ebook img

Several Variable calculus PDF

244 Pages·2022·0.707 MB·English
by  PSC
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Several Variable calculus

N O I T U B Several Variable CIalculus R T S I D E R Partha Sarathi Chakraborty R O F T February 9, 2021 O N N O I T U B I R T S I D E R R O F T O N N O I T Contents U B I R T S I D E R R 0 Agenda 1 O F 0.1 ThingsTwe need to decide . . . . . . . . . . . 1 O N 0.2 What do we do in this course? . . . . . . . . . 3 1 Normed Linear Spaces 5 1.1 Metric Spaces . . . . . . . . . . . . . . . . . . . 6 1.2 Examples from geometry. . . . . . . . . . . . . 7 [Lecture Notes of P.S.Chakraborty] [ii] 1.2.1 Euclidean Metric . . . . . . . . . . . . . 7 1.2.2 Spherical metric . . . . . . . . . . . . . 11 1.3 Normed Linear Spaces . . . . . . . . . . .N . . . 15 O I 1.4 Continuity . . . . . . . . . . . . . . T. . . . . . . 17 U B 1.5 Topology of a metric space . . . . . . . . . . . 18 I R T 1.6 Compact subsets of a finSite dimensional vector I space . . . . . . . . .D. . . . . . . . . . . . . . . 20 E R 1.7 Continuous Linear Maps . . . . . . . . . . . . . 22 R O 1.8 Bounded LFinear Maps . . . . . . . . . . . . . . 22 T O 1.9 EquivalenceofNormsonFiniteDimensionalVec- N tor Spaces . . . . . . . . . . . . . . . . . . . . . 25 2 Completeness, Contractions, Consequences 27 2.1 Lipschitz Maps . . . . . . . . . . . . . . . . . . 29 2.2 The Classification Question . . . . . . . . . . . 31 [Lecture Notes of P.S.Chakraborty] [iii] 2.3 Series in Banach Spaces . . . . . . . . . . . . . 33 2.4 Contraction Principle . . . . . . . . . . . . . . 36 2.4.1 Applications of Contraction TheorNem . 38 O I T U 3 Exponential, Logarithm and other Functions 43 B I R 3.1 Bounded Linear maps as aTnormed linear space 44 S I D 3.2 The General Linear Group of a Banach Space . 47 E R 3.3 The exponentiRal of a linear map. . . . . . . . . 51 O F 3.4 LogaritThm and other functions . . . . . . . . . 56 O N 4 Differentiation 59 4.1 The Gˆateaux Derivative . . . . . . . . . . . . . 60 4.2 The Fr´echet Derivative . . . . . . . . . . . . . . 61 4.3 Gˆateaux Differential as Velocity . . . . . . . . . 64 [Lecture Notes of P.S.Chakraborty] [iv] 4.4 ElementaryPropertiesofGˆateaux/Fr´echetDeriva- tive. . . . . . . . . . . . . . . . . . . . . . . . . 67 4.4.1 Application: ConservationofAngularMo- N mentum . . . . . . . . . . . . . . . . . . 73 O I T 4.5 Comparison of Gˆateaux and Fr´echet derivative 74 U B I R 5 The Jacobian (Operator) MatriTx 79 S I D 5.1 Differentiating Maps to a Direct Sum. . . . . . 80 E R 5.2 DifferentiatingRMapsdefinedonanOpenSubset O of a DirecFt Sum . . . . . . . . . . . . . . . . . . 84 T 5.3 CombOining the Two: Maps from an Open Sub- N set of a Direct Sum to a Direct Sum . . . . . . 88 6 The Integral 91 6.1 The Cauchy Integral . . . . . . . . . . . . . . . 92 6.2 Characterization of Regulated Functions . . . . 95 [Lecture Notes of P.S.Chakraborty] [v] 6.3 Characterization of the Cauchy Integral . . . . 97 6.4 The Riemann Integral . . . . . . . . . . . . . . 99 6.5 Properties of the Integral . . . . . . . . .N . . . 101 O I T 7 Taylor’s Formula U 105 B I R 7.1 Fundamental Theorem of Calculus . . . . . . . 105 T S I 7.2 Symmetries of HigherDDerivatives . . . . . . . . 108 E R 7.3 Taylor’s Formula . . . . . . . . . . . . . . . . . 109 R O F 8 ApplicationsTI: Linear Lie Groups 113 O N 8.1 Properties of the Exponential Map . . . . . . . 114 8.2 Lie Algebra of a Linear Lie Group . . . . . . . 115 8.3 Lie Algebras of Some Linear Lie Groups. . . . . . . . . . . . . . . . . . . . . . . 121 8.4 Lie Group Lie Algebra Correspondence. . . . . 122 [Lecture Notes of P.S.Chakraborty] [vi] 8.5 BCH Formula . . . . . . . . . . . . . . . . . . . 131 8.6 Integrating Lie Algebra Homomorphisms . . . . 139 8.7 Simply Connected Linear Lie Groups . . .N . . . 148 O I T 9 Isomorphism Theorems U 151 B I R 9.1 Inverse Function Theorem . . . . . . . . . . . . 152 T S I 9.1.1 Corollaries of IDnverse Function Theorem 155 E R 9.2 Implicit Function Theorem . . . . . . . . . . . 157 R O F 10 Ordinary DiTfferential Equations 161 O N 10.1 Reduction to time/parameter independent case 164 10.1.1 The time dependent case . . . . . . . . 164 10.1.2 The time and parameter dependent case 165 10.2 ExistenceandUniquenessofFlowsforLipschitz Vector Fields . . . . . . . . . . . . . . . . . . . 166 [Lecture Notes of P.S.Chakraborty] [vii] 10.3 Differentiability of Dependence on Initial Con- ditions . . . . . . . . . . . . . . . . . . . . . . . 168 10.4 The Flow Equation . . . . . . . . . . . . . . . . 172 N 10.5 Vector Fields as Derivations . . . . . . O. . . . . 174 I T U B 11 Applications: Optimization 179 I R T 11.1 Unconstrained Otimizaton . . . . . . . . . . . . 179 S I D 11.2 Critical Points andEGradient Flow . . . . . . . 181 R R 11.3 Constrained Optimization: Necessary Condition 185 O F 11.4 Constrained Optimization: Sufficient Condition 187 T O 11.5 GeNometric Description of Lagrange Rule . . . . 190 12 Change of Variables in Multiple Integrals 191 13 Multilinear Algebra 193 13.1 tensor Products . . . . . . . . . . . . . . . . . . 194 [Lecture Notes of P.S.Chakraborty] [viii] 13.2 G-Spaces . . . . . . . . . . . . . . . . . . . . . 198 13.3 Alternating/Exterior/Wedge Product of Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . 200 N O 13.4 The Wedge/Antisymmetric product Map . . . 204 I T U 13.4.1 A Second Approach to Wedge Product B I Map . . . . . . . . .R. . . . . . . . . . . 205 T S 13.5 Pairing Between AlterInating Forms and Anti- D symmetric ProductE. . . . . . . . . . . . . . . . 206 R R O Appendices F T O Appendix AN Axiom of Choice and All That! 211 Appendix B Hahn-Banach Theorems 217 Appendix C Homotopy 223 C.1 Fundamental Group . . . . . . . . . . . . . . . 228 [Lecture Notes of P.S.Chakraborty]

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.