ebook img

Severe Plastic Deformation of Nickel Aluminium Bronze Alloys for Marine Applications PDF

329 Pages·2015·21.52 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Severe Plastic Deformation of Nickel Aluminium Bronze Alloys for Marine Applications

Severe Plastic Deformation of Nickel Aluminium Bronze Alloys for Marine Applications By Cameron James Barr Submitted in total fulfilment of the requirements of the degree of Doctor of Philosophy January 2015 Department of Mechanical Engineering The University of Melbourne (Produced on Archival Quality Paper) Abstract Nickel aluminium bronze (NAB) is a high strength copper based alloy normally used in seawater applications due to its strong resistance to general corrosion and biofouling. Unfortunately, the formation of a nickel rich lamellar phase leads to major issues with selective phase corrosion during service, requiring costly replacement of NAB components at regular intervals. This study aims to refine these intermetallic phases as well as the matrix grains through severe plastic deformation (SPD) with a view to eliminating the detrimental lamellar morphology and significantly enhancing the mechanical properties. SPD was conducted using equal channel angular pressing (ECAP) at various temperatures. In addition to NAB, Fe-Al-bronze (FAB without nickel) and Al-bronze (without nickel and iron) were included to investigate potential alternatives (with the nickel based lamellae completely removed) to NAB, as well as the contributions of composition and microstructure to the strength of copper based alloys. Microstructures were characterised by a combination of SEM and EBSD, with particular focuses on the evolution of the lamellar phase and the grain refinement process. A detailed geometric model was developed to enable a quantitative and systematic study of the effect of ECAP on lamellar transformation, supported by detailed image analysis of the size and morphology of the refined lamellae. Route B was found most effective for A transforming the lamellae into very fine fragments, and the effects of ECAP routes were discussed using a combination of the fibre loading and dislocation pileup models. The morphologies of the transformed lamellae were influenced by temperature, changing from fragments at 400°C to spheroids at 600°C. Grain refinement was also dependent on temperature, and occurred through dynamic recrystallisation along deformed twin boundaries. This process was slower in NAB due to interference from fine precipitates, and was effective in all the routes except C. The grain sizes following ECAP and post ECAP heat treatment have been modelled using a variety of techniques. The large amount of microstructural data has allowed a systematic study of strengthening contributions in both NAB and Al-bronze. The combination of fine grains and highly refined lamellae in NAB results in significant increases in yield strength (as high as 950 MPa) while retaining good ductility, leading to the potential of the ECAP processed NAB to compete with high strength steels currently used in similar applications. i Declaration This is to certify that (i) The thesis comprises only my original work towards the PhD except where indicated in the Preface, (ii) Due acknowledgement has been made in the text to all other material used, (iii) The thesis is less than 100,000 words in length, exclusive of tables, maps, bibliographies and appendices. _______________________________ Cameron James Barr ii Acknowledgements I would like to express my deepest and sincere thanks to all those who have made this work possible. I particularly want to thank Prof. Kenong Xia for giving me this incredible opportunity to pursue my fascination with materials, and for his ongoing support and guidance through my PhD study. I also want to express my deepest gratitude to the Defence Materials Technology Centre (DMTC), Mark Hodge the CEO and everyone involved in project 2.2, for funding and supporting this study into Nickel Aluminium Bronze. I would also like to thank Dr. Gang Sha and Dr. Patrick Trimby form the University of Sydney for the extensive and high quality EBSD characterisation which has made up an integral part of this work. A special thanks to the members of our research group, both past and present, for enriching my experience in learning, for long discussions about various research problems, and for all the tips and tricks taught along the way. I would like to extend my thanks to Dr. Daniel McDonald, Dr. Ryan Cottham, Dr. Wei Xu and Dr. Xiaolin Wu for their expertise and advice, as well as to Edward, Shouqie, Morgan, Mattieu, Ben and Ahmad for their friendship and for making the office an enjoyable place to be. Finally, I would like to thank my dearest wife Jiebao, whose love and understanding has supported me through every step of my Ph.D. It has been an amazing journey, and I look forward to all that our future holds. iii Table of Contents Abstract ................................................................................................ ii Acknowledgements .............................................................................. iv Table of Contents .................................................................................. v List of Figures ........................................................................................v List of Tables ..........................................................................................v Chapter 1: Motivation ......................................................................... 1 Chapter 2: Critical Literature Review ................................................. 3 2.1 Al-Bronze Alloys ................................................................................... 3 2.1.1 Composition, Microstructure and Strength ................................................................. 3 2.1.2 Corrosion Performance ................................................................................................. 6 2.1.3 Improving the Corrosion Resistance of NAB................................................................ 8 2.1.4 Al-bronze Alloys – Summary ........................................................................................ 9 2.2 Ultrafine grained materials through Severe Plastic Deformation ................................................................ 10 2.2.1 Synthesis of UFG an NS materials .............................................................................. 10 2.2.2 High Pressure Torsion ................................................................................................. 13 2.2.3 Equal Channel Angular Pressing ............................................................................... 15 2.2.4 ECAP + HPT ................................................................................................................ 17 2.2.5 Processing Parameters of ECAP ................................................................................. 18 2.2.5.1 Temperature and Strain Rate .......................................................................... 18 2.2.5.2 Processing Route ............................................................................................ 18 2.2.5.3 Backpressure ................................................................................................... 21 2.2.5.2 Lubricant ......................................................................................................... 21 2.2.6 Ultrafine grained materials through Severe Plastic Deformation – Summary ......... 22 2.3 Grain Refinement and Strengthening Mechanisms in SPD Processed Single Phase Alloys .................................................... 22 2.3.1 Grain Refinement through Plastic Deformation ........................................................ 22 2.3.1.1 Dislocation Nucleation ................................................................................... 23 2.3.1.2 Formation of Low Energy Cell Structures ...................................................... 24 2.3.1.3 Dislocation Saturation and the Formation of new HAGBs ............................ 25 2.3.2 Effect of Stacking Fault Energy .................................................................................. 26 2.3.2.1 Twin Formation and Growth .......................................................................... 27 2.3.2.2 Grain Refinement in Low SFE Alloys ............................................................ 30 2.3.3 Effect of ECAP routes on Grain Refinement in FCC Materials ............................... 32 2.3.2.1 Texture Evolution after Large Strains through Simple Shear ........................ 33 2.3.2.2 Texture Evolution after 1 Pass of ECAP......................................................... 33 2.3.2.3 Texture Evolution after Multiple ECAP Passes .............................................. 33 2.3.2.4 Correlation between Texture and Grain Refinement ...................................... 34 2.3.4 Effect of Temperature on Grain Refinement .............................................................. 35 2.3.4.1 Influence of Temperature on SFE and Twinning ............................................ 35 2.3.4.2 Recovery and Dynamic Recrystallisation during SPD ................................... 36 2.3.4.3 Static Recrystallisation in SPD Processed Materials ..................................... 37 2.3.4.3 Summary ......................................................................................................... 37 iv 2.3.4 Strengthening and Mechanical Properties in Single Phase Alloys............................ 37 2.3.5.1 Solid Solution Strengthening........................................................................... 37 2.3.5.2 Solute Drag and the Effect of Temperature .................................................... 39 2.3.5.3 Grain Boundary Strengthening ....................................................................... 40 2.3.5.4 Solid Solution and the Hall Petch Relationship .............................................. 41 2.4 Multiphase Materials .......................................................................... 43 2.4.1 Secondary Phases ......................................................................................................... 43 2.4.1.1 The Limits of Solid Solution ............................................................................ 43 2.4.1.2 Particle Shape out of Precipitation................................................................. 45 2.4.2 Influence of Intermetallic Particles on Grain Refinement......................................... 46 2.4.2.1 Non-Deforming Particles ................................................................................ 46 2.4.2.2 Deforming Particles ........................................................................................ 47 2.4.2.3 Effect of Particles on Recrystallisation........................................................... 48 2.4.2.4 Effect of Particles on Recrystallisation........................................................... 48 2.4.3 Morphological Changes of Second Phase Particles during Heat Treatment ............ 49 2.4.3.1 Spheroidisation of Lamellar Structures .......................................................... 49 2.4.3.2 Accelerated Spheroidisation through Plastic Deformation ............................ 52 2.4.3.3 Coarsening of Spherical Precipitates ............................................................. 53 2.4.4 Refinement of Second Phase Particles through Plastic Deformation ....................... 53 2.4.4.1 Particle Size and Interfacial Strength ............................................................. 53 2.4.4.2 Precipitate Morphology and Orientation ....................................................... 54 2.4.4.3 Distribution of Second Phase Particles .......................................................... 56 2.4.4.4 Particle Dissolution during Plastic Deformation ........................................... 57 2.4.4.5 Rotation of Particles during Deformation ...................................................... 58 2.4.4.6 Lamellar Structures undergoing Plastic Deformation ................................... 61 2.4.4.7 Summary ......................................................................................................... 64 2.4.5 Strength Contribution from Second Phase Particles .................................................. 64 2.4.5.1 Rule of Mixtures .............................................................................................. 65 2.4.5.2 Discontinuous Fibre Models ........................................................................... 65 2.4.5.3 Dislocation Pileup Models .............................................................................. 66 2.4.5.3 Orowan Strengthening .................................................................................... 66 2.4.5 Multiphase Materials – Summary ............................................................................... 68 2.5 Concluding Remarks .......................................................................... 69 Chapter 3: Research Problems and Objectives ................................ 71 Chapter 4: Experimental Materials and Procedures ....................... 73 4.1 Starting Materials ............................................................................... 73 4.1.1 Aluminium Bronze (C61000) ....................................................................................... 73 4.1.2 Iron Aluminium Bronze ............................................................................................... 75 4.1.3 Nickel Aluminium Bronze ........................................................................................... 75 4.2 Processing ............................................................................................ 76 4.2.1 Closed Die Forging ...................................................................................................... 77 4.2.2 Equal Channel Angular Pressing (ECAP) ................................................................. 77 4.2.3 Heat Treatment ............................................................................................................. 80 4.3 Characterisation Techniques .............................................................. 80 4.3.1 Sample Preparation ...................................................................................................... 80 4.3.2 Optical Microscopy (OM)............................................................................................. 82 4.3.3 Scanning Electron Microscopy (SEM) ....................................................................... 82 4.3.4 Energy Dispersive X-Ray Spectroscopy (EDS) ........................................................... 82 v 4.3.5 Electron Back-Scatter Diffraction (EBSD) ................................................................. 82 4.3.6 Electron Back-Scatter Diffraction (EBSD) ................................................................. 82 4.4 Mechanical Testing .............................................................................. 83 4.3.1 Hardness Measurements .............................................................................................. 83 4.3.2 Tensile Testing ............................................................................................................. 83 4.5 Quantitative Microstructural Analysis ................................................ 84 4.5.1 Characterisation of Precipitate Phase Evolution ........................................................ 84 4.5.1.1 Distribution of Particle Length and Aspect Ratio........................................... 84 4.5.1.2 Evolution of Precipitate Morphology ............................................................. 87 4.5.2 EBSD Measurements ................................................................................................... 88 4.5.1.1 Grain Sizes ...................................................................................................... 88 4.5.1.2 Misorientations ............................................................................................... 88 4.5.1.3 Texture Measurements .................................................................................... 89 Chapter 5: Experimental Results ...................................................... 91 5.1 Microstructures .................................................................................... 91 5.1.1 Al-Bronze ...................................................................................................................... 91 5.1.2 Fe-Al-Bronze (FAB) .................................................................................................... 93 5.1.3 Nickel Aluminium Bronze (NAB) ............................................................................... 95 5.1.3.1 As Received + Heat Treatment ....................................................................... 95 5.1.3.2 Forged NAB .................................................................................................... 97 5.1.3.3 After ECAP for One Pass at 400°C ................................................................ 98 5.1.3.4 After ECAP via Route A at 400°C ................................................................ 100 5.1.3.5 After ECAP via Route B and B at 400°C .................................................. 101 A C 5.1.3.6 After ECAP via Route C at 400°C ................................................................ 103 5.1.3.7 After ECAP at Temperatures > 400°C ......................................................... 105 5.1.3.8 After ECAP and Subsequent Heat Treatment ............................................... 111 5.2 EBSD Analysis on NAB..................................................................... 113 5.2.1 As-Received................................................................................................................. 113 5.2.2 After One Pass at 400°C ............................................................................................ 115 5.2.3 After 2 Passes via Route B at 400°C ....................................................................... 117 A 5.2.4 After 4 Passes via Routes A and B at 400°C ........................................................... 119 A 5.2.5 After 8 Passes via Route C at 400°C .......................................................................... 120 5.2.6 After 4 Passes via Route B at 450°C ....................................................................... 121 A 5.2.7 After 4 Passes via Routes B and B at 500°C ......................................................... 121 A C 5.2.8 After ECAP and Heat Treatment .............................................................................. 123 5.3 Mechanical Properties ....................................................................... 124 5.3.1 Hardness Testing ........................................................................................................ 124 5.3.2 Tensile Testing ........................................................................................................... 126 5.3.3.1 Al-Bronze ...................................................................................................... 126 5.3.3.2 Fe-Al Bronze ................................................................................................. 127 5.3.3.3 Nickel Aluminium Bronze ............................................................................. 128 5.3.3.4 Comparison between Materials .................................................................... 130 5.4 Fracture Surfaces .............................................................................. 131 Chapter 6: Quantitative Analyses ................................................... 135 6.1 Microstructural Analysis ................................................................... 135 6.1.1 Aspect Ratio Distribution of κ Fragments ............................................................. 135 III 6.1.2 Length Distribution .................................................................................................... 136 6.1.3 Evolution of the κ Morphology .............................................................................. 137 III vi 6.1.4 Combined κ-phase size distribution ........................................................................... 138 6.2 EBSD Analyses .................................................................................. 140 6.2.1 Grain Size Analysis .................................................................................................... 141 6.2.1.1 Al-Bronze ...................................................................................................... 141 6.2.1.2 Fe-Al-Bronze ................................................................................................. 142 6.2.1.3 Nickel Aluminium Bronze ............................................................................. 144 6.2.2 Misorientation Distributions ...................................................................................... 150 6.2.2.1 Al-Bronze ...................................................................................................... 150 6.2.2.2 Fe-Al-Bronze ................................................................................................. 150 6.2.2.3 Fe-Al-Bronze ................................................................................................. 151 6.2.3 Texture Analysis ......................................................................................................... 155 6.2.3.1 Al-Bronze ...................................................................................................... 155 6.2.3.2 Fe-Al-Bronze ................................................................................................. 156 6.2.3.3 Nickel Aluminium Bronze ............................................................................. 156 Chapter 7: Quantitative Analyses ................................................... 161 7.1 Geometric Model for the Transformation of the Lamellae during ECAP ........................................................... 161 7.2 Transformation of the Lamellar κ Phase ...................................... 166 III 7.3 Effects of ECAP routes on Lamellar Transformation ..................... 167 7.3.1 Route C ....................................................................................................................... 170 7.3.2 Route A ....................................................................................................................... 170 7.3.3 Route B and B ........................................................................................................ 171 A C 7.3.4 Experimental Variation from the Geometric Model ................................................. 173 7.4 Microstructural Implications ............................................................ 174 7.5 Effects of Different Lamellar Configurations .................................. 175 7.6 Summary ............................................................................................. 176 Chapter 8: Influence of Temperature on the Fragmentation, Spheroidisation and Distribution of the Lamellae ...... 177 8.1 Influence of ECAP Temperature on the NAB Microstructure ....... 177 8.2 Modelling the Fragmentation of Lamellar Structures ..................... 180 8.2.1 The Fibre Loading Model – Theory .......................................................................... 181 8.2.2 The Fibre Loading Model – Implementation ............................................................ 182 8.2.3 Dislocation Pileup Model – Theory ........................................................................... 186 8.2.4 Dislocation Pileup Model – Implementation............................................................. 188 8.2.5 Combined Fibre Loading and Pileup Model ............................................................. 190 8.2.6 Relating Simulation Parameters to Processing Conditions ..................................... 192 8.2.6 Modelling the Fragmentation of Lamellar Structures – Summary ........................ 194 8.3 Enhanced Spheroidisation and Coarsening through ECAP ........... 194 8.3.1 Enhanced Matrix Contributions to Spheroidisation ................................................ 196 8.3.2 Effect of Deformed Lamellar Morphologies on Spheroidisation ............................. 196 8.3.3 Effect of Increased Fragment Size of Spheroid Morphology ................................... 199 8.3.4 Recrystallisation and Particle Migration .................................................................. 200 8.3.5 Enhanced Spheroidisation and Coarsening through ECAP – Summary ................ 203 8.4 Influence of Temperature and Strain on Homogeneity ................... 203 8.4.1 Temperature and Coarsening .................................................................................... 204 8.4.2 Total Strain and Strain Path ...................................................................................... 204 8.4.3 Recrystallisation and Grain Growth .......................................................................... 205 vii 8.3 Summary ............................................................................................. 206 Chapter 9: Grain Refinement in Al-Bronze and NAB during ECAP at Elevated Temperatures ................................. 207 9.1 Grain Refinement Mechanisms in Al-bronze at Elevated Temperatures ..................................................................... 207 9.1.1 Key Features in the Al-bronze Microstructure following ECAP ............................. 208 9.1.2 Combined Roles of Twinning and Recrystallisation in Grain Refinement ............. 210 9.1.3 Influence of Temperature on Grain Refinement ...................................................... 213 9.1.4 Grain Refinement Mechanisms in Al-bronze at elevated temperatures – Summary ............................................................................ 214 9.2 Influence of Precipitate Phases on Grain Refinement in NAB ....... 215 9.2.1 Key Features in the NAB Microstructure following ECAP ..................................... 215 9.2.2 Effect of Precipitate Size on Grain Refinement Mechanisms .................................. 220 9.2.3 Conversion from Cell to Twin Formation ................................................................. 222 9.2.4 Grain Refinement in Lamellar Microstructures ....................................................... 223 9.2.5 Influence of Temperature on Grain Refinement in NAB ........................................ 225 9.2.6 Influence of Precipitate Phases on Grain Refinement in NAB -- Summary ........... 226 9.3 Effect of Route on Grain Refinement via Twin/Recrystallisation ... 227 9.3.1 Differences in Grain Structure between the ECAP Routes ...................................... 227 9.3.2 Effect of Changing Shear Plane on Twin Formation .............................................. 229 9.3.3 Effect of Changing Shear Planes on Detwinning and Incoherent Twin Boundaries ..................................................................................... 232 9.3.4 Effect of Redundant Strain on Recrystallisation ...................................................... 232 9.3.5 Effect of Route on Grain Refinement via Twin/Recrystallisation – Summary ....... 232 9.4 Summary ............................................................................................. 234 Chapter 10: Modelling the Grain Size in NAB following ECAP and in Subsequent Heat Treatment ........................... 235 10.1 Predicting Equilibrium Grain Size in ECAP at Elevated Temperatures ...................................................................... 235 10.1.1 Recrystallised Grain Sizes in ECAP processed NAB ................................................ 236 10.1.2 Prediction of Grain Size through the Zener-Hollomon Parameter ......................... 238 10.2 Modelling Grain Growth in a System of Evolving Precipitates ....... 241 10.2.1 Observed Microstructure and Softening Behaviour ................................................. 241 10.2.2 Proposed Evolution of the Microstructure ................................................................ 242 10.2.3 Modelling the Limiting Grain Size in a Field of Mobile Precipitates ...................... 244 10.2.3 Modelling the Time Dependency of Grain Size due to Precipitate Coarsening ...... 248 10.3 Summary ............................................................................................. 254 Chapter 11: Correlation between Mechanical Properties and Microstructure in Al-bronze and NAB ...................... 255 11.1 Theoretical Strength Contributions based on the Hall Petch Relationship ..................................................................... 257 11.2 Decomposing the Individual Strengthening Contributions in Al - bronze ...................................................................................... 258 11.3 Decomposing the Individual Strengthening Contributions in NAB ................................................................................................ 259 viii

Description:
Nickel aluminium bronze (NAB) is a high strength copper based alloy normally used in seawater as well as the matrix grains through severe plastic deformation (SPD) with a view to eliminating the detrimental 950 MPa) while retaining good ductility, leading to the potential of the ECAP processed.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.