ebook img

Series of Bessel and Kummer-Type Functions PDF

212 Pages·2017·2.156 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Series of Bessel and Kummer-Type Functions

Árpád Baricz (cid:129) Dragana Jankov Maširevic´ (cid:129) Tibor K. Pogány Series of Bessel and Kummer-Type Functions 123 ÁrpádBaricz DraganaJankovMaširevic´ JohnvonNeumannFacultyofInformatics DepartmentofMathematics InstituteofAppliedMathematics JosipJurajStrossmayerUniversityofOsijek ÓbudaUniversity Osijek,Croatia Budapest,Hungary DepartmentofEconomics Babes¸–BolyaiUniversity Cluj–Napoca,Romania TiborK.Pogány FacultyofMaritimeStudies UniversityofRijeka Rijeka,Croatia JohnvonNeumannFacultyofInformatics InstituteofAppliedMathematics ÓbudaUniversity Budapest,Hungary ISSN0075-8434 ISSN1617-9692 (electronic) LectureNotesinMathematics ISBN978-3-319-74349-3 ISBN978-3-319-74350-9 (eBook) https://doi.org/10.1007/978-3-319-74350-9 LibraryofCongressControlNumber:2018932413 MathematicsSubjectClassification(2010):40A30,40C10,33C10,33C15,41A30 ©SpringerInternationalPublishingAG,partofSpringerNature2017 Preface The summation of series of special functions (or, accepting Turán’s intervention, “usefulfunctions”)isasubdisciplineofClassicalAnalysis.Functionalseriesbuilt frommembersofthe,so-called,Besselfunctionfamilyplayaparticularlyimportant role in this field. The Bessel function family includes a vast range of functions: Bessel functions of the first and second kind, modified Bessel functions of the firstandsecondkind,Hankelfunctions,StruveandmodifiedStruvefunctions,von Lommelfunctions,forinstance.Thereisalsoanextensiveliterature,includingthe monumental monograph [333], concerned with important properties and the vast rangeofapplicationsofsuchfunctionsandvariousfunctionalseriesbuiltfromthem. AnimportanttopicwithinthetheoryofBesselfunctionsisthestudyoffunctional seriesofBesselandrelatedfunctions,whoseroleinmathematicalphysics,science, astronomy,andengineeringisimmense. TheclassesofinfiniteseriesexploredinthismonographareNeumann,Kapteyn, Schlömilch, and Dini series, whose terms contain certain members of the Bessel function family or special functions that arise from the class of hypergeometric functions(Kummerfunction).Thebuildingblocksoftheseseriesdependoncertain parameters. So, in short, the main difference between these series is that in terms oftheNeumannseriesthesummationindexistheorder(parameter)oftheBessel function;intermsoftheKapteynseriesthesummationindicesaretheorderandthe argument,while in terms of the Schlömilch series the argumentis the summation index. Also, using similar criteria, one can define general Neumann, Schlömilch, and Kapteyn series of hypergeometric or other special functions, guided by the above classification principle. On the other hand, the coefficient of the argument inaDiniseriesinvolvesthezerosoftheinitialfunctionfromtheBesselfamily,or thoseoftherelatedDinifunction. Functions in the Bessel family and the Kummer function have either power seriesordefiniteintegralrepresentationsortheyareparticularsolutionsofordinary differentialequations. Thuswe shall adopta three-prongedapproachin our study andwillexploresummationsofsums,summationsofintegrals,andsummationsof functions that are solutions of Bessel, Struve, Kummer, or certain other classical ordinarydifferentialequations.Whileweareaddressingmainlythesameproblems assomeofthegreatforefathersofthefieldofFourier–Besselseries,includingCarl GottfriedNeumann(1832,Königsberg–1925,Leipzig);WillemKapteyn(Kapteijn) (1849,Barneveld–1927,Utrecht); Oscar Xavier Schlömilch (1823,Weimar–1901, Dresden);andinparallelUlisseDini(1845,Pisa–1918,Pisa),ourapproachtothese considerationsissignificantlydifferent. Baricz and Pogány in [20, p. 815, Theorem 3.2] introduced a method, which completely reorganizes the classification “Fourier–Bessel series of the first type” (where one input Bessel family member function occurs in terms of the series) versus “Fourier–Bessel series of the second type” (where products of two or more Bessel-like functions appear in terms of the series). More precisely, Bar- icz and Pogány have incorporated all input functions in the products except a chosen one, which is included into the coefficient, and they consider the initial Fourier–Bessel series as the “series of the first type” with the newly constituted coefficients. The importance of these results is further seen by bear- ing in mind various new findings concerning derivatives of the Bessel func- tion family with respect to the order posted on the Wolfram Functions web- site(http://blog.wolfram.com/2016/05/16/new-derivatives-of-the-bessel-functions- have-been-discovered-with-the-help-of-the-wolfram-language/). We appreciatethatthe title ofa monographshouldbe conciseandinformative, andnot“toolong.”Tocoverthephrase“Neumann,Kapteyn,SchlömilchandDini SeriesofBesselFunctionsorHypergeometricTypeFunctions,”whichisaprecise but excessively long title for a book, we adopted “Fourier–Bessel Series” as a working title, influenced by the title of the article [145], and, e.g., by the title of section XVIII, “Series of Fourier–Bessel and Dini” in the monograph [333] by Watson. His presentation significantly differs from ours; we will briefly present thistreatmentoffunctionsbyFourier–Besselseries, whichactuallybelongstothe class of Schlömilch series, in the related subsection of the introductory chapter, emphasizingthatwetreatFourier–BesselseriesinaweakersensethanKapteynand Watson. We also note the fact that Bessel functions are linked to hypergeometric functions;see,also,[314, Chapter8].So,thetitle “SeriesofBesselandKummer- Type Functions” interpolates the previously mentioned two descriptions of the contentsofthismonograph. The starting point for our research was the study [249] by Pogány and Süli in 2009 on Neumann series of Bessel functions of the first kind J(cid:2) and von LommelfunctionsinwhichanintegralexpressionwasderivedforNeumannseries. There, the cornerstones of the study were Dirichlet series associated with the inputFourier–BesselseriesandtheLaplaceintegralofthisDirichletseries. While proceeding with our research on mathematical tools associated with appropriate Bessel-typehomogeneousandnonhomogeneousordinarydifferentialequations,we extendedourstudy,whichthenresulted,amongothers,inthePh.D.thesisofJankov Maširevic´ [130]in2011andthehabilitationthesis[244]ofPogányin2015.Those twothesesarosefromseveraljointorseparatepublicationsandconstitutea major partofthismonograph. Our main objective in this monograph is to give a systematic overview of our results concerning such series; textual material is gathered from diverse sources including journal articles, theses, and conference papers, which had not appeared beforeintheformofabook. The bookis aimed at a mathematicalaudience,graduatestudents, and those in thescientificcommunitywithinterestinanewperspectiveonFourier–Besselseries, andtheirmanifoldandpolyvalentapplications,mainlyingeneralclassicalanalysis, appliedmathematics,ormathematicalphysics. A general introductionto the subject will be found in Chap.1, together with a necessarily short overviewof special functions,Dirichlet series, Cahen’s formula, and the Euler–Maclaurinsummation formula, among others, as it is assumed that readershaveageneralbackgroundinrealandcomplexanalysis,andpossesssome familiarity with functional analysis. Then, results on Neumann–Bessel series are collected in the identically entitled Chap.2, followed by Chap.3, Kapteyn series, where, in addition to Kapteyn–Bessel series, also Kapteyn–Kummer series are presented. Chapter 4 focuses on Schlömilch–Bessel series and Schlömilch series ofthep-extendedMathieuseries,whichrepresentsatransitiontoChap.5,entitled Miscellanea, where Dini–Bessel series, Neumann and Kapteyn series of Struve and modified Struve functions, and Neumann series of Jacobi polynomials are considered. The main body of the book ends with a short overview of Neumann seriesofMeijerG functions,whichisfollowedbyanexhaustivelistofreferences andanIndex.Wenotethatadetailedoverviewofdiverseapplications,withlinksto furtherrelevantsources,isgivenintheintroductorypartofeachchapter. Besides the pure mathematical aspects of the obtained results, many potential applicationitemsexist,e.g.,theKapteynseries’applicationsinvariousproblemsof mathematicalphysics,e.g.,Kepler’sequation,pulsarphysics,andelectromagnetic radiation;Neumannseries’useininfinitedielectricwedgeproblem,descriptionof internal gravity waves in a Boussinesq fluid, propagation properties of diffracted light beams, the orbital angular momentum quantum number, the wave functions thatdescribethestatesofmotionofchargedparticlesinaCoulombfield,inversion probabilityofalargespin,evaluationofthecapacitancematrixofasystemoffinite- lengthconductors,modelingofthefreevibrationsofawoodenpole,andanalysisof anisotropicmediumcontainingacylindricalboreholeareroutineprocedures.These numericalcalculationsmainlytakeintoaccounttruncationofinfiniteseries.Instead, thederivedintegralexpressionsmayleadto numericalquadratureimplementation forwhichnumerousin-builtsoftwareroutinesarewidelydeveloped. The authors take great pleasure in thanking Endre Süli (Oxford) for taking part in the research endeavor, which initiated and now finally encompasses this manuscript.WearealsoverygratefultoPaulLeoButzer(Aachen),DiegoDominici (New Paltz), SaminathanPonnusamy(Chennai),and SanjeevSingh (Chennai)for numerousvaluablesuggestions,remarks,anddiscussions,whichresultedincrucial improvementsoftheexposition. Székelyudvarhely ÁrpádBaricz Trpinja DraganaJankovMaširevic´ Sušak TiborK.Pogány October2017 Survey Theaimofthisbriefsurveyistopresentashortoverviewofthetopicsdiscussedin thisbook. BesselFunctions Besselfunctionsaresolutionstothesecond-orderlinearhomo- geneous Bessel differential equation. Discovered by the mathematician Daniel Bernoulli and studied systematically by the astronomer Friedrich Bessel, Bessel functionsappearfrequentlyinproblemsofappliedmathematics.Theyareparticu- larlyimportantinproblemsassociatedwithwavepropagationandstaticpotentials. Besselfunctionsofintegerorderarealsoknownascylinderfunctionsorcylindrical harmonics, because they arise in the solution of Laplace’s equation in cylindrical coordinates.AlthoughthestudyofBesselfunctionsispartofclassicalanalysis,their beautifulpropertiesarecontinuallyexploredbynumerousresearchers,andseveral newpropertiesarereportedeachyear.G.N.Watson’sbookAtreatiseonthetheory of Bessel functions [333], written almost one hundred years ago, is an important book in the theory of special functions, especially on topics associated with asymptoticexpansions,series,zeros,andintegralsofBesselfunctions.Nowadays, Watson’s book is a classic, and because of their remarkable properties, special functions,such as Bessel functions,are frequentlyused also in probabilitytheory, statistics,mathematicalphysics,andintheengineeringsciences.See,forexample, theinterestingbookbyB.G.Korenev Besselfunctionsandtheirapplications,[156]. SeriesofBesselFunctions InfiniteseriesinvolvingdifferentkindsofBesselfunc- tions occur quite frequentlyin both mathematicaland physicalanalysis. Watson’s treatisecontainsfourchaptersondifferentkindsofseriesofBesselfunctions,such asNeumann,Kapteyn,Fourier–Bessel,Dini,andSchlömilchseries.Becauseofthe rangeofapplicationsinconcreteproblemsofappliedmathematics,seriesofBessel functionshavebeenconsideredfrequentlybyresearchers. The Topics Discussed in This Book In this book our aim is to establish certain integralrepresentationsforNeumann,Kapteyn,Schlömilch,Dini,andFourierseries of Bessel and other special functions, such as Struve and von Lommel functions. Our objective is also to find the coefficients of the Neumann and Kapteyn series, as well as closed-form expressions, and summation formulae for the series of Besselfunctionsconsidered.Inthestudytheso-calledEuler–Maclaurinsummation formula(whichisabeautifulbridgebetweencontinuousanddiscrete),theLaplace– Stieltjes integral representation of Dirichlet series, and various bounds for Bessel and Bessel-type functions (Struve, modified Struve, modified Bessel functions of thefirstandsecondkind,vonLommelfunctions,andBesselfunctionofthesecond kind) play an important role. Some integral representations are also deduced by usingtechniquesfromthetheoryofdifferentialequations. Contents 1 IntroductionandPreliminaries............................................. 1 1.1 TheGammaFunction ................................................. 3 1.1.1 Psi(orDigamma)Function.................................. 4 1.1.2 TheBetaFunction ........................................... 5 1.1.3 ThePochhammerSymbol................................... 6 1.2 BernoulliPolynomialsandNumbers................................. 6 1.3 Euler-MaclaurinSummationFormula................................ 7 1.4 DirichletSeriesandCahen’sFormula................................ 8 1.5 Mathieu.a;(cid:2)/-Series.................................................. 9 1.6 BesselDifferentialEquation .......................................... 10 1.7 BoundsUponJ(cid:2).x/.................................................... 11 1.8 BesselFunctionsFamily .............................................. 13 1.9 StruveDifferentialEquation .......................................... 16 1.10 SeriesBuiltbyBesselFunctionsFamilyMembers.................. 17 1.11 Fourier–BesselandDiniSeries ....................................... 18 1.12 HypergeometricandGeneralizedHypergeometricFunctions....... 19 1.12.1 GaussianHypergeometricFunction......................... 19 1.12.2 GeneralizedHypergeometricFunction ..................... 20 1.12.3 Fox–WrightGeneralizedHypergeometricFunction ....... 21 1.13 FurtherHypergeometricTypeFunctions............................. 22 1.14 Hurwitz–LerchZetaFunction......................................... 23 1.15 FractionalDifferintegral............................................... 23 2 NeumannSeries.............................................................. 27 2.1 IntegralRepresentationforNeumannSeriesofBessel Functions............................................................... 29 2.1.1 BivariatevonLommelFunctionsasNeumannSeries...... 31 2.2 OnCoefficientsofNeumann–BesselSeries.......................... 32 2.2.1 Examples..................................................... 36 2.3 IntegralRepresentationsforN(cid:2).x/viaBessel DifferentialEquation.................................................. 37 2.3.1 TheApproachbyChessin ................................... 37 2.3.2 SolvingBesselDifferentialEquationbyFractional Integration.................................................... 41 2.3.3 FractionalIntegralRepresentation .......................... 43 2.4 IntegralRepresentationsforNeumann–BesselTypeSeries......... 45 2.4.1 IntegralFormoftheFirstTypeNeumannSeriesM(cid:2).x/... 46 2.4.2 IntegralFormofSecondTypeNeumannSeries J(cid:2).x/;X(cid:2).x/ .................................................. 49 2.5 IntegralFormofNeumannSeriesNa;b.x/ ........................... 56 (cid:3);(cid:2) 2.5.1 SecondTypeNeumannSeriesN˛(cid:3)I;(cid:4)(cid:2).x/andN˛(cid:3)K;(cid:2)(cid:2).x/....... 60 2.6 PropertiesofProductofModifiedBesselFunctions................. 61 2.6.1 DiscreteChebyshevInequalities ............................ 62 2.6.2 IntegralFormofRelatedSecondTypeNeumannSeries... 64 2.6.3 IndefiniteIntegralExpressionsforSecondType NeumannSeriesN(cid:2)(cid:3);(cid:2).x/..................................... 67 2.7 Summation Formulae for the First and Second Type NeumannSeries........................................................ 69 2.7.1 ClosedFormoftheFirstTypeNeumannSeriesNI;˙..... 71 (cid:3);(cid:2) 2.7.2 Confluent Hypergeometric Functions andSrivastava–DaoustFunction ............................ 76 2.8 NeumannSeriesRegardingthe(cid:5)02.a/Distribution.................. 78 n 2.9 ConnectingFirstandSecondTypeNeumannSeries................. 83 3 KapteynSeries ............................................................... 87 3.1 OnConvergenceofGeneralizedKapteynExpansion................ 90 3.2 IntegralRepresentationofKapteynSeries ........................... 93 3.3 AnotherIntegralFormofKapteynSeriesThroughBessel DifferentialEquation.................................................. 95 3.4 IntegralExpressionofSpecialKindKapteynSeries................. 98 3.5 OnCoefficientsofKapteynSeries.................................... 100 3.5.1 Examples..................................................... 103 3.6 OnKapteyn–KummerSeries’IntegralForm......................... 104 3.6.1 TheMasterIntegralRepresentationFormula............... 106 3.6.2 TheNeumann–KummerandSchlömilch–Kummer Series ......................................................... 110 4 SchlömilchSeries ............................................................ 113 4.1 IntegralRepresentationofSchlömilchSeries........................ 117 4.2 AnotherIntegralRepresentationofSchlömilchSeries .............. 118 4.3 SchlömilchSeriesBuiltbyModifiedBesselK(cid:2) ..................... 120 4.3.1 ClosedExpressionsforS2k(cid:2)2.0;x;(cid:2)/andS0.a;x;(cid:2)/..... 121 4.4 ConnectionBetweens(cid:2)2.0;x;(cid:2)/andGeneralized MathieuSeries......................................................... 126 4.5 p-ExtendedMathieuSeriesasSchlömilchSeries.................... 130 4.5.1 ConnectionBetweenS(cid:3);p.r/andSchlömilchSeries ofJ(cid:2) (cid:2)K(cid:3) ..................................................... 131 4.5.2 S(cid:3);p.r/andtheSchlömilchSeriesofK(cid:2)Terms............. 134 4.6 IntegralFormofPopov’sFormula(4.7).............................. 136 5 Miscellanea ................................................................... 139 5.1 TheFourier–BesselSeriesAssociatedwithStruveFunctions....... 139 5.2 SummationsofSeriesBuiltbyModifiedStruveFunction .......... 140 5.2.1 L(cid:2) asaNeumannSeriesofModified BesselIFunctions ........................................... 143 5.3 Integralsof˝.x/-FunctionandMathieuSeriesviaTI;L.x/ ........ 149 (cid:2) 5.4 DifferentialEquationsforKapteynandSchlömilch SeriesofI(cid:2);L(cid:2) ......................................................... 152 5.5 Bromwich–WagnerIntegralFormofJ(cid:2).x/........................... 159 5.6 SummingupSchlömilchSeriesofStruveFunctions................ 162 5.7 DiniSeries ............................................................. 165 5.8 DiniSeriesandtheBesselDifferentialEquation .................... 168 5.9 JacobiPolynomialsinSum ........................................... 169 5.10 SchlömilchSeriesofvonLommelFunctions........................ 174 5.10.1 ClosedFormExpressionsforS˛ .x/ ...................... 176 (cid:3);(cid:2) 5.11 NeumannSeriesofMeijerGFunction............................... 180 References......................................................................... 185 Index............................................................................... 199

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.