ebook img

Series and Products in the Development of Mathematics. Volume 1 PDF

780 Pages·2021·9.353 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Series and Products in the Development of Mathematics. Volume 1

Series and Products in the Development of Mathematics Volume1 Thisisthefirstvolumeofatwo-volumeworkthattracesthedevelopmentofseries and products from 1380 to 2000 by presenting and explaining the interconnected concepts and results of hundreds of unsung as well as celebrated mathematicians. Somechaptersdealwiththeworkofprimarilyonemathematicianonapivotaltopic, and other chapters chronicle the progress over time of a given topic. This updated secondeditionofSourcesintheDevelopmentofMathematicsaddsextensivecontext, detail, and primary source material, with many sections rewritten to more clearly reveal the significance of key developments and arguments. Volume 1, accessible eventoadvancedundergraduatestudents,discussesthedevelopmentofthemethods inseriesandproductsthatdonotemploycomplexanalyticmethodsorsophisticated machinery. Volume 2 treats more recent work, including de Branges’s solution of Bieberbach’sconjecture,andrequiresmoreadvancedmathematicalknowledge. ranjan roy (1947–2020) was the Ralph C. Huffer Professor of Mathematics and Astronomy at Beloit College, where he was a faculty member for 38 years. Roy published papers and reviews on Riemann surfaces, differential equations, fluid mechanics, Kleinian groups, and the development of mathematics. He was an award-winning educator, having received the Allendoerfer Prize, the Wisconsin MAAteachingaward,andtheMAAHaimoAwardforDistinguishedMathematics TeachingandwastwicenamedTeacheroftheYearatBeloitCollege.Hecoauthored SpecialFunctions(2001)withGeorgeAndrewsandRichardAskeyandcoauthored chaptersintheNISTHandbookofMathematicalFunctions(2010);healsoauthored Elliptic and Modular Functions from Gauss to Dedekind to Hecke (2017) and the firsteditionofthisbook,SourcesintheDevelopmentofMathematics(2011). RanjanRoy1948–2020 Series and Products in the Development of Mathematics Second Edition Volume 1 RANJAN ROY BeloitCollege UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre,NewDelhi–110025,India 79AnsonRoad,#06–04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781108709453 DOI:10.1017/9781108627702 Firstedition©RanjanRoy2011 Secondedition©RanjanRoy2021 Thispublicationisincopyright.Subjecttostatutoryexceptionandtotheprovisionsof relevantcollectivelicensingagreements,noreproductionofanypartmaytakeplacewithoutthe writtenpermissionofCambridgeUniversityPress. FirstpublishedasSourcesintheDevelopmentofMathematics,2011 Secondedition2021 PrintedintheUnitedKingdombyTJBooksLimited,PadstowCornwall AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. ISBN 2-volumeSet978-1-108-70943-9Paperback ISBN Volume1978-1-108-70945-3Paperback ISBN Volume2978-1-108-70937-8Paperback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Contents ContentsofVolume2 pagexiii Preface xvii 1 PowerSeriesinFifteenth-CenturyKerala 1 1.1 PreliminaryRemarks 1 1.2 TransformationofSeries 5 1.3 JyesthadevaonSumsofPowers 6 1.4 ArctangentSeriesintheYuktibhasa 8 1.5 DerivationoftheSineSeriesintheYuktibhasa 10 1.6 ContinuedFractions 15 1.7 Exercises 20 1.8 NotesontheLiterature 21 2 SumsofPowersofIntegers 23 2.1 PreliminaryRemarks 23 2.2 JohannFaulhaber 27 2.3 Fermat 28 2.4 Pascal 30 2.5 SekiandJakobBernoullionBernoulliNumbers 31 2.6 JakobBernoulli’sPolynomials 33 2.7 Euler 37 2.8 Lacroix’sProofofBernoulli’sFormula 40 2.9 JacobionFaulhaber 42 2.10 JacobiandRaabeonBernoulliPolynomials 43 2.11 Ramanujan’sRecurrenceRelationsforBernoulliNumbers 48 2.12 NotesontheLiterature 53 3 InfiniteProductofWallis 54 3.1 PreliminaryRemarks 54 3.2 Wallis’sInfiniteProductforπ 59 3.3 BrounckerandInfiniteContinuedFractions 61 v vi Contents 3.4 Me´rayandStieltjes:TheProbabilityIntegral 64 3.5 Euler:SeriesandContinuedFractions 67 3.6 Euler:Riccati’sEquationandContinuedFractions 72 3.7 Exercises 75 3.8 NotesontheLiterature 76 4 TheBinomialTheorem 77 4.1 PreliminaryRemarks 77 4.2 Landen’sDerivationoftheBinomialTheorem 89 4.3 Euler:BinomialTheoremforRationalExponents 90 4.4 Cauchy:ProofoftheBinomialTheoremforRealExponents 94 4.5 Abel’sTheoremonContinuity 96 4.6 HarknessandMorley’sProofoftheBinomialTheorem 100 4.7 Exercises 101 4.8 NotesontheLiterature 103 5 TheRectificationofCurves 105 5.1 PreliminaryRemarks 105 5.2 Descartes’sMethodofFindingtheNormal 107 5.3 Hudde’sRuleforaDoubleRoot 109 5.4 VanHeuraet’sLetteronRectification 110 5.5 Newton’sRectificationofaCurve 112 5.6 Leibniz’sDerivationoftheArcLength 113 5.7 Exercises 113 5.8 NotesontheLiterature 114 6 Inequalities 116 6.1 PreliminaryRemarks 116 6.2 Harriot’sProofoftheArithmeticandGeometricMeansInequality 122 6.3 Maclaurin’sInequalities 124 6.4 CommentsonNewton’sandMaclaurin’sInequalities 125 6.5 Rogers 127 6.6 Ho¨lder 130 6.7 Jensen’sInequality 134 6.8 Riesz’sProofofMinkowski’sInequality 135 6.9 Exercises 137 6.10 NotesontheLiterature 142 7 TheCalculusofNewtonandLeibniz 143 7.1 PreliminaryRemarks 143 7.2 Newton’s1671CalculusText 147 7.3 Leibniz:DifferentialCalculus 150 7.4 LeibnizontheCatenary 153 7.5 JohannBernoulliontheCatenary 156 7.6 JohannBernoulli:TheBrachistochrone 157 7.7 Newton’sSolutiontotheBrachistochrone 158 7.8 NewtonontheRadiusofCurvature 161 Contents vii 7.9 JohannBernoulliontheRadiusofCurvature 162 7.10 Exercises 163 7.11 NotesontheLiterature 164 8 DeAnalysiperAequationesInfinitas 165 8.1 PreliminaryRemarks 165 8.2 AlgebraofInfiniteSeries 168 8.3 Newton’sPolygon 171 8.4 NewtononDifferentialEquations 172 8.5 Newton’sEarliestWorkonSeries 174 8.6 DeMoivreonNewton’sFormulaforsinnθ 176 8.7 Stirling’sProofofNewton’sFormula 177 8.8 Zolotarev:LagrangeInversionwithRemainder 179 8.9 Exercises 181 8.10 NotesontheLiterature 183 9 FiniteDifferences:InterpolationandQuadrature 186 9.1 PreliminaryRemarks 186 9.2 Newton:DividedDifferenceInterpolation 193 9.3 Gregory–NewtonInterpolationFormula 198 9.4 Waring,Lagrange:InterpolationFormula 199 9.5 EuleronInterpolation 201 9.6 Cauchy,Jacobi:Waring–LagrangeInterpolationFormula 202 9.7 NewtononApproximateQuadrature 204 9.8 Hermite:ApproximateIntegration 207 9.9 ChebyshevonNumericalIntegration 209 9.10 Exercises 211 9.11 NotesontheLiterature 212 10 SeriesTransformationbyFiniteDifferences 213 10.1 PreliminaryRemarks 213 10.2 Newton’sTransformation 219 10.3 Montmort’sTransformation 220 10.4 Euler’sTransformationFormula 222 10.5 Stirling’sTransformationFormulas 225 10.6 Nicole’sExamplesofSums 229 10.7 StirlingNumbers 233 10.8 Lagrange’sProofofWilson’sTheorem 241 10.9 Taylor’sSummationbyParts 242 10.10 Exercises 244 10.11 NotesontheLiterature 246 11 TheTaylorSeries 247 11.1 PreliminaryRemarks 247 11.2 Gregory’sDiscoveryoftheTaylorSeries 256 11.3 Newton:AnIteratedIntegralasaSingleIntegral 258 11.4 BernoulliandLeibniz:AFormoftheTaylorSeries 259 viii Contents 11.5 TaylorandEulerontheTaylorSeries 261 11.6 LacroixonD’Alembert’sDerivationoftheRemainder 262 11.7 Lagrange’sDerivationoftheRemainderTerm 264 11.8 Laplace’sDerivationoftheRemainderTerm 266 11.9 CauchyonTaylor’sFormulaandl’Hoˆpital’srule 267 11.10 Cauchy:TheIntermediateValueTheorem 270 11.11 Exercises 271 11.12 NotesontheLiterature 272 12 IntegrationofRationalFunctions 273 12.1 PreliminaryRemarks 273 12.2 Newton’s1666BasicIntegrals 280 12.3 Newton’sFactorizationofxn±1 282 12.4 CotesanddeMoivre’sFactorizations 284 12.5 Euler:IntegrationofRationalFunctions 286 12.6 Euler’s“InvestigatioValorisIntegralis” 293 12.7 Hermite’sRationalPartAlgorith√m 299 12.8 JohannBernoulli:Integrationof ax2+bx+c 301 12.9 Exercises 302 12.10 NotesontheLiterature 305 13 DifferenceEquations 306 13.1 PreliminaryRemarks 306 13.2 DeMoivreonRecurrentSeries 308 13.3 SimpsonandWaringonPartitioningSeries 311 13.4 Stirling’sMethodofUltimateRelations 317 13.5 DanielBernoullionDifferenceEquations 319 13.6 Lagrange:NonhomogeneousEquations 322 13.7 Laplace:NonhomogeneousEquations 325 13.8 Exercises 326 13.9 NotesontheLiterature 327 14 DifferentialEquations 328 14.1 PreliminaryRemarks 328 14.2 Leibniz:EquationsandSeries 338 14.3 NewtononSeparationofVariables 340 14.4 JohannBernoulli’sSolutionofaFirst-OrderEquation 341 14.5 EuleronGeneralLinearEquationswithConstantCoefficients 343 14.6 Euler:NonhomogeneousEquations 345 14.7 Lagrange’sUseoftheAdjoint 350 14.8 JakobBernoulliandRiccati’sEquation 352 14.9 Riccati’sEquation 353 14.10 SingularSolutions 354 14.11 MukhopadhyayonMonge’sEquation 358 14.12 Exercises 360 14.13 NotesontheLiterature 363

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.