ebook img

Several Real Variables PDF

315 Pages·2016·3.185 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Several Real Variables

Springer Undergraduate Mathematics Series Shmuel Kantorovitz Several Real Variables Springer Undergraduate Mathematics Series Advisory Board M.A.J. Chaplain, University of St. Andrews, Dundee, UK K. Erdmann, University of Oxford, Oxford, England, UK A. MacIntyre, Queen Mary University of London, London, England, UK E. Süli, University of Oxford, Oxford, England, UK M.R. Tehranchi, University of Cambridge, Cambridge, England, UK J.F. Toland, University of Cambridge, Cambridge, England, UK More information about this series at http://www.springer.com/series/3423 Shmuel Kantorovitz Several Real Variables 123 Shmuel Kantorovitz Bar-Ilan University Ramat Gan Israel ISSN 1615-2085 ISSN 2197-4144 (electronic) SpringerUndergraduate MathematicsSeries ISBN978-3-319-27955-8 ISBN978-3-319-27956-5 (eBook) DOI 10.1007/978-3-319-27956-5 LibraryofCongressControlNumber:2015959583 MathematicsSubjectClassification: 26B05,26B10,26B12,26B15,26B20 ©SpringerInternationalPublishingSwitzerland2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAGSwitzerland Preface This book is based on the lecture notes of a course I gave half a dozen times to second-year undergraduates at Bar Ilan University. The prerequisites are two semesters on one variable Differential and Integral Calculus and a semester in LinearAlgebra.SomefamiliaritywiththelanguageofelementaryAbstractAlgebra is assumed. Otherwise, the presentation is self-contained, but several of the more sophisticated proofs are omitted in order to keep the book within the appropriate constraints of width and depth. A description of the course follows. Chapter 1 deals with the concept of continuity of functions of several real variables, or equivalently, functions on the k-dimensional space Rk. This requires theintroductionofametriconRk.WediscusstheEuclideanmetricinducedbythe Euclideannorm,whichisitselfinducedbythestandardinnerproductonRk.More generally, we define inner product spaces and normed spaces, and study in par- ticular the p-norms on Rk and the metric topology induced on Rk by any one oftheseequivalentnorms.Wethendefinecompactnessandshowthatcompactsets are closed bounded sets in any metric space. The validity of the converse in Rk is then proved. Completeness is defined for metric spaces, and Rk is shown to be complete.Thesebasictoolsarethenappliedtothestudyofcontinuityoffunctions betweenmetricspaces.Theopensetscharacterizationofcontinuityyieldseasilyto the fundamental properties of continuous functions: the image of a compact set (connected set) by a continuous function is compact (connected, respectively), the inversefunctionof a bijective continuousfunctionon a compactset is continuous, and the Intermediate Value Theorem is valid for any continuous real valued function on a connected metric space. The uniform continuity of continuous functions on a compact metric space and the equivalence of various definitions of connectedness of open sets are the closing subjects of Chap. 1. The concept of differentiability for real or vector valued functions on Rk is introduced by means of linear approximation of the change of the function with respect to the change of the variable. We find sufficient conditions for differentia- bility and express the differential by means of the Jacobian matrix of the function with respect to the variable. We then prove the standard theorems on derivation v vi Preface offunctionsofseveralrealvariables:thechainrule,Taylor’stheoremandsufficient conditions for local extrema. In Chap. 3, we prove the Implicit Function Theorem for real (or vector) valued functions by applying the Banach Fixed Point Theorem for contractions on a completemetricspace.TherelevantspaceisaclosedballintheBanachspaceofall continuousreal(orvector)valuedfunctionsonacellinRk.Thistheoryisappliedto extrema with constraints (Lagrange multipliers). Some important properties of the Banach algebra of continuous functions on a compact subset of Rk (or on more generalcompactmetricspaces)arestudiedinthelastsectionsofthechapter:these include the Weierstrass Approximation Theorem and its Stone–Weierstrass gen- eralization to compact metric spaces, and the Arzela–Ascoli Theorem on the Bolzano–Weierstrass Property. Standard geometric applications in R3 are discussed at a slower pace, using intentionallysometoolsofthebasictheoryofsystemsoflinearequations,inorder to stress again the role played by Linear Algebra. The Banach Fixed Point Theorem is also applied to obtain one of the versions of the Existence and Uniqueness Theorem for systems of ordinary differential equations. Consequences of the latter for linear systems are elaborated, with many details relegated to the Exercises section. The chapter on integration begins with partial integrals (or integrals depending on parameters) of real functions of several real variables. We prove Leibniz’s formula for derivation under the integral sign, and a theorem on the change of integration order. The treatment of Riemann integration on a closed bounded domain in Rk does notseekgreatergenerality because integrationismore efficiently treatedbymeans oftheLebesgueintegralinmoreadvancedtexts.Wedefinethe(Jordan)contentof bounded closed domains, and the Riemann integral of bounded real functions defined on them. The basic properties of Riemann integrable functions on such domainsareproved.Fornormaldomainsindimension2or3,theintegralisshown to reduce to an iterated (partial) integral. The change of variables formula is stated foranydimension,buttheproofisomitted.Thestandardapplicationsindimension 2 or 3 follow. Integration on unbounded domains closes our general discussion of multiple integrals. The last two sections are concerned with line and surface integrals. We define curve length, and obtain a formula for it in the (piecewise) smooth case. We then define line integrals of vector fields and conservative vector fields. We obtain necessary and sufficient conditions for a field to be (locally) conservative. Green’s theorem is proved in two dimensions. The three-dimensional case (the Divergence Theorem)isstated buttheproofisomitted.ThegeneralizationofGreen’stheorem to closed curves in R3 (Stokes’ formula) is also stated without proof. Most sections conclude withexercises. Many of thelatterare routine, butsome are rather sophisticated and complement the theory in certain important directions. ColleagueswhotaughtparallelsectionsofthecourseatBarIlanUniversityandmy assistants in the past three or four years contributed some of the exercises and Preface vii examplesinthetext,andIwishtothankthemforit.Inordertohelpstudentsusing this text for self-study, detailed solutions of a large portion of these exercises are giveninthe“Solutions”sectionattheendofthebook.Lastbutnotleast,Iwishto thank my colleague Prof. Jeremy Schiff, who helped me with the use of TEX in producing the manuscript. Contents 1 Continuity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 The Normed Space Rk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Inner Product Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Normed Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Hölder’s Inequality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Minkowski’s Inequality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 The Norm jj(cid:2)jj on Rk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1 Equivalence of the Norms jj(cid:2)jj . . . . . . . . . . . . . . . . . . . . . . . 6 p Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Metric. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 The Metric Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Characterization of Closed Sets . . . . . . . . . . . . . . . . . . . . . . . . 16 Connected Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Union of Connected Sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Sufficient Condition for Connectedness. . . . . . . . . . . . . . . . . . . 22 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.2 Compact Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Open Cover and Compactness. . . . . . . . . . . . . . . . . . . . . . . . . 25 Properties of Compact Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Compactness of Closed Bounded Sets in Rk . . . . . . . . . . . . . . . 28 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.3 Sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Basics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Subsequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Cauchy Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 1.4 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Basics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Limits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Continuous Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Properties of Continuous Functions . . . . . . . . . . . . . . . . . . . . . 47 ix x Contents Uniform Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Domains in Rk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.1 Differentiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Directional Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 The Differential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 The Chain Rule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 The Differential of a Vector Valued Function . . . . . . . . . . . . . . 75 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 2.2 Higher Derivatives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Mixed Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Taylor’s Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Local Extrema. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 The Second Differential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3 Implicit Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.1 Fixed Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 The Banach Fixed Point Theorem . . . . . . . . . . . . . . . . . . . . . . 96 The Space C(X). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 3.2 The Implicit Function Theorem . . . . . . . . . . . . . . . . . . . . . . . . 100 Lipschitz’ Condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 The Implicit Function Theorem . . . . . . . . . . . . . . . . . . . . . . . . 103 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 3.3 System of Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 The Implicit Function Theorem for Systems . . . . . . . . . . . . . . . 108 The Local Inverse Map Theorem. . . . . . . . . . . . . . . . . . . . . . . 113 The Jacobian of a Composed Map. . . . . . . . . . . . . . . . . . . . . . 113 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 3.4 Extrema with Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 3.5 Applications in R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Tangent Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 3.6 Application to Ordinary Differential Equations. . . . . . . . . . . . . . 132 Existence and Uniqueness Theorem . . . . . . . . . . . . . . . . . . . . . 133 Linear ODE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Fundamental Matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.