ebook img

Sets for mathematics PDF

276 Pages·2003·1.772 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Sets for mathematics

CB492-FMDVR CB492/LEWVERE November6,2002 10:10 CharCount=0 SETS FOR MATHEMATICS Advancedundergraduateorbeginninggraduatestudentsneedaunifiedfoundation fortheirstudyofmathematics.Forthefirsttimeinatext,thisbookusescategorical algebratobuildsuchafoundation,startingfromintuitivedescriptionsofmathemat- icallyandphysicallycommonphenomenaandadvancingtoaprecisespecification ofthenatureofcategoriesofsets. Settheoryasthealgebraofmappingsisintroducedanddevelopedasaunifying basisforadvancedmathematicalsubjectssuchasalgebra,geometry,analysis,and combinatorics.Theformalstudyevolvesfromgeneralaxiomsthatexpressuniver- salpropertiesofsums,products,mappingsets,andnaturalnumberrecursion.The distinctive features of Cantorian abstract sets, as contrasted with the variable and cohesivesetsofgeometryandanalysis,aremadeexplicitandtakenasspecialax- ioms.Functorcategoriesareintroducedtomodelthevariablesetsusedingeometry andtoillustratethefailureoftheaxiomofchoice.Anappendixprovidesanexplicit introductiontonecessaryconceptsfromlogic,andanextensiveglossaryprovides awindowtothemathematicallandscape. i CB492-FMDVR CB492/LEWVERE November6,2002 10:10 CharCount=0 ii CB492-FMDVR CB492/LEWVERE November6,2002 10:10 CharCount=0 SETS FOR MATHEMATICS F. WILLIAM LAWVERE StateUniversityofNewYorkatBuffalo ROBERT ROSEBRUGH MountAllisonUniversity iii    Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge  , United Kingdom Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521804448 © F. William Lawvere, Robert Rosebrugh 2003 This book is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2003 - ---- eBook (NetLibrary) - --- eBook (NetLibrary) - ---- hardback - --- hardback - ---- paperback - --- paperback Cambridge University Press has no responsibility for the persistence or accuracy of s for external or third-party internet websites referred to in this book, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. CB492-FMDVR CB492/LEWVERE November6,2002 10:10 CharCount=0 Contents Foreword page ix ContributorstoSetsforMathematics xiii 1 AbstractSetsandMappings 1 1.1 Sets, Mappings, and Composition 1 1.2 Listings,Properties,andElements 4 1.3 SurjectiveandInjectiveMappings 8 1.4 Associativity and Categories 10 1.5 SeparatorsandtheEmptySet 11 1.6 GeneralizedElements 15 1.7 MappingsasProperties 17 1.8 AdditionalExercises 23 2 Sums,Monomorphisms,andParts 26 2.1 SumasaUniversalProperty 26 2.2 MonomorphismsandParts 32 2.3 InclusionandMembership 34 2.4 CharacteristicFunctions 38 2.5 InverseImageofaPart 40 2.6 AdditionalExercises 44 3 FiniteInverseLimits 48 3.1 Retractions 48 3.2 IsomorphismandDedekindFiniteness 54 3.3 CartesianProductsandGraphs 58 3.4 Equalizers 66 3.5 Pullbacks 69 3.6 InverseLimits 71 3.7 AdditionalExercises 75 v CB492-FMDVR CB492/LEWVERE November6,2002 10:10 CharCount=0 vi Contents 4 Colimits,Epimorphisms,andtheAxiomofChoice 78 4.1 ColimitsareDualtoLimits 78 4.2 EpimorphismsandSplitSurjections 80 4.3 TheAxiomofChoice 84 4.4 PartitionsandEquivalenceRelations 85 4.5 SplitImages 89 4.6 TheAxiomofChoiceastheDistinguishing Property ofConstant/RandomSets 92 4.7 AdditionalExercises 94 5 MappingSetsandExponentials 96 5.1 NaturalBijectionandFunctoriality 96 5.2 Exponentiation 98 5.3 Functoriality of Function Spaces 102 5.4 AdditionalExercises 108 6 Summary of the Axioms and an Example of Variable Sets 111 6.1 AxiomsforAbstractSetsandMappings 111 6.2 TruthValuesforTwo-StageVariableSets 114 6.3 Additional Exercises 117 7 ConsequencesandUsesofExponentials 120 7.1 ConcreteDuality:TheBehaviorofMonicsandEpicsunder theContravariantFunctorialityofExponentiation 120 7.2 TheDistributiveLaw 126 7.3 Cantor’s Diagonal Argument 129 7.4 Additional Exercises 134 8 MoreonPowerSets 136 8.1 Images 136 8.2 TheCovariantPowerSetFunctor 141 8.3 TheNaturalMapPX (cid:2)(cid:2)22X 145 8.4 Measuring,Averaging,andWinningwithV-ValuedQuantities 148 8.5 AdditionalExercises 152 9 IntroductiontoVariableSets 154 9.1 TheAxiomofInfinity:NumberTheory 154 9.2 Recursion 157 9.3 Arithmetic of N 160 9.4 AdditionalExercises 165 10 ModelsofAdditionalVariation 167 10.1 Monoids,Posets,andGroupoids 167 10.2 Actions 171 10.3 ReversibleGraphs 176 10.4 ChaoticGraphs 180 CB492-FMDVR CB492/LEWVERE November6,2002 10:10 CharCount=0 Contents vii 10.5 FeedbackandControl 186 10.6 ToandfromIdempotents 189 10.7 AdditionalExercises 191 Appendixes 193 A LogicastheAlgebraofParts 193 A.0 WhyStudyLogic? 193 A.1 BasicOperatorsandTheirRulesofInference 195 A.2 Fields,Nilpotents,Idempotents 212 B TheAxiomofChoiceandMaximalPrinciples 220 C Definitions,Symbols,andtheGreekAlphabet 231 C.1 DefinitionsofSomeMathematicalandLogicalConcepts 231 C.2 MathematicalNotationsandLogicalSymbols 251 C.3 TheGreekAlphabet 252 Bibliography 253 Index 257 CB492-FMDVR CB492/LEWVERE November6,2002 10:10 CharCount=0 viii CB492-FMDVR CB492/LEWVERE November6,2002 10:10 CharCount=0 Foreword WhySetsforMathematics? This book is for students who are beginning the study of advanced mathematical subjectssuchasalgebra,geometry,analysis,orcombinatorics.Ausefulfoundation forthesesubjectswillbeachievedbyopenlybringingoutandstudyingwhatthey haveincommon. A significant part of what is common to all these subjects was made explicit 100yearsagobyRichardDedekindandGeorgCantor,andanothersignificantpart 50 years ago by Samuel Eilenberg and Saunders Mac Lane. The resulting idea of categoriesofsetsisthemaincontentofthisbook.Itisworththeefforttostudythis ideabecauseitprovidesaunifiedguidetoapproachingconstructionsandproblems inthescienceofspaceandquantity. Morespecifically,ithasbecomestandardpracticetorepresentanobjectofmath- ematicalinterest(forexampleasurfaceinthree-dimensionalspace)asa“structure.” Thisrepresentationispossiblebymeansofthefollowingtwosteps: (1) Firstwedepletetheobjectofnearlyallcontent.Wecouldthinkofanidealized computer memory bank that has been erased, leaving only the pure locations (thatcouldbefilledwithanynewdatathatarerelevant).Thebagofpurepoints resulting from this process was called by Cantor a Kardinalzahl, but we will usuallyrefertoitasanabstractset. (2) Then,justascomputerscanbewiredupinspecificways,suitablespecificmap- pings between these structureless sets will constitute a structure that reflects the complicated content of a mathematical object. For example, the midpoint operationinEuclideangeometryisrepresentedasamappingwhose“value”at anypairofpointsisaspecialthirdpoint. Toexplainthebasisforthesestepsthereisanimportantprocedureknownasthe axiomaticmethod:Thatis,fromtheongoinginvestigationoftheideasofsetsand ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.