SEVERAL PROOFS OF THE IRREDUCIBILITY OF THE CYCLOTOMIC POLYNOMIALS STEVENH.WEINTRAUB ABSTRACT. We present a number of classical proofs of the irreducibility of the n-th cyclotomicpolynomialF n(x). FornprimewepresentproofsduetoGauss(1801), in boththeoriginalandasimplifiedform, Kronecker(1845), andScho¨nemann/Eisenstein (1846/1850),andforgeneralnproofsduetoDedekind(1857),Landau(1929),andSchur (1929). LetF (x)denotethen-thcyclotomicpolynomial,definedby n F (x)=(cid:213) (x−z ) n wherez rangesovertheprimitiven-throotsofunity. F (x)isalsogiveninductivelyby n xn−1 F (x)= n (cid:213) F (x) d wheredrangesovertheproperdivisorsofn.Incasen=pisprime,F (x)=(xp−1)/(x− p 1)=xp−1+xp−2+···+x+1. ItisabasicresultinnumbertheorythatF (x)isirreducibleforeverypositiveinteger n n. Itisourobjectiveheretopresentanumberofclassicalproofsofthistheorem(certainly notallofthem). TheirreducibilityofF (x)for pprimewasfirstprovedbyGauss[4,article341],with p a simpler proof being given by Kronecker [5] and even simpler and more general proofs beinggivenbyScho¨nemann[8]andEisenstein[3]. Wegivetheseproofshere. (Thelast ofthesehasbecomethestandardproof.) Gauss’sproofisrathercomplicated, sowealso giveasimplerproofalongthesamelines. TheirreducibilityofF (x)ingeneralwasfirst n proved by Kronecker [6], with simpler proofs being given by Dedekind [2], Landau [7], andSchur[9]. Wegivethelastthreeoftheseproofshere. (AvariantofDedekind’sproof hasbecomethestandardproof.) WiththeexceptionofSchur’sproof,whichusessomeresultsaboutalgebraicintegers, theseproofsalljustusebasicresultsaboutpolynomials. Wehaveorganizedthispaperto collectbackgroundmaterialaboutpolynomialsinapreliminarysection,tohaveitavailable whenwepresentthemainresults. BACKGROUNDMATERIAL ThefirstresultweneedaboutpolynomialsisGauss’sLemma[4,article42],whichwe stateintheforminwhichwewilluseit. Lemma. Let f(x)beamonicpolynomialwithintegercoefficients,andsupposethat f(x)= g(x)h(x)whereg(x)andh(x)aremonicpolynomialswithrationalcoefficients. Theng(x) andh(x)haveintegercoefficients. 2000MathematicsSubjectClassification. 12-03,Secondary12E05,01A55. Keywordsandphrases. cyclotomicpolynomial,irreducibility. 1 2 STEVENH.WEINTRAUB Proof. See[11,Corollary4.1.6]. Nowlet f(x)beanarbitrarymonicpolynomial, f(x)=xm+a xm−1+...+a . Let m−1 0 f(x)haverootsr ,...,r ,sothat f(x)=(x−r )···(x−r ). Expandingthislastexpres- 1 m 1 m sion we see that f(x)=xm+(cid:229) m (−1)is(r ,...,r )xm−i where s(r ,...,r ) is the i-th i=1 i 1 m i 1 m elementarysymmetricpolynomialintherootsr ,...,r , i.e., thesumofproductofthese 1 m rootstakeniatatime. Thus s (r ,...,r )=r +...+r , 1 1 m 1 m s (r ,...,r )=r r +...+r r , 2 1 m 1 2 m−1 m ... s (r ,...,r )=r ···r . m 1 m 1 m Comparing these twoexpressions we seethat, up tosign, the coefficients of f(x)are the valuesofthesepolynomials;morepreciselya =(−1)is(r ,...,r ). m−i i 1 m Ingeneralapolynomialinmvariablesissymmetricifitisinvariantunderanypermuta- tionofthevariables. Thesecondresultweneedisthefundamentaltheoremonsymmetric polynomials,whichwasalreadywell-knownintheeighteenthcenturyandperhapsearlier. Theorem. Let f(x)beamonicpolynomialwithinteger(respectively,rational)coefficients. Letg(x)beanysymmetricpolynomialintherootsof f(x)withinteger(respectively,ratio- nal) coefficients. Then g(x) can be written as a polynomial in the elementary symmetric polynomialsoftherootsof f(x),andhenceasapolynomialinthecoefficientsof f(x),with integer(respectively,rational)coefficients. Proof. See[11,Lemma3.1.14andLemma3.1.15]. THERESULTSTHEMSELVES Theorem1. Let pbeaprime. ThenthecyclotomicpolynomialF (x)isirreducible. p Proof (Gauss). This is trivial for p=2 so we suppose p is odd. We begin with some generalconsiderations. First, let f(x) be an arbitrary monic polynomial with rational coefficients, with roots r ,...,r ,sothat f(x)=(x−r )···(x−r ),andletg(x)bethemonicpolynomialwhose 1 m 1 m rootsarethek-thpowersoftherootsof f(x),forsomepositiveintegerk,sothatg(x)=(x− rk)···(x−rk). Then the coefficients of g(x) are symmetric polynomials in {rk,...,rk}, 1 m 1 m and hence are symmetric polynomials in {r ,...,r }. Then by the fundamental theorem 1 m onsymmetricpolynomialstheycanbeexpressedaspolynomialswithrationalcoefficients inthecoefficientsof f(x). Henceg(x)hasrationalcoefficientsaswell. Second, let j (x ,x ,...) be any polynomial with integer coefficients and let z be any 1 2 primitive p-th root of unity. Substituting xi =z ki for each i, we obtain a value for this polynomialthatwemaywriteas j (z k1,z k2,...)=A +A z +...+A z p−1 0 1 p−1 forsomeintegersA ,...,A ,andthenforanyt 0 p−1 j (z tk1,z tk2,...)=A +A z t+...+A z (p−1)t. 0 1 p−1 Then j (1,1,...)=j (z pk1,z pk2,...)=A +A +...+A 0 1 p−1 SEVERALPROOFSOFTHEIRREDUCIBILITYOFTHECYCLOTOMICPOLYNOMIALS 3 and j (z k1,z k2,...)+j (z 2k1,z 2k2,...)+...+j (z pk1,z pk2,...)=pA , 0 andinparticularthissumisdivisibleby p. NowsupposethatF (x)= f(x)g(x)fornonconstantmonicpolynomials f(x)andg(x), p with f(x) a polynomial of degree d. Then f(x) and g(x) each have integer coefficients. (This is Gauss’s Lemma. Note that F (x) itself has integer coefficients.) Write f(x)= p xd+a xd−1+...+a x+a . Let W be the set of primitive p-th roots of unity. Let F d−1 1 0 be the set of roots of f(x) and let G be the set of roots of g(x). Then F∪G=W and F∩G={}. Let F′ be the set of reciprocals of the elements of F and let G′ be the set of reciprocals of the elements of G. Then similarly F′∪G′ =W and F′∩G′ ={}. Let f′(x) be the monic polynomial who roots are the elements of F′. Observe that f′(x)= xd+(a /a )xd−1+...+(a /a )x+(1/a ). Wehavefourcases: 1 0 d−1 0 0 Case 1: F′ =F. Then f′(x)= f(x). In this case the roots of f(x) occur in conjugate pairs, so f(x) is a product of d/2 factors each of the form (x−z )(x−z −1)=x2−(z + z −1)x+1,andeachofthesefactorsispositiveforeveryrealnumberx. LetF betheset k ofk-thpowersoftheelementsofF,and f (x)themonicpolynomialwhoserootsarethe k elementsofF,foreachk=1,...,p−1. Thenthesamepropertyholdsforeach f (x). Let k k q = f (1) for k=1,...,p−1. Thus q ,...,q are all positive rational numbers. But k k 1 p−1 infacteachpolynomial f (x)hasrationalcoefficients,bythefirstobservationabove,and k henceintegercoefficients(byGauss’sLemma),soq ,...,q areallpositiveintegers. 1 p−1 If j (x ,...,x )=(1−x )···(1−x ), then q =j (z k,...,z k), for k =1,...,p−1, 1 d 1 d k 1 d whereF={z ,...,z },andj (z p,...,z p)=j (1,...,1)=0,sofromthesecondobserva- 1 d 1 d tionaboveweseethatq +...+q isdivisiblebyp.Butalso f (x)···f (x)=F (x)d, 1 p−1 1 p−1 p aseveryprimitive p-throotofunityisarootoftheleft-handsideofmultiplicityd. Hence, lettingx=1,weobtainq ···q =pd. 1 p−1 Since pisaprimeandd< p−1,wemusthavegoftheintegersq ,...,q equalto 1 p−1 1 for some g>0, and then the rest of them are powers of p. But then q +...+q ≡ 1 p−1 g(modp),andsothissumiscertainlynotdivisibleby p,acontradiction. Case II: F 6=F′ but T =F∩F′ 6={}. Lett(x) be the monic polynomial whose roots aretheelementsofT. Thent(x)isthegreatestcommondivisor(gcd)of f(x)and f′(x). ThenbytheargumentofCaseIt(x)cannothaveallofitscoefficientsrational. But f(x) and f′(x) are polynomials with rational coefficients, and hence their gcd is a polynomial withrationalcoefficients,acontradiction. CaseIII:G∩G′6={}. ApplyingtheargumentsofcasesIorIItog(x)yieldsthesame contradiction. CaseIV:G=F′andF =G′. Then F (x)= f(x)f′(x) p =(xd+a xd−1+...+a x+a )(xd+(a /a )xd−1+...+(a /a )x+(1/a )), d−1 1 0 1 0 d−1 0 0 andsettingx=1weobtain a p=(1+a +...+a )2. 0 d−1 0 But(byGauss’sLemma) f′(x)hasintegercoefficients,soa =±1andweobtainthat±p 0 isaperfectsquare,acontradiction. Proof(inthespiritofGauss). Wehavetheidentity d d (cid:213) (x−r)=(cid:229) (−1)is(r ,...,r )xd−i, i i 1 d i=1 i=0 4 STEVENH.WEINTRAUB wherethes aretheelementarysymmetricfunctions. i Letj (r ,...,r )=(cid:213) d (1−r). Thenweseethat 1 d i=1 i d j (r ,...,r )=(cid:229) (−1)is(r ,...,r ). 1 d i 1 d i=0 Thetheoremistrivialfor p=2sowemaysuppose pisanoddprime. SupposethatF (x)isnotirreducibleandlet f (x)beanirreduciblefactorofF (x)of p 1 p degree d. Then f (x)=(x−z )···(x−z ) for some set of primitive p-th roots of unity 1 1 d {z ,...,z }.Fork=1,...,p−1,let f (x)=(x−z k)···(x−z k).Thecoefficientsof f (x) 1 d k 1 d k aresymmetricpolynomialsin{z k,...,z k},hencesymmetricpolynomialsin{z ,...,z }, 1 d 1 d hencepolynomialsinthecoefficientsof f (x),andso f (x)hasrationalcoefficients. Since 1 k each f (x)dividesF (x),byGauss’sLemmainfacteach f (x)isapolynomialwithinteger k p k coefficients. (Itiseasytoseethateach f (x)isirreducible,thatd mustdivide p−1,andthatthere k areexactly(p−1)/d distinctpolynomials f (x),butwedonotneedthesefacts.) k Since f (x)hasleadingcoefficient1andnorealroots, f (x)>0forallrealx. Also, k k p−1 F (x)d = (cid:213) f (x) p k k=1 sinceeveryprimitive p-throotof1isarootoftheright-handsideofmultiplicityd. Then p−1 pd =F (1)d = (cid:213) f (1) p k k=1 andd< p−1,sowemusthave f (1)=1forsomeg>0valuesofk,and f (1)apower k k of pfortheremainingvaluesofk,andhence p−1 (cid:229) f (1)≡g6≡0(mod p). k k=1 But j (z k,...,z k)= f (1)fork=1,...,p−1, andj (z p,...,z p)=j (1,...,1)=0. 1 d k 1 d Thus p−1 p−1 (cid:229) f (1)= (cid:229) j (z k,...,z k) k 1 d k=1 k=1 p = (cid:229) j (z k,...,z k) 1 d k=1 p d = (cid:229) (cid:229) (−1)is(z k,...,z k) i 1 d k=1i=0 d p =(cid:229) (−1)i(cid:229) s(z k,...,z k). i 1 d i=0 k=1 But s(r ,...,r ) is a sum of terms of the form r ···r , so each term in the inner sum i 1 d j1 ji aboveisasumofterms p p (cid:229) z k ···z k = (cid:229) (z ···z )k=0or p j1 ji j1 ji k=1 k=1 SEVERALPROOFSOFTHEIRREDUCIBILITYOFTHECYCLOTOMICPOLYNOMIALS 5 accordingasz ···z isaprimitive p-throotofunityorisequalto1. Thus j1 ji p−1 (cid:229) f (1)≡ 0(mod p), k k=1 acontradiction. Proof(Kronecker). Wefirstprovethefollowinglemma: Let f(x)beanarbitrarypolyno- mialwithintegercoefficients. Letz beaprimitive p-throotof1. Then f(z )···f(z p−1) and f(1)arebothintegersand f(z )···f(z p−1)≡ f(1)p−1(modp). To prove that the product f(z )···f(z p−1) is an integer, observe that it is a symmetric polynomialin{z ,...,z p−1}so,bythefundamentaltheoremofsymmetricfunctions,isan integerpolynomialinthecoefficientsofthepolynomialhaving{z ,...,z p−1}asroots.But thispolynomialissimplyF (x)=xp−1+...+1. Toprovethatthecongruenceholds,let p g(x)= f(x)···f(xp−1)=(cid:229) A xn andconsider (cid:229) p−1g(z i). Thefirstexpressionforg(x) n n i=0 givesthevalue f(1)p−1+(p−1)f(z )···f(z p−1)forthissumwhilethesecondexpression forg(x)givesthevalue(cid:229) A p. Thus f(1)p−1+(p−1)f(z )···f(z p−1)≡ namultipleof p n 0(modp)andthelemmaimmediatelyfollows. Now suppose F (x) is not irreducible and write F (x)= f(x)g(x), a product of non- p p constant polynomials. By Gauss’s lemma, f(x) and g(x) both have integer coefficients. Then p=F (1)= f(1)g(1). One of these factors must be ±1, so suppose f(1)=±1. p Ontheonehand, f(z k)=0forsomek thatisnonzero(modp)(asthesearetherootsof F (x)),so f(z )···f(z p−1)=0,butontheotherhand f(1)p−1≡1(modp),contradicting p theabovecongruence. Proof(Scho¨nemann). Wehavethefollowingirreducibilitycriterion: Let f(x)beapolyno- mialofdegreekwithintegercoefficients.Supposethat,forsomeprimep,andsomeinteger a, f(x)=(x−a)k+pg(x)forsomepolynomialg(x)withintegercoefficientswithg(a)not divisibleby p. (Aswemightphrasethisnowadays,supposethat f(x)≡(x−a)k (modp) and f(a) is not divisible by p2.) Then f(x) is irreducible. Now, by the binomial theo- rem,xp−1≡(x−1)p(modp),soF (x)= xp−1 ≡(x−1)p−1(modp),andalsoF (x)= p x−1 p xp−1+···+1soF (1)=p,andhenceF (x)satisfiesthehypothesesofthiscriterion. p p Proof(Eisenstein). Wehavethefollowingirreducibilitycriterion: Let f(x)=c xk+···+ k c be a polynomial with integer coefficients. Suppose that, for some prime p, c is not 0 k divisible by p, c ,...,c are divisible by p, and c is not divisible by p2. Then f(x) k−1 0 0 is irreducible. Now F (x) is irreducible if and only if F (x+1) is irreducible. But, p p by the binomial theorem, F (x+1)= (x+1)p−1 =xp−1+a xp−2+···+a x+p, with p x p−2 1 a ,...,a alldivisibleby p,whichsatisfiesthehypothesesofthiscriterion. p−2 1 Remark. Scho¨nemann’sirreducibilitycriterionandhisproofoftheirreducibilityofF (x) p are little remembered now, with Eisenstein’s irreducibility criterion and his proof of the irreducibility of F (x) being very well known. But in fact these two are equivalent. A p beautifuldiscussionofthispoint(boththemathematicsandthehistory)hasbeengivenby Cox[1]. Theorem2. Letnbeanarbitrarypositiveinteger. ThenthecyclotomicpolynomialF (x) n isirreducible. 6 STEVENH.WEINTRAUB Proof (Dedekind). Let f(x) be an irreducible factor of F (x). Since f(x) divides the n polynomialxn−1,itfollowsfromGauss’sLemmathat f(x)hasintegralcoefficients. Let z beann-throotof1with f(z )=0. Itsufficestoprovethatif pisanyprimenotdividing n,then f(z p)=0(asbyrepeatedapplicationsofthisresult,weobtainthat f(z j)=0for any jrelativelyprimeton). Suppose this is not the case. Let f(x) have roots z =z ,...,z , so that f(x)=(x− 1 k z )···(x−z )=xk−c xk−1+...±c .Letg(x)=(x−z p)···(x−z p)=xk−d xk−1+ 1 k k−1 0 1 k k−1 ...±d . Thenc =s(z ,...,z )andd =s(z p,...,z p)foreachi,wheres isthei-thele- 0 i i 1 k i i 1 k i mentarysymmetricfunction.Bythemultinomialtheorem,wehavethepolynomialidentity s(xp,...,xp)≡s(x ,...,x )p(modp),i.e.,s(xp,...,xp)−s(x ,...,x )p=pt(x ,...,x ) i 1 k i 1 k i 1 k i 1 k i 1 k for some polynomial t(x ,...,x ) with integral coefficients. Thus, for each i, d −cp = i 1 k i i s(z p,...,z p)−s(z ,...,z )p= pt(z ,...,z ). Butt(x ,...,x )isasymmetricpolyno- i 1 k i 1 k i 1 k i 1 k mial,sobythefundamentaltheoremonsymmetricpolynomialst(z ,...,z )isapolyno- i 1 k mialin{s (z ,...,z )=c }withintegercoefficients. Henced ≡cp≡c (modp)foreach j 1 k j i i i i,wherethelastcongruenceisFermat’sLittleTheorem,andsog(x)isalsoapolynomial withintegercoefficientsandfurthermoreg(x)≡ f(x)(modp). Thepolynomialg(x)isalsoirreducible(afactwhichfollowsfromtheobservationthat z =(z p)q whereqisanintegerwith pq≡1(modn)),andg(x)6= f(x). Hence f(x)g(x) divides m(x)=xn−1. Let e(x) denote the (modp) reduction of the polynomial e(x). Then f(x)g(x)= f(x)2dividesm(x),whichisimpossibleasm(x)anditsformalderivative m(x)′=nxn−1arerelativelyprime. Remark. Thisproofcanbesimplifiedtoremovetheargumentaboutsymmetricfunctions. ItfollowsimmediatelyfromthemultinomialtheoremandFermat’sLittleTheoremthatfor anypolynomialk(x)withintegercoefficients,k(x)p≡k(xp)(modp)foranyprime p. Let f(x) be as above and let g(x) be an irreducible polynomial having g(z p)=0. Clearly z isarootofthepolynomialg(xp),so f(x)dividesg(xp). Reducing(modp), f(x)divides g(xp)=g(x)p, so f(x) and g(x) have a common irreducible factor h(x). But then h(x)2 dividesm(x), whichisimpossibleasabove. Thissimplificationisalreadytobefoundin vanderWaerden[10,article53]. Proof(Landau). Let f(x)beanirreduciblepolynomialwithintegercoefficientsofdegree dwith f(z )=0forsomen-throotofunityz .Bythedivisionalgorithm,forany jthereare uniquepolynomialsq (x)andr (x)with f(xj)= f(x)q (x)+r (x)andr (x)ofdegreeless j j j j j thand (perhapsr (x)=0). Sincethevalueof f(z j)onlydependson j(modn),wehave j afiniteset{r (x),...,r (x)}ofpolynomialssuchthat, foranyinteger j, f(z j)=r(z ) 0 n−1 forr(x)somepolynomialinthisset. Furthermore,ifs(x)isanypolynomialofdegreeless thand with f(z j)=s(z ),thenwemusthaves(x)=r(x)(asotherwisez wouldbearoot ofthenonzeropolynomials(x)−r(x)ofdegreelessthand,whichisimpossible). Inparticular,foranyprimep, f(z p)= f(z p)−f(z )p=r(z )forsomesuchpolynomial r(x). But f(xp)≡ f(x)p (modp), so f(xp)− f(x)p = pg(x) for some polynomial g(x). But,againbythedivisionalgorithm,thereisauniquepolynomialh(x)ofdegreelessthan dwithh(z )=g(z ). Thusr(z )=ph(z )withr(x)and ph(x)bothofdegreelessthand,so r(x)= ph(x). Inparticular,allthecoefficientsofr(x)aredivisibleby p. NowifAisthe largestabsolutevalueofthecoefficients ofallofthepolynomials{r (x)}, wemusthave j f(z p)=r(z )=0forp>A,andso f(z m)=0foranyintegermnotdivisiblebyanyprime p≤A. Nowletkbeanyintegerrelativelyprimeton,andconsiderm=k+n(cid:213) q,whereqruns overalltheprimes≤Athatdonotdividek. Let pbeanyprime≤A. If pdividesk,then, SEVERALPROOFSOFTHEIRREDUCIBILITYOFTHECYCLOTOMICPOLYNOMIALS 7 sincekandnarerelativelyprime, pdoesnotdividen(cid:213) qandhencedoesnotdividem. If pdoesnotdividek,then pdividesn(cid:213) qandhencedoesnotdividem. Thusweseethatm issuchaninteger,andm≡k(modn),so f(z k)= f(z m)=0. ThusF (x)hasz k asaroot n foreverykrelativelyprimeton,andsoF (x)isirreducible. n Remark. Thisproof,writteninLandau’susualtelegraphicstyle,takes8linesintheorigi- nal. Proof (Schur). Let g(x)=xn−1, and let D be the discriminant of g(x), i.e., the product ofthesquaresofthedifferencesofthedistinctroots. ThenD =±nn, asweseefromthe followingcomputation: D =(cid:213) (z i−z j)2 i<j =±(cid:213) (z i−z j) i6=j =±(cid:213) z i(1−z j−i) i6=j =±(cid:213) z i¡(cid:213) (1−z k)¢ i k6=0 =±(cid:213) z i(n)=±nn. i Inthiscomputation,theequality(cid:213) (1−z k)=ncomesfromthefactthattheleft-hand k6=0 sideisthevalueh(1)forh(x)thepolynomialh(x)=(cid:213) (x−z k)=(xn−1)/(x−1)= k6=0 xn−1+...+1. Now suppose that f(x) is a factor of xn−1. Let z be a root of f(x) and let p be any prime not dividing n. We claim that z p is also a root of f(x). Suppose not. Then f(x)=(x−z )···(x−z ) for some n-th roots of unity z =z ,z ,...,z , not including 1 k 1 2 k z p. Thus 06= f(z p) is a product of differences of n-th roots of unity, so is an algebraic integer dividing nn. But f(xp)≡ f(x)p(modp), so f(z p)≡ f(z )=0 (modp), i.e., p divides f(z p). Butthatimplies pdividesnn,acontradiction. (Arationalintegeradivides arationalintegerbasrationalintegersifandonlyifadividesbasalgebraicintegers.) Remark. Schur observes that Landau’s proof and his proof are both simplifications of proofsduetoMertens. REFERENCES [1] Cox,D.A.WhyEisensteinprovedtheEisensteincriterionandwhyScho¨nemanndiscovereditfirst,Normat 57(2009),49-73,reprintedinAmer.Math.Monthly118(2011),3-21. [2] Dedekind,R.Beweisfu¨rdieIrreduktibilita¨tderKreisteilungsgleichung,J.reineangew.Math.54(1857), 27-30. [3] Eisenstein,F.G.M.,U¨berdieIrreductibilita¨tundeinigeandereEigenschaftenderGleichung,vonwelcher dieTheilungderganzenLemniscateabha¨ngt,J.reineangew.Math.39(1850),160-179. [4] C.-F.Gauss,DisquisitionesArithmeticae,Leipzig1801,availableinGermantranlationinUntersuchungen u¨berho¨hereArithmetik(trans.H.Maser),AmericanMathematicalSociety/Chelsea,Providence2006. [5] Kronecker,L.,Beweisdassfu¨rjedePrimzahlpdieGleichung1+x+...+xp−1=0irreductibelist,J.reine angew.Math.29(1845),280. [6] Kronecker,L.Me´moiresurlesfacteuresirre´ductiblesdel’expressionxn−1,J.math.puresetappls.19 (1854),177-192. [7] Landau,E.U¨berdieIrreduzibilita¨tderKreisteilungsgleichung,Math.Zeit.29(1929),462. 8 STEVENH.WEINTRAUB [8] Scho¨nemann,T.VondenjenigenModuln,welchePotenzenvonPrimzahlensind,J.reineangew.Math.32 (1846),93-105. [9] Schur,I.ZurIrreduzibilita¨tderKreisteilungsgleichung,Math.Zeit.29(1929),463. [10] vanderWaerden,B.L.ModerneAlgebra,SpringerVerlag,Berlin1931. [11] Weintraub,S.H.GaloisTheory,secondedition,SpringerVerlag,NewYork2009. DEPARTMENTOFMATHEMATICS,LEHIGHUNIVERSITY,BETHLEHEM,PA18015-3174,USA E-mailaddress:[email protected]