ebook img

Shape Memory Alloy Cellular Solids PDF

128 Pages·2009·10.11 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Shape Memory Alloy Cellular Solids

Shape Memory Alloy Cellular Solids by PetrosA.Michailidis Adissertationsubmittedinpartialfulfillment oftherequirementsforthedegreeof DoctorofPhilosophy (AerospaceEngineering) inTheUniversityofMichigan 2009 DoctoralCommittee: AssociateProfessorJohnA.Shaw,Co-Chair ProfessorNicolasTriantafyllidis,Co-Chair AssistantProfessorSamanthaDaly ProfessorDavidS.Grummon PetrosMichailidis 2009 (cid:13)c AllRightsReserved Acknowledgements Iwishtothankallwhomadethisworkpossible.... ProfessorsTriantafyllidisandShaw, my colleagues Jesse Thomas, Chris Churchill, Ben Reedlunn, the staff at the Department ofAerospaceEngineering,myfriendsandrelatives,andpeoplewhofundedtheproject. ii Table of Contents Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii ListofFigures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v ListofTables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii Chapter I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 II. SuperelasticHoneycombs . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.2 ConstitutiveModel . . . . . . . . . . . . . . . . . . . . 7 2.2.3 StabilityoftheSMAHoneycombStructure . . . . . . . 11 2.3 NumericalApproach . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.1 ConstitutiveParameters . . . . . . . . . . . . . . . . . 17 2.3.2 FiniteElementDiscretizationandNumericalAlgorithm 18 2.4 ResultsandDiscussion . . . . . . . . . . . . . . . . . . . . . . . 20 2.4.1 PrincipalBranchoftheInfinite,PerfectHoneycomb . . 20 2.4.2 StabilityoftheInfinite,PerfectHoneycomb . . . . . . . 31 2.4.3 ResponseoftheFinite,PerfectHoneycomb . . . . . . . 38 2.4.4 ResponseofFinite,ImperfectHoneycombs . . . . . . . 42 iii 2.4.5 ResponseoftheFabricatedNitinolHoneycomb . . . . . 46 III. DesignforEnergyAbsorption . . . . . . . . . . . . . . . . . . . . . . . 51 3.1 DesignObjectives . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.2 FamilyofShapes . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.3 EnergyAbsorptionResults . . . . . . . . . . . . . . . . . . . . . 59 IV. ShapeMemoryHoneycombs . . . . . . . . . . . . . . . . . . . . . . . . 69 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.2 ConstitutiveModel . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.2.1 Phasefractionspace . . . . . . . . . . . . . . . . . . . 71 4.2.2 Freeenergy . . . . . . . . . . . . . . . . . . . . . . . . 72 4.2.3 Kineticlaw . . . . . . . . . . . . . . . . . . . . . . . . 74 4.2.4 Illustrativeexamplesofmaterialmodelbehavior . . . . 76 4.3 Implementationofmodel . . . . . . . . . . . . . . . . . . . . . . 79 4.3.1 Newton-RaphsonScheme . . . . . . . . . . . . . . . . 80 4.4 ShapeMemorySimulations . . . . . . . . . . . . . . . . . . . . . 83 4.4.1 1DElementSimulations . . . . . . . . . . . . . . . . . 83 4.4.2 HoneycombStructuresSimulations . . . . . . . . . . . 89 V. SummaryandConclusions . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.1 Superelastic Behavior of SMA Honeycombs and Design Consid- erations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.2 ShapeMemoryEffectinSMAHoneycombs . . . . . . . . . . . . 98 Appendix A. Performanceofcellsusingdifferentmetrics . . . . . . . . . . . . . . . 100 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 iv List of Figures Figure 2.1 (a)Referenceconfigurationgeometryandglobalcoordinates(X ,X )of 1 2 the perfect SMA honeycomb. The honeycomb is compressed along the X direction. The magnified view is the periodic unit cell used in sta- 2 bility calculations for the infinite-perfect honeycomb. (b) Kinematics of cell-wall deformations with respect to local coordinates (x,y), showing displacements (v,w) between reference configuration (AB) and current configuration(A(cid:48)B(cid:48)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Uniaxial superelastic response of SMA material and associated constitu- tiveparameters. SubscriptsAorM refertoAusteniteorMartensitewhile superscripts (·)+ or (·)− indicate association with tensile or compressive response,respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 (a) Principal branches of the dimensionless macroscopic compressive stress (F/EA) vs. compressive strain (δ/H) response of the infinite- perfect honeycomb, based on constitutive Model 1 (right inset), showing theinfluenceofnucleationstrain(ε ). . . . . . . . . . . . . . . . . . . . 24 n 2.3 (b)Contoursofphasefraction(ξ),localstrain(ε),andlocalstress(σ/E) intheslantedcellwall(Model1,ε = 0.006). . . . . . . . . . . . . . . 24 n 2.3 (c) Maximum local tensile strain (ε ) as a function of macroscopic max compression(δ/H)forthesameconstitutivelawsof2.3(a). . . . . . . . 25 2.4 Principal branches of the dimensionless macroscopic compressive stress (F/EA) vs. compressive strain (δ/H) response of the infinite-perfect honeycomb, based on constitutive Model 1 (right inset), showing the in- fluenceoftransformationtangentmodulus(E ). . . . . . . . . . . . . . . 26 t v 2.5 Principal branches of the dimensionless macroscopic compressive stress (F/EA) vs. compressive strain (δ/H) response of the infinite-perfect honeycomb,basedonasymmetricconstitutiveModel2(rightinset),show- ingtheinfluenceoftensiletransformationtangentmodulus(E+). . . . . 27 t 2.6 Principal branches of the dimensionless macroscopic compressive stress (F/EA) vs. compressive strain (δ/H) load-unload responses of the infinite-perfecthoneycomb,basedonhystereticconstitutiveModel1(right inset), showing the influence of stress hysteresis (∆σ/E). Unloading pathsshownstartatmacroscopicstrainsδ/H = 0.3,0.5,0.7. . . . . . . . 28 2.7 Principal branches of the dimensionless macroscopic compressive stress (F/EA) vs. compressive strain (δ/H) load-unload responses of the infinite-perfect honeycomb, based on asymmetric, hysteretic constitu- tiveModel2(rightinset),showingtheinfluenceoftensiletransformation modulus(E+). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 t 2.8 Principal branches of the dimensionless macroscopic compressive stress (F/EA) vs. compressive strain (δ/H) response of the infinite-perfect honeycomb, based on constitutive Model 1 (right inset), comparing the unloadingresponseofthehystereticmodelwithan“elastic”one. . . . . 30 2.9 Stability of macroscopic compressive stress-strain, (F/EA) vs. (δ/H), responses for the perfect, infinite honeycomb under δ/H control, show- ing the influence of nucleation strain (ε ). Stable and unstable segments n are indicated by thick and thin lines, respectively, and stability changes areshownwithcirclesonthepaths. . . . . . . . . . . . . . . . . . . . . 32 2.10 Loweststrain(δ/H)asafunctionofdimensionlesswavenumbers(ω L ,ω L ) 1 1 2 2 on the onset of instability of the infinite-perfect honeycomb calculated alongtheprincipalpathwithasymmetric,“elastic”constitutivelaw(Model1). The minimum (δ/H = 0.092) occurs as (ω L ,ω L ) → (0,0), indicat- 1 1 2 2 ing a long wavelength critical mode, which is confirmed from a loss of ellipticitycalculationofthehomogenizedincrementalmoduli. . . . . . . 35 2.11 Stability of macroscopic compressive stress-strain, (F/EA) vs. (δ/H), responses for the perfect, infinite honeycomb under δ/H control, show- ing the influence of transformation modulus (E ) using Model 1 as the t base case. Note, multiple changes in stability occur along the response forE = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 t vi 2.12 Stability of macroscopic compressive stress-strain, (F/EA) vs. (δ/H), responses for the perfect, infinite honeycomb under δ/H control based on asymmetric Model 2, showing the influence of tensile transformation modulus(E+). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 t 2.13 Stability of macroscopic compressive stress-strain, (F/EA) vs. (δ/H), load-unload responses for the perfect, infinite honeycomb under δ/H control,showingtheinfluenceofstresshysteresis(∆σ/E)forsymmetric, hystereticmaterial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.14 Stability of macroscopic compressive stress-strain, (F/EA) vs. (δ/H), load-unload responses for the perfect, infinite honeycomb under δ/H control, showing the influence of tensile transformation modulus (E+) t forasymmetric,hystereticmaterial(basedonModel2). . . . . . . . . . 37 2.15 (a) Comparison of compressive loading-unloading responses of the fi- nite (upper left inset) and infinite (upper right inset) perfect honeycombs with a symmetric, hysteretic constitutive response (Model 1). (b) Rela- tive deviation (cid:107)u − u (cid:107)/(cid:107)u (cid:107) of the finite honeycomb’s deformation # # (u) from the infinite honeycomb’s principal path deformation (u ) vs. # macroscopic compressive strain (δ/H). The finite and periodic configu- rations are shown in insets at strains 0.2, 0.3 and 0.5 (loading path con- figurations A1, A2, A3 and the unloading path configurations B1 and B2.) (c) Magnified view of configuration A2 for the finite and infinite (periodic)configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.16 Comparison of compressive loading-unloading responses for the finite (upperleftinset)andinfinite(upperrightinset)perfecthoneycombswith anasymmetric,hystereticconstitutiveresponse(Model2). . . . . . . . . 41 2.17 (a) Comparison of compressive loading-unloading responses for finite perfect and imperfect honeycombs (ζ = 0,0.01,0.1) with a symmet- ric, hysteretic constitutive response (Model 1). (b) Relative deviation (cid:107)u−u (cid:107)/(cid:107)u (cid:107)ofthefiniteperfectandimperfecthoneycombdeforma- # # tionsvs. macroscopiccompressivestrain(δ/H). . . . . . . . . . . . . . 44 2.18 Comparison of compressive loading-unloading responses for finite per- fect and imperfect honeycombs (ζ = 0,0.01,0.1) with an asymmetric, hystereticconstitutiveresponse(Model2). . . . . . . . . . . . . . . . . 45 vii 2.19 (a)PhotographofNitinolhoneycombspecimen. (b)Experimentalisother- mal compressive, displacement-controlled response subjected to load- unload cycles in progressively larger 5 % strain increments (data taken fromFigure5of[26].) . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.20 (a) Macroscopic load-unload stress-strain responses: experimental mea- surementfromcycle6ofFigure2.19(b)(boldline)andFEMsimulations (actual geometry using Model 3) with two values of friction coefficient, µ = 0 (dotted line), µ = 0.3 (thin solid line). The infinite-perfect honey- comb (upper left inset) principal path (thin line) is also shown for com- parison. (b) Simulated configuration (µ = 0.3) and experimental image near30%strain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.1 Principal branch of the maximum local strain ε seen anywhere in the max structurevs. compressivestrain(δ/H). . . . . . . . . . . . . . . . . . . 55 3.2 Calculation of the absorbed energy by compressing honeycomb up to (δ/H)| . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 max 3.3 Sampleofunitcellusedinparameterstudyforenergyabsorption,show- ing the definition of some useful parameters. Here a case with θ > 0 is depicted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.4 Sampleofunitcellusedinparameterstudyforenergyabsorption,show- ing the definition of some useful parameters. Here a case with θ < 0 is depicted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.5 Design chart of dimensionless energy absorption per unit cell material volume for cells with θ = 15◦. A limiting local strain value of ε = max 0.025isassumed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.6 Design chart of dimensionless energyabsorption per unit cell material volume for cells with θ = 15◦. A limiting local strain value of ε = max 0.050isassumed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.7 Design chart of dimensionless energy absorption per unit cell material volume for cells with θ = −15◦. A limiting local strain value of ε = max 0.025isassumed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 viii 3.8 Design chart of dimensionless energy absorption per unit cell material volume for cells with θ = −15◦. A limiting local strain value of ε = max 0.050isassumed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.9 Design chart of dimensionless energy absorption per unit cell material volume for cells with θ = 30◦. A limiting local strain value of ε = max 0.025isassumed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.10 Design chart of dimensionless energy absorption per unit cell material volume for cells with θ = 30◦. A limiting local strain value of ε = max 0.050isassumed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.11 Design chart of dimensionless energy absorption per unit cell material volume for cells with θ = −30◦. A limiting local strain value of ε = max 0.025isassumed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.12 Design chart of dimensionless energy absorption per unit cell material volume for cells with θ = −30◦. A limiting local strain value of ε = max 0.050isassumed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.1 Phasefractionspacenotationusedinthetext. . . . . . . . . . . . . . . . 72 4.2 Transformationpathexhibitingtheshapememoryeffect. . . . . . . . . . 73 4.3 Shape memory effect and pseudoelastic response exhibited by tensile loadingofonefiniteelement. . . . . . . . . . . . . . . . . . . . . . . . 85 4.4 Phasefractionshistorypresentedinphasefractionspace,duringthermo- mechanicalprocessdescribedinFigure4.3. . . . . . . . . . . . . . . . . 87 4.5 PhasefractionshistoryduringprocesspresentedinFigure4.3. . . . . . . 88 4.6 Stress-strain response of 1 element in tension for two different tempera- tures. Curve with letters A,B,C corresponds to detwinning of martensite, whileD,E,F,Gisatahighertemperature(pseudoelasticbehavior). . . . . 88 4.7 Shape memory effect and pseudoelastic response for the principal solu- tionofahexagonalhoneycomb. Onequarteroftheunitcellismodeled. . 90 ix

Description:
Consider an initially straight beam of length l and thickness t as shown in .. rectangular grillages, [33] for hexagonal honeycomb structures and [30] for the . In general the structure might regain its stability upon further loading.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.