Chlorine as an Auxiliary in Asymmetric Aldol Reactions and Photocatalytic Fluorination of C-H Bonds by Shira D. Bogner B.Sc., Wilfrid Laurier University 2009 Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Department of Chemistry Faculty of Science Shira Bogner 2015 SIMON FRASER UNIVERSITY Spring 2015 Approval Name: Shira D. Bogner Degree: Doctor of Philosophy (Chemistry) Title: Chlorine as an Auxiliary in Asymmetric Aldol Reactions and Photocatalytic Fluorination of C-H Bonds Examining Committee: Chair: Dr. Michael Eikerling Professor Dr. Robert A. Britton Senior Supervisor Associate Professor Dr. Robert N. Young Supervisor Professor Dr. Tim Storr Supervisor Associate Professor Dr. Peter D. Wilson Internal Examiner Associate Professor Department of Chemistry Dr. Glenn Sammis External Examiner Associate Professor Department of Chemistry University of British Columbia Date Defended/Approved: January 20th, 2015 ii Partial Copyright Licence iii Abstract Organohalides are ubiquitous in organic chemistry, with broad utility ranging from their use as building blocks in multistep syntheses, to fluoropharmaceuticals that can oftentimes provide more favourable properties to drug molecules. In this regard, two new synthetic methods have been developed that involve the use or preparation of organohalides: chlorine as an auxiliary for asymmetric aldol reactions, and the photocatalytic fluorination of C-H bonds. The aldol reaction is an important carbon-carbon bond forming reaction in organic chemistry, the product of which is a β-hydroxyketone, which is a functionality often encountered in drugs and natural products. As many pharmaceuticals, agrochemicals and bioactive compounds have increased activity as single enantiomers, asymmetric variants of aldol reactions are sought. Herein, an auxiliary strategy is demonstrated for the stereoselective addition of lithium enolates to aldehydes in which the auxiliary itself is not chiral, but a single chlorine atom introduced via organocatalytic asymmetric α- chlorination. The stereodirecting influence of the chloromethine is then exploited prior to its removal by radical reduction. This strategy is demonstrated in the synthesis of various optically enriched β-hydroxyketones (92-99% ee), as well as the natural products (+)-dihydroyashabushiketol and (+)-solistatin. Fluorination reactions are essential to modern medicinal chemistry, and can provide a means to block site-selective metabolic degradation of drugs and access radiotracers for positron emission tomography imaging. Despite current sophistication in fluorination reagents and processes, the fluorination of unactivated C-H bonds remains a significant challenge. Reported herein is a convenient and economic process for direct fluorination of C-H bonds that exploits the hydrogen abstracting ability of a decatungstate photocatalyst in combination with the mild fluorine atom transfer reagent N- fluorobenzenesulfonimide. This operationally straightforward reaction provides direct access to a wide range of fluorinated organic molecules, including structurally complex natural products, acyl fluorides, and fluorinated amino acid derivatives. iv Keywords: organic synthesis; halogens; asymmetric aldol reaction; photocatalysis; radical fluorination v Dedication To my parents Ruth and David Halperin, who have been nothing but extremely loving and supportive throughout all these years, and for showing me the values and work ethic that has made this achievement possible. To my wonderul husband Darren, who was a constant source of compassion, encouragement, and support, especially when I needed it most. He was always willing to drive me to and from Burnaby Mountain on a Sunday afternoon, which cut hours off my commute time. Having Darren and his tremendously encouraging family in my life these last few years has given me the support to complete my graduate studies. vi Acknowledgements I would first like to thank my senior supervisor Dr. Robert Britton, whose continual optimism and encouragement, even when faced with negative results, has allowed me and the lab to thrive beyond belief. I am extremely thankful for Rob’s patience with me throughout my graduate studies, especially during the construction of this thesis. I would like to thank my supervisory committee: Dr. Robert Young and Dr. Tim Storr, for their ideas and feedback over the years. I would also like to thank my internal examiner, Dr. Peter Wilson, and external examiner Dr. Glenn Sammis for their participation on my examining committee. I would like to thank Dr. Regine Gries, who never hesitated when I needed help with GC. Additionally, much of this synthetic work could not have been possible without assistance from the staff responsible for the NMR facilities; Dr. Andrew Lewis and Colin Zhang. I would also like to thank the wonderful graduate secretaries at SFU, especially Lynn Wood and Nathalie Fournier. I would like to acknowledge all the colleagues I have had the pleasure of working with in over these last five years. From the Britton lab: Dr. Baldip Kang, Dr. Jeffrey Mowat, Dr. James Senior, Jarod Moore, Hope Fan, Vijay Dhand, Jason Draper, Michael Holmes, Milan Bergeron-Brlek (crystal structure), Steve Hur, Matt Taron, Abhi Bagai, Daniel Kwon, Chris Adamson, Dr. Matt Nodwell, Lee Belding, Ajay Naidu and Robby Zhai. Last but not least, Stanley Chang, who was with me from day one, and was always available for a cup of coffee and a good conversation (or just me ranting and complaining). Additionally, former members of the Wilson group: Dr. Pat Chen and Matthew Campbell, who were always willing to help a fellow synthetic chemist. I would also like to thank Amir Asadirad (Branda lab) for his help with the blacklight bulbs, specifically, sourcing them from the Williams lab (thank you!) and assistance with obtaining emission spectra. I would also like to thank Michael Jones (Storr lab), for being an amazing friend and ally, and proving that you can make good friends in Vancouver. For financial support, I would like to acknowledge NSERC (CGS-M and PGS-D), Dupont Scholarship, Pacific Century Graduate Scholarship, and SFU for Graduate Fellowships. vii Table of Contents Approval .............................................................................................................................ii Partial Copyright Licence .................................................................................................. iii Abstract .............................................................................................................................iv Dedication .........................................................................................................................vi Acknowledgements .......................................................................................................... vii Table of Contents ............................................................................................................ viii List of Tables ..................................................................................................................... x List of Figures................................................................................................................... xii List of Schemes ............................................................................................................... xiv List of Abbreviations and Acronyms ................................................................................ xvi Chapter 1. Introduction: Halogens in Organic Synthesis ........................................ 1 1.1. Organic Synthesis .................................................................................................... 1 1.2. Chemistry and Reactivity of Carbon-Halogen Bonds ............................................... 4 1.3. Organochlorides in Synthesis................................................................................... 5 1.4. Chapter 2 Overview................................................................................................ 10 1.5. Halogenated Molecules as Pharmaceuticals ......................................................... 11 1.6. Chapter 3 Overview................................................................................................ 13 Chapter 2. Chlorine as an Auxiliary for Asymmetric Aldol Reactions, ................. 14 2.1. Introduction: Asymmetric Aldol Reactions .............................................................. 14 2.1.1. Background: Catalytic Asymmetric Acetate Aldol Reactions .................... 16 2.1.2. Background: Chiral Auxiliaries in Acetate Aldol Reactions ....................... 19 2.1.3. Background: Stereoselective Additions to α-Substituted Aldehydes ........ 20 2.1.4. Background: Preparation of Enantioenriched α-Chloroaldehydes ............ 23 2.2. Previous Work in the Britton Lab ............................................................................ 25 2.3. Radical Dehalogenating Reagents ......................................................................... 27 2.3.1. Other Dehalogenation Methodologies ...................................................... 28 2.4. Proposal: Chlorine as an Auxiliary in Asymmetric Aldol Reactions ........................ 29 2.5. Results ................................................................................................................... 29 2.5.1. Synthesis of α-Chloroaldehydes and β-Ketochlorohydrins ....................... 29 2.5.2. Elaboration to Enantioenriched Aldol Adduct ............................................ 33 2.5.3. Total Synthesis of Natural Products .......................................................... 37 Diarylheptanoids .................................................................................................... 37 Solistatin ................................................................................................................. 42 2.6. Conclusion ............................................................................................................. 51 2.7. Experimental .......................................................................................................... 52 2.7.1. General ..................................................................................................... 52 2.7.2. Preparation and Experimental Data for New Compounds ........................ 54 Chapter 3. Photocatalytic Fluorination of Unactivated C-H Bonds, ...................... 96 3.1. Introduction: Fluorination of C-H Bonds ................................................................. 96 3.1.1. Fluorine in Medicinal Chemistry ................................................................ 97 viii 3.1.2. 18F and PET ............................................................................................ 100 3.1.3. 19F NMR Spectroscopy ........................................................................... 102 3.2. Methods of C-F Bond Formation .......................................................................... 103 3.2.1. Nucleophilic F- Sources ........................................................................... 103 3.2.2. Electrophilic F+ Sources .......................................................................... 104 3.2.3. Decarboxylative Fluorinations ................................................................. 104 3.2.4. sp2-Adjacent C-H Fluorination ................................................................. 106 3.2.5. Unactivated C-(sp3)-H Fluorination ......................................................... 107 3.2.6. Alkyl Radicals from C-H Bonds: Decatungstate Photocatalysis .............. 109 3.3. Results: Fluorination of Unactivated C-H Bonds .................................................. 112 3.3.1. Aliphatic and Benzylic Fluorinations ....................................................... 112 3.3.2. Benzylic and Allylic Fluorinations ............................................................ 118 3.3.3. Aldehydic Fluorination ............................................................................. 122 Acyl Fluorides from Aldehydes: Previous Work ................................................... 122 Acyl Fluorides from Aldehydes: Results .............................................................. 122 3.3.4. Fluorination of Amino Acids .................................................................... 123 Synthesis of Fluorinated Amino Acids: Previous Work ........................................ 123 Synthesis of Fluorinated Amino Acids: Results ................................................... 126 3.3.5. Fluorination in Flow ................................................................................. 131 3.3.6. Mechanistic Insight ................................................................................. 133 3.3.7. Current State in the Field ........................................................................ 137 3.4. Conclusion ........................................................................................................... 138 3.5. Experimental ........................................................................................................ 139 3.5.1. General ................................................................................................... 139 3.5.2. Characterization of Compounds Described in This Chapter ................... 140 Chapter 4. Conclusion ............................................................................................ 163 4.1. Chlorine as an Auxiliary in Asymmetric Aldol Reactions ...................................... 163 4.2. Future Work.......................................................................................................... 164 4.3. Photocatalytic Fluorination of C-H Bonds ............................................................. 165 4.4. Future Work.......................................................................................................... 166 References ................................................................................................................ 168 Appendix A. Absorbance, Emission and NMR Spectra ......................................... 183 Appendix B. X-Ray Structure of 6-Bromocamphor ................................................ 186 ix List of Tables Table 1.1. Industrial Processes for the Carbonylation of Methanol ............................ 3 Table 1.2. Properties of Various Halogens vs. Hydrogen ........................................... 5 Table 1.3. Metal Insertion into Carbon-Chlorine Bonds and Subsequent Reactions ................................................................................................... 8 Table 2.1. Properties of Radical Reducing Agents ................................................... 27 Table 2.2. Synthesis of α-Chloroaldehydesa ............................................................ 30 Table 2.3. Synthesis of β-Ketochlorohydrins. ........................................................... 31 Table 2.4. Preliminary Dechlorination Experiments. ................................................. 34 Table 2.5. Radical Dechlorination of Various β-Ketochlorohydrins.a ........................ 35 Table 2.6. Comparison of Spectral Data for 91 and 93 With Known Compounds ............................................................................................. 37 Table 2.7. Optimization of the Synthesis of Ketone 102 ........................................... 40 Table 2.8. Aldol Additions of Chloroaldehyde 103 .................................................... 42 Table 2.9. Aldol Additions of Methylacetoacetate with α-Chloroaldehydes .............. 46 Table 2.10. Deuterium Quenching Experiments ......................................................... 47 Table 2.11. Reactions of Dioxinone 122 with Chloroaldehydes. ................................ 49 Table 2.12. Reactions of Silyl Enol Ether 126 with α-Chloroaldehydes ...................... 50 Table 3.1. Decarboxylative Fluorinations ............................................................... 105 Table 3.2. Bond Dissocation Energies of Electrophilic Fluorinating Agents ........... 106 Table 3.3. Benzylic Fluorination. ............................................................................ 107 Table 3.4. Examples of C-H Fluorination ................................................................ 108 Table 3.5. Decatungstate Photocatalyzed Reactions. ............................................ 110 Table 3.6. Fluorination of Bornyl Acetate. .............................................................. 113 Table 3.7. Fluorination of Cyclic Substrates. .......................................................... 116 Table 3.8. Aliphatic Ester Fluorination .................................................................... 118 Table 3.9. Benzylic Fluorinations ............................................................................ 120 Table 3.10. Allylic Fluorinations ................................................................................ 121 Table 3.11. Acyl Fluorides from Aldeydes. ............................................................... 122 Table 3.12. Optimization of the Fluorination of l-Leucine ......................................... 128 Table 3.13. Fluorination of Amino Acids ................................................................... 131 x
Description: