Shape Memory Alloy Cellular Solids by PetrosA.Michailidis Adissertationsubmittedinpartialfulfillment oftherequirementsforthedegreeof DoctorofPhilosophy (AerospaceEngineering) inTheUniversityofMichigan 2009 DoctoralCommittee: AssociateProfessorJohnA.Shaw,Co-Chair ProfessorNicolasTriantafyllidis,Co-Chair AssistantProfessorSamanthaDaly ProfessorDavidS.Grummon PetrosMichailidis 2009 (cid:13)c AllRightsReserved Acknowledgements Iwishtothankallwhomadethisworkpossible.... ProfessorsTriantafyllidisandShaw, my colleagues Jesse Thomas, Chris Churchill, Ben Reedlunn, the staff at the Department ofAerospaceEngineering,myfriendsandrelatives,andpeoplewhofundedtheproject. ii Table of Contents Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii ListofFigures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v ListofTables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii Chapter I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 II. SuperelasticHoneycombs . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.2 ConstitutiveModel . . . . . . . . . . . . . . . . . . . . 7 2.2.3 StabilityoftheSMAHoneycombStructure . . . . . . . 11 2.3 NumericalApproach . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.1 ConstitutiveParameters . . . . . . . . . . . . . . . . . 17 2.3.2 FiniteElementDiscretizationandNumericalAlgorithm 18 2.4 ResultsandDiscussion . . . . . . . . . . . . . . . . . . . . . . . 20 2.4.1 PrincipalBranchoftheInfinite,PerfectHoneycomb . . 20 2.4.2 StabilityoftheInfinite,PerfectHoneycomb . . . . . . . 31 2.4.3 ResponseoftheFinite,PerfectHoneycomb . . . . . . . 38 2.4.4 ResponseofFinite,ImperfectHoneycombs . . . . . . . 42 iii 2.4.5 ResponseoftheFabricatedNitinolHoneycomb . . . . . 46 III. DesignforEnergyAbsorption . . . . . . . . . . . . . . . . . . . . . . . 51 3.1 DesignObjectives . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.2 FamilyofShapes . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.3 EnergyAbsorptionResults . . . . . . . . . . . . . . . . . . . . . 59 IV. ShapeMemoryHoneycombs . . . . . . . . . . . . . . . . . . . . . . . . 69 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.2 ConstitutiveModel . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.2.1 Phasefractionspace . . . . . . . . . . . . . . . . . . . 71 4.2.2 Freeenergy . . . . . . . . . . . . . . . . . . . . . . . . 72 4.2.3 Kineticlaw . . . . . . . . . . . . . . . . . . . . . . . . 74 4.2.4 Illustrativeexamplesofmaterialmodelbehavior . . . . 76 4.3 Implementationofmodel . . . . . . . . . . . . . . . . . . . . . . 79 4.3.1 Newton-RaphsonScheme . . . . . . . . . . . . . . . . 80 4.4 ShapeMemorySimulations . . . . . . . . . . . . . . . . . . . . . 83 4.4.1 1DElementSimulations . . . . . . . . . . . . . . . . . 83 4.4.2 HoneycombStructuresSimulations . . . . . . . . . . . 89 V. SummaryandConclusions . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.1 Superelastic Behavior of SMA Honeycombs and Design Consid- erations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.2 ShapeMemoryEffectinSMAHoneycombs . . . . . . . . . . . . 98 Appendix A. Performanceofcellsusingdifferentmetrics . . . . . . . . . . . . . . . 100 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 iv List of Figures Figure 2.1 (a)Referenceconfigurationgeometryandglobalcoordinates(X ,X )of 1 2 the perfect SMA honeycomb. The honeycomb is compressed along the X direction. The magnified view is the periodic unit cell used in sta- 2 bility calculations for the infinite-perfect honeycomb. (b) Kinematics of cell-wall deformations with respect to local coordinates (x,y), showing displacements (v,w) between reference configuration (AB) and current configuration(A(cid:48)B(cid:48)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Uniaxial superelastic response of SMA material and associated constitu- tiveparameters. SubscriptsAorM refertoAusteniteorMartensitewhile superscripts (·)+ or (·)− indicate association with tensile or compressive response,respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 (a) Principal branches of the dimensionless macroscopic compressive stress (F/EA) vs. compressive strain (δ/H) response of the infinite- perfect honeycomb, based on constitutive Model 1 (right inset), showing theinfluenceofnucleationstrain(ε ). . . . . . . . . . . . . . . . . . . . 24 n 2.3 (b)Contoursofphasefraction(ξ),localstrain(ε),andlocalstress(σ/E) intheslantedcellwall(Model1,ε = 0.006). . . . . . . . . . . . . . . 24 n 2.3 (c) Maximum local tensile strain (ε ) as a function of macroscopic max compression(δ/H)forthesameconstitutivelawsof2.3(a). . . . . . . . 25 2.4 Principal branches of the dimensionless macroscopic compressive stress (F/EA) vs. compressive strain (δ/H) response of the infinite-perfect honeycomb, based on constitutive Model 1 (right inset), showing the in- fluenceoftransformationtangentmodulus(E ). . . . . . . . . . . . . . . 26 t v 2.5 Principal branches of the dimensionless macroscopic compressive stress (F/EA) vs. compressive strain (δ/H) response of the infinite-perfect honeycomb,basedonasymmetricconstitutiveModel2(rightinset),show- ingtheinfluenceoftensiletransformationtangentmodulus(E+). . . . . 27 t 2.6 Principal branches of the dimensionless macroscopic compressive stress (F/EA) vs. compressive strain (δ/H) load-unload responses of the infinite-perfecthoneycomb,basedonhystereticconstitutiveModel1(right inset), showing the influence of stress hysteresis (∆σ/E). Unloading pathsshownstartatmacroscopicstrainsδ/H = 0.3,0.5,0.7. . . . . . . . 28 2.7 Principal branches of the dimensionless macroscopic compressive stress (F/EA) vs. compressive strain (δ/H) load-unload responses of the infinite-perfect honeycomb, based on asymmetric, hysteretic constitu- tiveModel2(rightinset),showingtheinfluenceoftensiletransformation modulus(E+). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 t 2.8 Principal branches of the dimensionless macroscopic compressive stress (F/EA) vs. compressive strain (δ/H) response of the infinite-perfect honeycomb, based on constitutive Model 1 (right inset), comparing the unloadingresponseofthehystereticmodelwithan“elastic”one. . . . . 30 2.9 Stability of macroscopic compressive stress-strain, (F/EA) vs. (δ/H), responses for the perfect, infinite honeycomb under δ/H control, show- ing the influence of nucleation strain (ε ). Stable and unstable segments n are indicated by thick and thin lines, respectively, and stability changes areshownwithcirclesonthepaths. . . . . . . . . . . . . . . . . . . . . 32 2.10 Loweststrain(δ/H)asafunctionofdimensionlesswavenumbers(ω L ,ω L ) 1 1 2 2 on the onset of instability of the infinite-perfect honeycomb calculated alongtheprincipalpathwithasymmetric,“elastic”constitutivelaw(Model1). The minimum (δ/H = 0.092) occurs as (ω L ,ω L ) → (0,0), indicat- 1 1 2 2 ing a long wavelength critical mode, which is confirmed from a loss of ellipticitycalculationofthehomogenizedincrementalmoduli. . . . . . . 35 2.11 Stability of macroscopic compressive stress-strain, (F/EA) vs. (δ/H), responses for the perfect, infinite honeycomb under δ/H control, show- ing the influence of transformation modulus (E ) using Model 1 as the t base case. Note, multiple changes in stability occur along the response forE = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 t vi 2.12 Stability of macroscopic compressive stress-strain, (F/EA) vs. (δ/H), responses for the perfect, infinite honeycomb under δ/H control based on asymmetric Model 2, showing the influence of tensile transformation modulus(E+). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 t 2.13 Stability of macroscopic compressive stress-strain, (F/EA) vs. (δ/H), load-unload responses for the perfect, infinite honeycomb under δ/H control,showingtheinfluenceofstresshysteresis(∆σ/E)forsymmetric, hystereticmaterial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.14 Stability of macroscopic compressive stress-strain, (F/EA) vs. (δ/H), load-unload responses for the perfect, infinite honeycomb under δ/H control, showing the influence of tensile transformation modulus (E+) t forasymmetric,hystereticmaterial(basedonModel2). . . . . . . . . . 37 2.15 (a) Comparison of compressive loading-unloading responses of the fi- nite (upper left inset) and infinite (upper right inset) perfect honeycombs with a symmetric, hysteretic constitutive response (Model 1). (b) Rela- tive deviation (cid:107)u − u (cid:107)/(cid:107)u (cid:107) of the finite honeycomb’s deformation # # (u) from the infinite honeycomb’s principal path deformation (u ) vs. # macroscopic compressive strain (δ/H). The finite and periodic configu- rations are shown in insets at strains 0.2, 0.3 and 0.5 (loading path con- figurations A1, A2, A3 and the unloading path configurations B1 and B2.) (c) Magnified view of configuration A2 for the finite and infinite (periodic)configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.16 Comparison of compressive loading-unloading responses for the finite (upperleftinset)andinfinite(upperrightinset)perfecthoneycombswith anasymmetric,hystereticconstitutiveresponse(Model2). . . . . . . . . 41 2.17 (a) Comparison of compressive loading-unloading responses for finite perfect and imperfect honeycombs (ζ = 0,0.01,0.1) with a symmet- ric, hysteretic constitutive response (Model 1). (b) Relative deviation (cid:107)u−u (cid:107)/(cid:107)u (cid:107)ofthefiniteperfectandimperfecthoneycombdeforma- # # tionsvs. macroscopiccompressivestrain(δ/H). . . . . . . . . . . . . . 44 2.18 Comparison of compressive loading-unloading responses for finite per- fect and imperfect honeycombs (ζ = 0,0.01,0.1) with an asymmetric, hystereticconstitutiveresponse(Model2). . . . . . . . . . . . . . . . . 45 vii 2.19 (a)PhotographofNitinolhoneycombspecimen. (b)Experimentalisother- mal compressive, displacement-controlled response subjected to load- unload cycles in progressively larger 5 % strain increments (data taken fromFigure5of[26].) . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.20 (a) Macroscopic load-unload stress-strain responses: experimental mea- surementfromcycle6ofFigure2.19(b)(boldline)andFEMsimulations (actual geometry using Model 3) with two values of friction coefficient, µ = 0 (dotted line), µ = 0.3 (thin solid line). The infinite-perfect honey- comb (upper left inset) principal path (thin line) is also shown for com- parison. (b) Simulated configuration (µ = 0.3) and experimental image near30%strain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.1 Principal branch of the maximum local strain ε seen anywhere in the max structurevs. compressivestrain(δ/H). . . . . . . . . . . . . . . . . . . 55 3.2 Calculation of the absorbed energy by compressing honeycomb up to (δ/H)| . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 max 3.3 Sampleofunitcellusedinparameterstudyforenergyabsorption,show- ing the definition of some useful parameters. Here a case with θ > 0 is depicted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.4 Sampleofunitcellusedinparameterstudyforenergyabsorption,show- ing the definition of some useful parameters. Here a case with θ < 0 is depicted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.5 Design chart of dimensionless energy absorption per unit cell material volume for cells with θ = 15◦. A limiting local strain value of ε = max 0.025isassumed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.6 Design chart of dimensionless energyabsorption per unit cell material volume for cells with θ = 15◦. A limiting local strain value of ε = max 0.050isassumed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.7 Design chart of dimensionless energy absorption per unit cell material volume for cells with θ = −15◦. A limiting local strain value of ε = max 0.025isassumed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 viii 3.8 Design chart of dimensionless energy absorption per unit cell material volume for cells with θ = −15◦. A limiting local strain value of ε = max 0.050isassumed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.9 Design chart of dimensionless energy absorption per unit cell material volume for cells with θ = 30◦. A limiting local strain value of ε = max 0.025isassumed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.10 Design chart of dimensionless energy absorption per unit cell material volume for cells with θ = 30◦. A limiting local strain value of ε = max 0.050isassumed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.11 Design chart of dimensionless energy absorption per unit cell material volume for cells with θ = −30◦. A limiting local strain value of ε = max 0.025isassumed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.12 Design chart of dimensionless energy absorption per unit cell material volume for cells with θ = −30◦. A limiting local strain value of ε = max 0.050isassumed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.1 Phasefractionspacenotationusedinthetext. . . . . . . . . . . . . . . . 72 4.2 Transformationpathexhibitingtheshapememoryeffect. . . . . . . . . . 73 4.3 Shape memory effect and pseudoelastic response exhibited by tensile loadingofonefiniteelement. . . . . . . . . . . . . . . . . . . . . . . . 85 4.4 Phasefractionshistorypresentedinphasefractionspace,duringthermo- mechanicalprocessdescribedinFigure4.3. . . . . . . . . . . . . . . . . 87 4.5 PhasefractionshistoryduringprocesspresentedinFigure4.3. . . . . . . 88 4.6 Stress-strain response of 1 element in tension for two different tempera- tures. Curve with letters A,B,C corresponds to detwinning of martensite, whileD,E,F,Gisatahighertemperature(pseudoelasticbehavior). . . . . 88 4.7 Shape memory effect and pseudoelastic response for the principal solu- tionofahexagonalhoneycomb. Onequarteroftheunitcellismodeled. . 90 ix
Description: