ValeriyK.Zakharov,TimofeyV.Rodionov,AlexanderV.Mikhalev Sets,Functions,Measures De Gruyter Studies in Mathematics | Editedby CarstenCarstensen,Berlin,Germany GavrilFarkas,Berlin,Germany NicolaFusco,Napoli,Italy FritzGesztesy,Waco,Texas,USA NielsJacob,Swansea,UnitedKingdom ZenghuLi,Beijing,China Karl-HermannNeeb,Erlangen,Germany Volume 68/2 Valeriy K. Zakharov, Timofey V. Rodionov, Alexander V. Mikhalev Sets, Functions, Measures | Volume II: Fundamentals of Functions and Measure Theory MathematicsSubjectClassification2010 26-02,28-02,26A21,26A30,26A42,28A05,28A25,28C05,28C15,46E25,46J10,54A05,54C30 Author Prof.Dr.ValeriyK.Zakharov LomonosovMoscowStateUniversity FacultyofMathematicsandMechanics DepartmentofMathematicalAnalysis LeninskieGoryb.1,GSP-1 119991Moscow Russia Coauthors Prof.Dr.TimofeyV.Rodionov Prof.Dr.AlexanderV.Mikhalev LomonosovMoscowStateUniversity LomonosovMoscowStateUniversity FacultyofMathematicsandMechanics FacultyofMathematics&Mechanics DepartmentofMathematicalAnalysis DepartmentofTheoreticalInformatics LeniniskieGoryb.1,GSP-1 LeninskieGoryb.1,GSP-1 119991Moscow 119991Moscow Russia Russia ISBN978-3-11-055009-2 e-ISBN(PDF)978-3-11-055096-2 e-ISBN(EPUB)978-3-11-055022-1 Set-ISBN978-3-11-055097-9 ISSN0179-0986 LibraryofCongressCataloging-in-PublicationData ACIPcatalogrecordforthisbookhasbeenappliedforattheLibraryofCongress. BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2018WalterdeGruyterGmbH,Berlin/Boston Typesetting:CompuscriptLtd.,Shannon,Ireland Printingandbinding:CPIbooksGmbH,Leck ♾Printedonacid-freepaper PrintedinGermany www.degruyter.com | The authors dedicate their book to the centenary of Felix Hausdorff’s outstanding book“SetTheory” Contents HistoricalforewordonthecentenaryafterFelixHausdorff’sclassicSetTheory|xi Preface|xv 2 Fundamentalsofthetheoryoffunctions|1 Introduction|1 2.1 Descriptiveandprescriptivespaces|2 2.1.1 Ensemblesandtheirenvelopes|2 2.1.2 Thefourtransfinitecollectionsofextensionsofanensemble|20 2.1.3 ClassificationofBorelsetsforarbitraryandperfect ensembles|31 2.1.4 Descriptivespaceswithnegligence|42 2.1.5 Prescriptivespaces|47 2.2 Familiesofreal-valuedfunctionsonaset|49 2.2.1 Real-valuedfunctionsandpointwiseoperationsoverthem|49 2.2.2 Thepointwiseorderbetweenfunctions|52 2.2.3 Thepointwiseanduniformconvergencesofnetsandsequencesof functions|55 2.2.4 Someusefulfunctionalfamilies|59 2.2.5 Zero-setsandcozero-setsoffunctions|71 2.2.6 Theequivalenceoffunctionswithrespecttoidealensembles|74 2.2.7 Seminormsandnormsoftheuniformconvergenceonfamilies andfactor-familiesoffunctions|77 2.2.8 Pointwisecontinuouslinearfunctionalsonlattice-orderedlinear spacesoffunctions|92 2.2.9 Truncatablelattice-orderedlinearspacesoffunctions|98 2.3 Familiesofmeasurableanddistributablefunctionsonadescriptive space|100 2.3.1 Measurableanddistributablefunctions|100 2.3.2 Pointwiseoperationsovermeasurableanddistributable functions|104 2.3.3 Thepointwiseorderbetweenmeasurableanddistributable functions|108 2.3.4 Thepointwiseanduniformconvergencesofsequencesof measurableanddistributablefunctions|109 2.3.5 Separabilityofsetsbymeasurableanddistributable functions|116 viii | Contents 2.3.6 Descriptionofnormalandcompletelynormalfamiliesand envelopes.Naturalnessofthefamilyofmeasurable functions|119 2.3.7 CorrelationsbetweenBaire’sandBorel’sfunctional collections|124 2.3.8 Familiesofsemimeasurablefunctionsonaspacewithan ensemble|134 2.4 Familiesofuniformfunctionsonaprescriptivespace|140 2.4.1 Uniformfunctionsandtheirproperties|140 2.4.2 Pointwiseoperationsoveruniformfunctions|142 2.4.3 Theuniformconvergenceofsequencesofuniformfunctions|144 2.4.4 Separabilityofsetsbyuniformfunctions|146 2.4.5 Symmetrizablefunctionsonaspacewithanensemble|150 2.4.6 Descriptionsofboundedlynormalfamiliesandenvelopes. Naturalnessofthefamilyofuniformfunctions|153 2.4.7 FinecorrelationsbetweenBaire’sandBorel’sfunctional collections|158 2.5 Familiesoffunctionsonadescriptivespacewithnegligence|162 2.5.1 Almostmeasurable,almostdistributable,andalmostuniform functions|162 2.5.2 Quasimeasurable,quasidistributable,andquasiuniform functions|165 3 Fundamentalsofthemeasuretheory|179 Introduction|179 3.1 Spaceswithsemimeasuresandmeasures|180 3.1.1 Spaceswithevaluations,semimeasuresandmeasures|180 3.1.2 Familiesofevaluations,semimeasures,andmeasuresona descriptivespace|185 3.1.3 Thetotalvariationofanaturalevaluation|187 3.1.4 Someextensionsofadditiveevaluationsdefinedonsemirings andrings|193 3.1.5 Extensionofapositivemeasuretoawidecompletesaturated measure|208 3.1.6 PropertiesoftheextendedBorel–LebesguemeasureonRn|222 3.2 Decompositionsofsemimeasuresandmeasures|226 3.2.1 TheHahnandJordandecompositionsofmeasures ona𝛿-ring|226 3.2.2 TheRieszdecompositionofoverfinitesemimeasuresandmeasures onaring|231 3.2.3 Normsonlinearspacesofboundedsemimeasuresand measures|239 Contents | ix 3.2.4 AbsolutecontinuityandsingularityandtheLebesgue decomposition|240 3.3 TheLebesgueintegral|247 3.3.1 Measurablefunctionsonaspacewithapositivewide measure|247 3.3.2 TheLebesgueintegraloveraspacewithapositivemeasure|255 3.3.3 SequentialpropertiesoftheLebesgueintegral|263 3.3.4 Propertiesofdensityandcompletenessforthefamilyandthe factor-familyofintegrablefunctions|266 3.3.5 ComparisonofsomeLebesgueintegralsoverspaceswithpositive widemeasures|273 3.3.6 TheLebesgueintegraloveraspacewithanarbitrarywidemeasure. TheproblemofcharacterizationofLebesgueintegralsaslinear functionals|276 3.3.7 Widemeasuresdefinedbydensities|283 3.3.8 TheLebesgue–Radon–Nikodymtheorem|289 3.3.9 Dualtothefactor-spaceofintegrablefunctions|296 3.4 RepresentationofafunctionalbytheLebesgueintegral|300 3.4.1 Regularityandcontinuityofevaluations.Thekeytheoremfor integralrepresentations|300 3.4.2 Representationofpointwise𝜎-continuousfunctionalsbyLebesgue integrals.Thesolutionoftheproblemofcharacterizationof Lebesgueintegralsaslinearfunctionals|303 3.4.3 RepresentationofpointwisecontinuousfunctionalsbyLebesgue integrals|311 3.5 Topologicalspaceswithmeasures.TheRadonintegral|316 3.5.1 Topologicalspaceswithevaluations,semimeasures,and measures|316 3.5.2 Measurableandintegrablefunctionsontopologicalspaceswith measures|323 3.5.3 WideRadonmeasuresonHausdorffspaces.Theproblemof characterizationofRadonintegralsaslinearfunctionals|328 3.5.4 NarrowRadonmeasuresonHausdorffspaces|334 3.5.5 RadonbimeasuresonHausdorffspaces|339 3.5.6 TheRadonintegraloveraHausdorffspacewithaRadon bimeasure|352 3.6 RepresentationofafunctionalbytheRadonintegral|355 3.6.1 𝜎-Exactlinearfunctionalsonspacesofsymmetrizable functions|355 3.6.2 Extensionsof𝜎-exactfunctionalsonspacesofsymmetrizable functionsbytheYoung–Daniellmethod|362