ebook img

Sets, Functions, Measures PDF

480 Pages·2018·3.21 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Sets, Functions, Measures

ValeriyK.Zakharov,TimofeyV.Rodionov,AlexanderV.Mikhalev Sets,Functions,Measures De Gruyter Studies in Mathematics | Editedby CarstenCarstensen,Berlin,Germany GavrilFarkas,Berlin,Germany NicolaFusco,Napoli,Italy FritzGesztesy,Waco,Texas,USA NielsJacob,Swansea,UnitedKingdom ZenghuLi,Beijing,China Karl-HermannNeeb,Erlangen,Germany Volume 68/2 Valeriy K. Zakharov, Timofey V. Rodionov, Alexander V. Mikhalev Sets, Functions, Measures | Volume II: Fundamentals of Functions and Measure Theory MathematicsSubjectClassification2010 26-02,28-02,26A21,26A30,26A42,28A05,28A25,28C05,28C15,46E25,46J10,54A05,54C30 Author Prof.Dr.ValeriyK.Zakharov LomonosovMoscowStateUniversity FacultyofMathematicsandMechanics DepartmentofMathematicalAnalysis LeninskieGoryb.1,GSP-1 119991Moscow Russia Coauthors Prof.Dr.TimofeyV.Rodionov Prof.Dr.AlexanderV.Mikhalev LomonosovMoscowStateUniversity LomonosovMoscowStateUniversity FacultyofMathematicsandMechanics FacultyofMathematics&Mechanics DepartmentofMathematicalAnalysis DepartmentofTheoreticalInformatics LeniniskieGoryb.1,GSP-1 LeninskieGoryb.1,GSP-1 119991Moscow 119991Moscow Russia Russia ISBN978-3-11-055009-2 e-ISBN(PDF)978-3-11-055096-2 e-ISBN(EPUB)978-3-11-055022-1 Set-ISBN978-3-11-055097-9 ISSN0179-0986 LibraryofCongressCataloging-in-PublicationData ACIPcatalogrecordforthisbookhasbeenappliedforattheLibraryofCongress. BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2018WalterdeGruyterGmbH,Berlin/Boston Typesetting:CompuscriptLtd.,Shannon,Ireland Printingandbinding:CPIbooksGmbH,Leck ♾Printedonacid-freepaper PrintedinGermany www.degruyter.com | The authors dedicate their book to the centenary of Felix Hausdorff’s outstanding book“SetTheory” Contents HistoricalforewordonthecentenaryafterFelixHausdorff’sclassicSetTheory|xi Preface|xv 2 Fundamentalsofthetheoryoffunctions|1 Introduction|1 2.1 Descriptiveandprescriptivespaces|2 2.1.1 Ensemblesandtheirenvelopes|2 2.1.2 Thefourtransfinitecollectionsofextensionsofanensemble|20 2.1.3 ClassificationofBorelsetsforarbitraryandperfect ensembles|31 2.1.4 Descriptivespaceswithnegligence|42 2.1.5 Prescriptivespaces|47 2.2 Familiesofreal-valuedfunctionsonaset|49 2.2.1 Real-valuedfunctionsandpointwiseoperationsoverthem|49 2.2.2 Thepointwiseorderbetweenfunctions|52 2.2.3 Thepointwiseanduniformconvergencesofnetsandsequencesof functions|55 2.2.4 Someusefulfunctionalfamilies|59 2.2.5 Zero-setsandcozero-setsoffunctions|71 2.2.6 Theequivalenceoffunctionswithrespecttoidealensembles|74 2.2.7 Seminormsandnormsoftheuniformconvergenceonfamilies andfactor-familiesoffunctions|77 2.2.8 Pointwisecontinuouslinearfunctionalsonlattice-orderedlinear spacesoffunctions|92 2.2.9 Truncatablelattice-orderedlinearspacesoffunctions|98 2.3 Familiesofmeasurableanddistributablefunctionsonadescriptive space|100 2.3.1 Measurableanddistributablefunctions|100 2.3.2 Pointwiseoperationsovermeasurableanddistributable functions|104 2.3.3 Thepointwiseorderbetweenmeasurableanddistributable functions|108 2.3.4 Thepointwiseanduniformconvergencesofsequencesof measurableanddistributablefunctions|109 2.3.5 Separabilityofsetsbymeasurableanddistributable functions|116 viii | Contents 2.3.6 Descriptionofnormalandcompletelynormalfamiliesand envelopes.Naturalnessofthefamilyofmeasurable functions|119 2.3.7 CorrelationsbetweenBaire’sandBorel’sfunctional collections|124 2.3.8 Familiesofsemimeasurablefunctionsonaspacewithan ensemble|134 2.4 Familiesofuniformfunctionsonaprescriptivespace|140 2.4.1 Uniformfunctionsandtheirproperties|140 2.4.2 Pointwiseoperationsoveruniformfunctions|142 2.4.3 Theuniformconvergenceofsequencesofuniformfunctions|144 2.4.4 Separabilityofsetsbyuniformfunctions|146 2.4.5 Symmetrizablefunctionsonaspacewithanensemble|150 2.4.6 Descriptionsofboundedlynormalfamiliesandenvelopes. Naturalnessofthefamilyofuniformfunctions|153 2.4.7 FinecorrelationsbetweenBaire’sandBorel’sfunctional collections|158 2.5 Familiesoffunctionsonadescriptivespacewithnegligence|162 2.5.1 Almostmeasurable,almostdistributable,andalmostuniform functions|162 2.5.2 Quasimeasurable,quasidistributable,andquasiuniform functions|165 3 Fundamentalsofthemeasuretheory|179 Introduction|179 3.1 Spaceswithsemimeasuresandmeasures|180 3.1.1 Spaceswithevaluations,semimeasuresandmeasures|180 3.1.2 Familiesofevaluations,semimeasures,andmeasuresona descriptivespace|185 3.1.3 Thetotalvariationofanaturalevaluation|187 3.1.4 Someextensionsofadditiveevaluationsdefinedonsemirings andrings|193 3.1.5 Extensionofapositivemeasuretoawidecompletesaturated measure|208 3.1.6 PropertiesoftheextendedBorel–LebesguemeasureonRn|222 3.2 Decompositionsofsemimeasuresandmeasures|226 3.2.1 TheHahnandJordandecompositionsofmeasures ona𝛿-ring|226 3.2.2 TheRieszdecompositionofoverfinitesemimeasuresandmeasures onaring|231 3.2.3 Normsonlinearspacesofboundedsemimeasuresand measures|239 Contents | ix 3.2.4 AbsolutecontinuityandsingularityandtheLebesgue decomposition|240 3.3 TheLebesgueintegral|247 3.3.1 Measurablefunctionsonaspacewithapositivewide measure|247 3.3.2 TheLebesgueintegraloveraspacewithapositivemeasure|255 3.3.3 SequentialpropertiesoftheLebesgueintegral|263 3.3.4 Propertiesofdensityandcompletenessforthefamilyandthe factor-familyofintegrablefunctions|266 3.3.5 ComparisonofsomeLebesgueintegralsoverspaceswithpositive widemeasures|273 3.3.6 TheLebesgueintegraloveraspacewithanarbitrarywidemeasure. TheproblemofcharacterizationofLebesgueintegralsaslinear functionals|276 3.3.7 Widemeasuresdefinedbydensities|283 3.3.8 TheLebesgue–Radon–Nikodymtheorem|289 3.3.9 Dualtothefactor-spaceofintegrablefunctions|296 3.4 RepresentationofafunctionalbytheLebesgueintegral|300 3.4.1 Regularityandcontinuityofevaluations.Thekeytheoremfor integralrepresentations|300 3.4.2 Representationofpointwise𝜎-continuousfunctionalsbyLebesgue integrals.Thesolutionoftheproblemofcharacterizationof Lebesgueintegralsaslinearfunctionals|303 3.4.3 RepresentationofpointwisecontinuousfunctionalsbyLebesgue integrals|311 3.5 Topologicalspaceswithmeasures.TheRadonintegral|316 3.5.1 Topologicalspaceswithevaluations,semimeasures,and measures|316 3.5.2 Measurableandintegrablefunctionsontopologicalspaceswith measures|323 3.5.3 WideRadonmeasuresonHausdorffspaces.Theproblemof characterizationofRadonintegralsaslinearfunctionals|328 3.5.4 NarrowRadonmeasuresonHausdorffspaces|334 3.5.5 RadonbimeasuresonHausdorffspaces|339 3.5.6 TheRadonintegraloveraHausdorffspacewithaRadon bimeasure|352 3.6 RepresentationofafunctionalbytheRadonintegral|355 3.6.1 𝜎-Exactlinearfunctionalsonspacesofsymmetrizable functions|355 3.6.2 Extensionsof𝜎-exactfunctionalsonspacesofsymmetrizable functionsbytheYoung–Daniellmethod|362

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.