesystemsundervariationsoftheirunderlyingdomains. Thisexplains whythetwokeywords“variation”and“optimization”appearinthetitleofthisbook. In the same spirit, we chose to devote one full and extended chapter to the mainquestionofdifferentiationwithrespecttoshapes. Thisisaratherdifficultbut unavoidabletopicthatcanrapidlybecometechnical. Weaimedatamathematically rigorouspresentationwhilebeingatthesametimeconcernedwithprovidingefficient tools for the actual computations of the shape derivatives (rigorous analysis and efficientcalculusaresomehowantagonisticinthistopic). WehavealsodescribedallthevarioustopologiesonopensubsetsofRN,whichare mostlyusedinthevariationofshapesandincontinuitypropertiesfortheassociated PDEs. Wetriedtoprovidesomekindof“FAQ”onthisquestion. The last two chapters address different questions. One is about qualitative geo- metricpropertiesofoptimalshapes: Wechosetopresentseveralexplicitexamplesin ordertodescribeasmanydifferentmethodsaspossible. Theotheronecontainsan introductiontoquitedifferentpointsofviewinshapeoptimizationwhicharerecent andstillinprogress. And we thought it was interesting to add a bibliographical footnote each time a new(noncontemporary)mathematicianwasquoted. Amongothersources,weused the excellent book [168] by B. Hauchecorne and D. Suratteau, as well as the rich websitehttp://www-history.mcs.st-and.ac.uk/Indexes/Full_Alph.html. Wewouldliketothankallthecolleagueswhohelpeduswiththeirremarksonthe Frenchversionandonpreliminaryversionsofthisone,inparticularMarcDambrine, vi Foreword Evans Harrell, Antoine Laurain, Morgan Pierre, Yannick Privat, Takéo Takahashi, MichielvandenBergandhisgroupinBristol. BruzandNancy,April,2017. AntoineHenrot MichelPierre UniversitédeLorraine UnivRennes InstitutElieCartan ÉcoleNormaleSupérieuredeRennes InstitutdeRechercheMathématiquedeRennes Contents Foreword. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 1 Introductionandexamples. . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Someacademicexamples . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Isoperimetricproblems . . . . . . . . . . . . . . . . . . . . 3 1.2.2 Minimalsurfacesandcapillarysurfaces . . . . . . . . . . . 5 1.2.3 Eigenvalueproblems . . . . . . . . . . . . . . . . . . . . . 6 1.3 Someotherexampleswithapplications. . . . . . . . . . . . . . . . 13 1.3.1 Electromagneticshapingofliquidmetal . . . . . . . . . . . 13 1.3.2 Optimizationofamagnet. . . . . . . . . . . . . . . . . . . 15 1.3.3 Imagesegmentation . . . . . . . . . . . . . . . . . . . . . 16 1.3.4 Identificationofcracksordefects . . . . . . . . . . . . . . 17 1.3.5 Reinforcementorinsulationproblems . . . . . . . . . . . . 18 1.3.6 Compositematerialsandstructuraloptimization . . . . . . 21 1.3.7 Examplesinaeronauticsorfluidmechanics . . . . . . . . . 22 2 TopologiesondomainsofRN . . . . . . . . . . . . . . . . . . . . . . . . 25 2.1 Whydoweneedatopology? . . . . . . . . . . . . . . . . . . . . . 25 2.2 Differenttopologiesondomains . . . . . . . . . . . . . . . . . . . 26 2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.2.2 Convergenceofcharacteristicfunctions . . . . . . . . . . . 27 2.2.3 Hausdorffconvergenceofopensets . . . . . . . . . . . . . 30 2.2.4 Compactconvergence . . . . . . . . . . . . . . . . . . . . 38 2.2.5 Linksbetweenthedifferentnotionsofconvergence . . . . . 39 2.2.6 Compactnessresults . . . . . . . . . . . . . . . . . . . . . 42 2.3 Sequenceofsetswithboundedperimeter . . . . . . . . . . . . . . 47 2.3.1 Definitionoftheperimeter,properties . . . . . . . . . . . . 47 2.3.2 Continuityandcompactness . . . . . . . . . . . . . . . . . 50 2.4 Sequencesofuniformlyregularopensets . . . . . . . . . . . . . . 54 2.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3 Continuitywithrespecttodomains. . . . . . . . . . . . . . . . . . . . . 67 3.1 TheDirichletproblem. . . . . . . . . . . . . . . . . . . . . . . . . 68 3.1.1 ThespaceH1 anditsdualspaceH−1 . . . . . . . . . . . . 68 0 3.1.2 Lip◦H1 ⊂ H1 . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.1.3 ThePoincaréinequality . . . . . . . . . . . . . . . . . . . 76 3.1.4 TheDirichletproblemfortheLaplacian . . . . . . . . . . . 79 viii Contents 3.2 ContinuityfortheDirichletproblem . . . . . . . . . . . . . . . . . 81 3.2.1 Problemstatement . . . . . . . . . . . . . . . . . . . . . . 81 3.2.2 Someeasyfacts . . . . . . . . . . . . . . . . . . . . . . . . 81 3.2.3 Thesituationdoesnotdependon f . . . . . . . . . . . . . 84 3.2.4 Nondecreasingsequences . . . . . . . . . . . . . . . . . . 85 3.2.5 Thedimension-1case . . . . . . . . . . . . . . . . . . . . 86 3.2.6 Counterexamplestocontinuityindimension2. . . . . . . . 87 3.2.7 SequenceofuniformlyLipschitzopensets . . . . . . . . . 89 3.3 CapacityassociatedwiththeH1-norm . . . . . . . . . . . . . . . . 92 3.3.1 Definitionsandfirstproperties . . . . . . . . . . . . . . . . 92 3.3.2 Relativecapacityandcapacitarypotential . . . . . . . . . . 96 3.3.3 Howtocomputecapacitiesofsets: Someexamples . . . . . 101 3.3.4 Quasi-continuityandquasi-opensets . . . . . . . . . . . . 105 3.3.5 AnewdefinitionofH1(Ω) . . . . . . . . . . . . . . . . . . 111 0 3.4 BacktotheDirichletproblem. . . . . . . . . . . . . . . . . . . . . 113 3.4.1 Localperturbation . . . . . . . . . . . . . . . . . . . . . . 114 3.4.2 Compactconvergenceandstableopensets . . . . . . . . . 115 3.4.3 Capacitary-typeconstraints . . . . . . . . . . . . . . . . . . 117 3.5 Theγ-convergence . . . . . . . . . . . . . . . . . . . . . . . . . . 120 3.5.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 3.5.2 LinkwithMoscoconvergence . . . . . . . . . . . . . . . . 121 3.5.3 MoreoperatorsassociatedwiththeH1γ-convergence . . . . 123 0 3.5.4 Remarksaboutnonlinearoperators . . . . . . . . . . . . . 125 3.6 Quantitativeestimates . . . . . . . . . . . . . . . . . . . . . . . . . 125 3.7 ContinuityfortheNeumannproblem . . . . . . . . . . . . . . . . . 128 3.7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 128 3.7.2 Amainconvergenceresult . . . . . . . . . . . . . . . . . . 129 3.7.3 Moreconvergenceresults. . . . . . . . . . . . . . . . . . . 131 3.7.4 γ-convergenceandtheNeumannproblem . . . . . . . . . . 133 3.8 Thebi-Laplacianoperator. . . . . . . . . . . . . . . . . . . . . . . 136 3.8.1 H2-capacity . . . . . . . . . . . . . . . . . . . . . . . . . . 136 3.8.2 Continuitywithrespecttodomains . . . . . . . . . . . . . 138 3.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 4 Existenceofoptimalshapes. . . . . . . . . . . . . . . . . . . . . . . . . 145 4.1 Somegeometricproblems . . . . . . . . . . . . . . . . . . . . . . 145 4.1.1 Isoperimetricproblems . . . . . . . . . . . . . . . . . . . . 145 4.1.2 Ageneralization . . . . . . . . . . . . . . . . . . . . . . . 146 4.1.3 Capillarysurfaces . . . . . . . . . . . . . . . . . . . . . . 147 4.2 Examplesofnonexistence. . . . . . . . . . . . . . . . . . . . . . . 149 4.3 Uniformregularityofadmissibleshapes . . . . . . . . . . . . . . . 156 Contents ix 4.4 Constraintsofcapacitarytype . . . . . . . . . . . . . . . . . . . . 158 4.5 MinimizationoftheDirichletenergy . . . . . . . . . . . . . . . . . 159 4.6 Effectsofperimeterconstraints . . . . . . . . . . . . . . . . . . . . 166 4.7 Monotonicityofthefunctional . . . . . . . . . . . . . . . . . . . . 169 4.8 Unboundedclassofdomains . . . . . . . . . . . . . . . . . . . . . 178 4.8.1 Aconcentration–compactnessargument . . . . . . . . . . . 179 4.8.2 Notionofshapesubsolution . . . . . . . . . . . . . . . . . 183 4.8.3 Asurgeryargument . . . . . . . . . . . . . . . . . . . . . . 184 4.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 5 Differentiatingwithrespecttodomains. . . . . . . . . . . . . . . . . . . 189 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 5.2 Integralsonvariabledomains . . . . . . . . . . . . . . . . . . . . . 191 5.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 191 5.2.2 Notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 5.2.3 Thedifferentiationformula . . . . . . . . . . . . . . . . . . 194 5.2.4 Theproofs . . . . . . . . . . . . . . . . . . . . . . . . . . 195 5.2.5 Differentiatingonintervalsandfirstapplications . . . . . . 199 5.3 AmodelPDEproblem . . . . . . . . . . . . . . . . . . . . . . . . 201 5.3.1 Presentationoftheproblem . . . . . . . . . . . . . . . . . 201 5.3.2 Aformalcomputation . . . . . . . . . . . . . . . . . . . . 201 5.3.3 Thetwomainresults . . . . . . . . . . . . . . . . . . . . . 203 5.3.4 Theproofs . . . . . . . . . . . . . . . . . . . . . . . . . . 204 5.3.5 Differentiabilityofhigherorder . . . . . . . . . . . . . . . 208 5.3.6 Differentiabilityinregularfunctionalspaces . . . . . . . . . 209 5.4 Integralsonmovingboundaries. . . . . . . . . . . . . . . . . . . . 211 5.4.1 Boundaryintegrals: Definitionsandproperties . . . . . . . 212 5.4.2 Afirststatement . . . . . . . . . . . . . . . . . . . . . . . 214 5.4.3 Somedifferentialgeometry . . . . . . . . . . . . . . . . . . 216 5.4.4 Extensionoftheunitnormalvectortoavariabledomain . . 222 5.4.5 Ageneralformulaforboundarydifferentiation . . . . . . . 223 5.5 DifferentiatingtheNeumannproblem . . . . . . . . . . . . . . . . 226 5.6 Howtodifferentiateboundaryvalueproblems . . . . . . . . . . . . 230 5.7 Differentiationofasimpleeigenvalue . . . . . . . . . . . . . . . . 232 5.8 Useoftheadjointstate . . . . . . . . . . . . . . . . . . . . . . . . 237 5.9 Structureofshapederivatives . . . . . . . . . . . . . . . . . . . . . 241 5.9.1 Introductionandnotation . . . . . . . . . . . . . . . . . . . 241 5.9.2 Afirststructureresult. . . . . . . . . . . . . . . . . . . . . 242 5.9.3 Aselectedlistoffirstshapederivatives . . . . . . . . . . . 243 5.9.4 Thestructuretheoremanditscorollaries. . . . . . . . . . . 245 5.9.5 Theproofs . . . . . . . . . . . . . . . . . . . . . . . . . . 247