ebook img

(SERIA) model for antisaccades PDF

36 Pages·2017·2.71 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview (SERIA) model for antisaccades

RESEARCHARTICLE The Stochastic Early Reaction, Inhibition, and late Action (SERIA) model for antisaccades EduardoA.Aponte1*,DarioScho¨bi1,KlaasE.Stephan1,2,JakobHeinzle1* 1 TranslationalNeuromodelingUnit,InstituteforBiomedicalEngineering,UniversityofZurich&Swiss InstituteofTechnologyZurich,Zurich,Switzerland,2 WellcomeTrustCentreforNeuroimaging,University CollegeLondon,London,UnitedKingdom *[email protected](EAA);[email protected](JH) a1111111111 Abstract a1111111111 a1111111111 Theantisaccadetaskisaclassicparadigmusedtostudythevoluntarycontrolofeyemove- a1111111111 ments.Itrequiresparticipantstosuppressareactiveeyemovementtoavisualtargetandto a1111111111 concurrentlyinitiateasaccadeintheoppositedirection.Althoughseveralmodelshave beenproposedtoexplainerrorratesandreactiontimesinthistask,noformalmodelcom- parisonhasyetbeenperformed.Here,wedescribeaBayesianmodelingapproachtothe antisaccadetaskthatallowsustoformallycomparedifferentmodelsonthebasisoftheir OPENACCESS evidence.First,weprovideaformallikelihoodfunctionofactions(pro-andantisaccades) Citation:AponteEA,Scho¨biD,StephanKE,Heinzle andreactiontimesbasedonpreviouslypublishedmodels.Second,weintroducetheSto- J(2017)TheStochasticEarlyReaction,Inhibition, chasticEarlyReaction,Inhibition,andlateActionmodel(SERIA),anovelmodelpostulating andlateAction(SERIA)modelforantisaccades. PLoSComputBiol13(8):e1005692.https://doi. twodifferentmechanismsthatinteractintheantisaccadetask:anearlyGO/NO-GOrace org/10.1371/journal.pcbi.1005692 decisionprocessandalateGO/GOdecisionprocess.Third,weapplythesemodelstoa Editor:AdrianM.Haith,JohnsHopkinsUniversity, datasetfromanexperimentwiththreemixedblocksofpro-andantisaccadetrials.Bayesian UNITEDSTATES modelcomparisondemonstratesthattheSERIAmodelexplainsthedatabetterthancom- Received:February5,2017 petingmodelsthatdonotincorporatealatedecisionprocess.Moreover,weshowthatthe earlydecisionprocesspostulatedbytheSERIAmodelis,toalargeextent,insensitivetothe Accepted:July20,2017 cuepresentedinasingletrial.Finally,weuseparameterestimatestodemonstratethat Published:August2,2017 changesinreactiontimeanderrorrateduetotheprobabilityofatrialtype(pro-orantisac- Copyright:©2017Aponteetal.Thisisanopen cade)arebestexplainedbyfasterorslowerinhibitionandtheprobabilityofgeneratinglate accessarticledistributedunderthetermsofthe voluntaryprosaccades. CreativeCommonsAttributionLicense,which permitsunrestricteduse,distribution,and reproductioninanymedium,providedtheoriginal authorandsourcearecredited. DataAvailabilityStatement:Allrelevantdataare Authorsummary withinthepaperanditsSupportingInformation Onewidelyreplicatedfindinginschizophreniaresearchisthatpatientstendtomake files. moreerrorsthanhealthycontrolsintheantisaccadetask,apsychometricparadigmin Funding:ThisworkwassupportedbytheRene´ whichparticipantsarerequiredtolookintheoppositedirectionofavisualcue.Thisdefi- andSusanneBraginskyFoundation(KES)andthe cithasbeensuggestedtobeanendophenotypeofschizophrenia,asfirstorderrelativesof UniversityofZurich.Thefundershadnorolein studydesign,datacollectionandanalysis,decision patientstendtoshowsimilarbutmilderdeficits.Currently,mostmodelsappliedtoexper- topublish,orpreparationofthemanuscript. imentalfindingsinthistaskarelimitedtofitaveragereactiontimesanderrorrates.Here, weproposeanovelstatisticalmodelthatfitsexperimentaldatafromtheantisaccadetask, Competinginterests:Theauthorshavedeclared thatnocompetinginterestsexist. PLOSComputationalBiology|https://doi.org/10.1371/journal.pcbi.1005692 August2,2017 1/36 SERIA—Amodelforerrorsandreactiontimesintheantisaccadetask beyondsummarystatistics.Themodelisinspiredbythehypothesisthatantisaccadesare theresultofseveralcompetingdecisionprocessesthatinteractnonlinearlywitheach other.Inapplyingthismodeltoarelativelylargeexperimentaldataset,weshowthat meanreactiontimesanderrorratesdonotfullyreflectthecomplexityoftheprocesses thatarelikelytounderlieexperimentalfindings.Inthefuture,ourmodelcouldhelpto understandthenatureofthedeficitsobservedinschizophreniabyprovidingastatistical tooltostudytheirbiologicalunderpinnings. Introduction Intheantisaccadetask([1];forreviews,see[2,3]),participantsarerequiredtosaccadeinthe contralateraldirectionofavisualcue.Thisbehavioristhoughttorequireboththeinhibition ofareflexivesaccadicresponsetowardsthecueandtheinitiationofavoluntaryeyemovement intheoppositedirection.Afailuretoinhibitthereflexiveresponseleadstoanerroneoussac- cadetowardsthecue(i.e.,aprosaccade),whichisoftenfollowedbyacorrectiveeyemovement intheoppositedirection(i.e.,anantisaccade).Asaprobeofinhibitorycapacity,theantisac- cadetaskhasbeenwidelyusedtostudypsychiatricandneurologicaldiseases[3].Notably, sincetheinitialreport[4],studieshaveconsistentlyfoundanincreasednumberoferrorsin patientswithschizophreniawhencomparedtohealthycontrols,independentofmedication andclinicalstatus[5–8].Moreover,thereisevidencethatanincreasederrorrateconstitutes anendophenotypeofschizophrenia,asantisaccadedeficitsarealsopresentinnon-affected, first-degreerelativesofdiagnosedindividuals(forexample[5,7];butfornegativefindingssee forexample[9,10]). Unfortunately,theexactnatureoftheantisaccadedeficitsandtheirbiologicaloriginin schizophreniaremainunclear.Onepathtoimproveourunderstandingoftheseexperimental findingsistodevelopgenerativemodelsoftheirputativecomputationaland/orneurophysio- logicalcauses[11].Generativemodelsthatcapturetheentiredistributionofresponsescan revealfeaturesofthedatathatarenotapparentwhenonlyconsideringsummarystatistics suchasmeanerrorrate(ER)andreactiontime(RT)[12–15].Additionally,thistypeofmodel canpotentiallyrelatebehavioralfindingsinhumanstotheirbiologicalsubstrate. Here,weapplyagenerativemodelingapproachtotheantisaccadetask.First,weintro- duceanovelmodelofthisparadigmbasedonpreviousproposals[16–20].Forthis,wefor- malizetheideasintroducedbyNooraniandCarpenter[17]andextendthemintowhatwe refertoastheStochasticEarlyReaction,Inhibition andlateAction(SERIA)model.Second, weapplybothmodelstoanexperimentaldatasetofthreemixedblocksofpro-andantisac- cadestrialswithdifferenttrialtypeprobability.Morespecifically,wecompareseveralmod- elsusingBayesianmodelcomparison.Third,weusetheparameterestimatesfromthebest modeltoinvestigatetheeffectsofourexperimentalmanipulation.Wefoundthattherewas positiveevidenceinfavoroftheSERIAmodelwhencomparedtoourformalizationofthe modelproposedin[17].Moreover,theparametersestimatedthroughmodelinversion revealedthecomplexityofthedecisionprocessesunderlyingtheantisaccadetaskthatisnot obviousfrommeanRTandER. Thispaperisorganizedasfollows.First,weformalizethemodeldevelopedin[17]andin- troducetheSERIAmodel.Second,wedescribeourexperimentalsetup.Third,wepresentour behavioralfindingsintermsofsummarystatistics(meanRTandER),thecomparisonbetween differentmodels,andtheparameterestimates.Finally,wereviewourfindings,discussother recentmodels,potentialfuturedevelopments,andtranslationalapplications. PLOSComputationalBiology|https://doi.org/10.1371/journal.pcbi.1005692 August2,2017 2/36 SERIA—Amodelforerrorsandreactiontimesintheantisaccadetask Materialsandmethods Ethicsstatement Allparticipantsgavewritteninformedconsentbeforethestudy.Allexperimentalprocedures wereapprovedbythelocalethicsboard(KantonaleEthikkomissionZu¨rich, KEK-ZH-Nr.2014-0246). Racemodelsforantisaccades Inthissection,wederiveaformaldescriptionofthemodelsevaluatedinthispaper.Westart withaformalizedversionofthemodelproposedbyNooraniandCarpenterin[17]andpro- ceedtoextendit.TheirapproachresemblesthemodeloriginallyproposedbyCamalierand colleagues[21]toexplainRTandERinthedoublestepandsearchsteptasks,inwhichpartici- pantsareeitheraskedtosaccadetosuccessivelypresentedtargetsortosaccadetoatargetafter adistractorwasshown.Commontoallthesetasksisthatsubjectsarerequiredtoinhibitapre- potentreactiontoaninitialstimulusandthentogenerateanactiontowardsasecondarygoal. Briefly,Camalierandcolleagues[21]extendedtheoriginal‘horse-race’model[16]byinclud- ingasecondaryactionincountermandingtasks.In[17],NooraniandCarpenterusedasimi- larmodelincombinationwiththeLATERmodel[22]inthecontextoftheantisaccadetaskby postulatinganendogenouslygeneratedinhibitorysignal.Notethatthismodel,orvariantsof it,havebeenusedinseveralexperimentalparadigms(reviewedin[20]).Here,welimitourdis- cussiontotheantisaccadetask. Thepro,stop,andantisaccademodel(PROSA) Following[17],weassumethattheRTandthetypeofsaccadegeneratedinagiventrialare causedbytheinteractionofthreecompetingprocessesorunits.Thefirstunitu representsa p commandtoperformaprosaccade,thesecondunitu representsaninhibitorycommandto s stopaprosaccade,andthethirdunitu representsacommandtoperformanantisaccade.The a timetrequiredforunitu toarriveatthresholds isgivenby: i i s ¼rt; ð1Þ i i s i ¼t; ð2Þ r i wherer representstheslopeorincreaserateofunitu,s representstheheightofthethreshold, i i i andtrepresentstime.Weassumethat,oneachtrial,theincreaseratesarestochasticandinde- pendentofeachother. Thetimeandorderinwhichtheunitsreachtheirthresholdss determinestheactionand i RTinatrial.Iftheprosaccadeunitu reachesthresholdbeforeanyotherunitattimet,apro- p saccadeiselicitedatt.Iftheantisaccadeunitarrivesfirst,anantisaccadeiselicitedatt.Finally, ifthestopunitarrivesbeforetheprosaccadeunit,anantisaccadeiselicitedatthetimewhen theantisaccadeunitreachesthreshold.Itisworthmentioningthat,althoughthismodelis motivatedasarace-to-thresholdmodel,actionsandRTsdependonlyonthearrivaltimesof eachoftheunitsandultimatelynoexplicitmodelofincreaseratesorthresholdsisrequired. Thus,forthesakeofclarity,werefertothisapproachasa‘race’model,incontrastto‘race-to- threshold’modelsthatexplicitlydescribeincreaseratesandthresholds. Formally(butinaslightabuseoflanguage),thetworandomvariablesofinterest,thereac- tiontimeT2[0,1[andthetypeofactionperformedA2{pro,anti},dependonlyonthreefur- therrandomvariables:thearrivaltimesU ,U,U 2[0,1[ofeachoftheunits.The p s a PLOSComputationalBiology|https://doi.org/10.1371/journal.pcbi.1005692 August2,2017 3/36 SERIA—Amodelforerrorsandreactiontimesintheantisaccadetask probabilityofperformingaprosaccadeattimetisgivenbytheprobabilityoftheprosaccade unitarrivingattimet,andthestopandantisaccadeunitarrivingafterwards: pðA¼pro;T ¼tÞ¼pðU ¼tÞpðU >tÞpðU >tÞ: ð3Þ p a s Theprobabilityofperforminganantisaccadeattimetisgivenby Z t pðA¼anti;T ¼tÞ¼pðU ¼tÞpðU >tÞpðU >tÞþpðU ¼tÞ pðU ¼tÞpðU >tÞdt: ð4Þ a p s a s p 0 ThefirsttermontherightsideofEq4correspondstotheunlikelycasethattheantisaccadeunit arrivesbeforetheprosaccadeandthestopunits.Thesecondtermdescribestrialsinwhichthestop unitarrivesbeforetheprosaccadeunit.Itcanbedecomposedintotwoterms: Z (cid:18) Z (cid:19) t t pðU ¼tÞ pðU ¼tÞpðU >tÞdt¼pðU ¼tÞ pðU <tÞpðU >tÞþ pðU ¼tÞpðt<U <tÞdt ð5Þ a s p a s p s p 0 0 (cid:18) Z (cid:19) t ¼pðU ¼tÞ pðU <tÞpðU >tÞþ pðU <tÞpðU ¼tÞdt ð6Þ a s p s p 0 R ThetermpðU ¼tÞ tpðU <tÞpðU ¼tÞdtdescribestheconditioninwhichtheprosaccade a 0 s p unitisinhibitedbythestopunitallowingforanantisaccade.Notethatiftheprosaccadeunit arriveslaterthantheantisaccadeunit,thearrivaltimeofthestopunitisirrelevant.That meansthatwecansimplifyEq4to (cid:18) Z (cid:19) t pðA¼anti;T ¼tÞ¼pðU ¼tÞ pðU >tÞþ pðU <tÞpðU ¼tÞdt : ð7Þ a p s p 0 Eqs3and7constitutethelikelihoodfunctionofasingletrial,anddefinethejointproba- bilityofanactionandthecorrespondingRT.WerefertothislikelihoodfunctionasthePRO- Stop-Antisaccade(PROSA)model.Itsharesthecentralassumptionsof[17],namely:(i)the timetoreachthresholdofeachoftheunitsisassumedtodependlinearlyontherater,(ii)it includesastopunitwhosefunctionistoinhibitprosaccadesand(iii)thereisnolateralinhibi- tionbetweenthedifferentunits.Finally,(iv)RTsareassumedtobeequaltothearrive-at- thresholdtimes.NotethattheRTdistributionsaredifferentfromthearrivaltimedistributions becauseoftheinteractionsbetweentheunitsdescribedabove.Themaindifferenceofthis modelcomparedto[17]isthatwedonotexcludeapriorithepossibilityoftheantisaccade unitarrivingearlierthantheotherunits.Asidefromthis,bothmodelsareconceptually equivalent. TheStochasticEarlyReaction,Inhibition,andLateActionModel (SERIA) ThePROSAmodelischaracterizedbyastrictassociationbetweenunitsandactiontypes.In otherwords,theunitu leadsunequivocallytoaprosaccade,whereastheunitu alwaystrig- p a gersanantisaccade.Thisimpliesthatifthedistributionofthearrivaltimesoftheunitsisuni- modalandstrictlypositive,thePROSAmodelcannotpredictvoluntaryslowprosaccadeswith alatepeak,orinsimplewords,thePROSAmodelcannotaccountforslow,voluntaryprosac- cadesthathavebeenpostulatedintheantisaccadetask[23].Similarly,ithasbeenarguedthat prosaccadeRTcanbedescribedbythemixtureoftwodistributions(forexample[2,22]). Toaccountforthis,weintroducetheStochasticEarlyReaction,InhibitionandLateAction (SERIA)model. PLOSComputationalBiology|https://doi.org/10.1371/journal.pcbi.1005692 August2,2017 4/36 SERIA—Amodelforerrorsandreactiontimesintheantisaccadetask Fig1.LayoutoftheSERIAmodel.Thepresentationofavisualcue(agreenbar)triggerstheraceofthreeindependent units.Theinhibitoryunitcanstopanearlyresponse.Importantly,bothearlyandlateresponsescantriggerpro-and antisaccades.NotethatthePROSAmodelisaspecialcaseoftheSERIAmodelinwhichπ =1andπ=0,i.e.allearly e l responsesareprosaccades,whereasalllateresponsesareantisaccades. https://doi.org/10.1371/journal.pcbi.1005692.g001 Accordingtothismodel,andinanalogytothePROSAmodel,anearlyreactiontakesplace attimetiftheearlyunitu arrivesbeforethelateandinhibitoryunits,u andu,respectively.If e l i theinhibitoryorlateunitarrivesbeforetheearlyunit,alateresponseistriggeredatthetime thelateunitreachesthreshold.Crucially,bothearlyandlateresponsescantriggerpro-and antisaccadeswithacertainprobability.Thus,inparalleltotheraceprocesseswhichdetermine RTs,anindependent,secondarydecisionprocessisresponsibleforwhichreactionisgener- ated.Fig1showsthestructureoftheSERIAmodel. Toformalizetheconceptofearlyandlateresponses,weintroduceanewunobservableran- domvariablethatrepresentsthetypeofresponseR2{early,late}.ThedistributionoftheRTs isanalogoustothePROSA-model,suchthat,forinstance,theprobabilityofanearlyresponse attimetisgivenby pðR¼early;T ¼tÞ¼pðU ¼tÞpðU >tÞpðU >tÞ ð8Þ e i l whereU,U,andU representthearrivaltimesoftheearly,inhibitory,andlateunits,respec- e i l tively.ThefundamentalassumptionoftheSERIAmodelisthatasecondarydecisionprocess, beyondtheracebetweenearly,inhibitory,andlateunits,decidestheactiongeneratedinasin- gletrial.Aninitialapproachtomodelthissecondarydecisionprocessistoassumethatthe actiontype(pro-orantisaccade)isconditionallyindependentoftheRTgiventheresponse PLOSComputationalBiology|https://doi.org/10.1371/journal.pcbi.1005692 August2,2017 5/36 SERIA—Amodelforerrorsandreactiontimesintheantisaccadetask type(earlyorlate).Hence,thedistributionofRTsisnotaprioricoupledtothesaccadetype anymore;RTdistributionsforbothpro-andantisaccadescouldinprinciplebebimodal,con- sistingofbothfastreactiveandslowvoluntarysaccades. Formally,theconditionalindependencyassumptioncanbewrittendownas pðA;TjRÞ¼pðAjRÞpðTjRÞ; ð9Þ pðA;TjRÞpðRÞ¼pðAjRÞpðTjRÞpðRÞ; ð10Þ pðA;T;RÞ¼pðAjRÞpðT;RÞ: ð11Þ Thetermp(A|R)issimplytheprobabilityofanaction,givenaresponsetype.Wedenoteitas pðA¼projR¼earlyÞ¼p 2½0;1(cid:138); ð12Þ e pðA¼antijR¼earlyÞ¼1(cid:0) p; ð13Þ e pðA¼projR¼lateÞ¼p 2½0;1(cid:138); ð14Þ l pðA¼antijR¼lateÞ¼1(cid:0) p: ð15Þ l SincethetypeofresponseRisnotobservable,itisnecessarytomarginalizeitoutinEq11to obtainthelikelihoodoftheSERIAmodel: pðA;TÞ¼pðA;T;R¼earlyÞþpðA;T;R¼lateÞ: ð16Þ ThecompletelikelihoodofthemodelisgivenbysubstitutingthetermsinEq16 pðA¼pro;T ¼tÞ¼ppðU ¼tÞpðU >tÞpðU >tÞþ e e i l (cid:18) Z (cid:19) t ppðU ¼tÞ pðU >tÞþ pðU ¼tÞpðU <tÞdt ; ð17Þ l l e e i 0 pðA¼anti;T ¼tÞ¼ð1(cid:0) pÞpðU ¼tÞpðU >tÞpðU >tÞþ e e i l (cid:18) Z (cid:19) t ð1(cid:0) pÞpðU ¼tÞ pðU >tÞþ ðU ¼tÞpðU <tÞdt : ð18Þ l l e e i 0 ItisworthnotingherethatthePROSAmodelisaspecialcaseoftheSERIAmodel,namely,it correspondstotheassumptionthatπ =1andπ =0.TheSERIAmodelallowsforbimodaldistri- e l butions,asbothearlyandlateresponsescanbepro-andantisaccades.Importantly,onepredic- tionofthemodelisthatlateprosaccadeshavethesamedistributionaslateantisaccades. Alateracecompetitionmodelforsaccadetype Untilnow,wehaveassumedthatthecompetitionthatleadstolatepro-andantisaccadesdoes notdependontimeinthesensethatlateactionsareconditionallyindependentofRT.This assumptioncanbeweakenedbypostulatingasecondaryracebetweenlateresponses;this leadsustoamodifiedversionoftheSERIAmodel,thatwerefertoasthelateraceSERIA model(SERIA ).ThederivationproceedssimilarlytotheSERIAmodel,exceptthatwepostu- lr lateafourthunitthatgenerateslateprosaccadesinsteadofassumingthatthelatedecisionpro- cessistimeinsensitive. PLOSComputationalBiology|https://doi.org/10.1371/journal.pcbi.1005692 August2,2017 6/36 SERIA—Amodelforerrorsandreactiontimesintheantisaccadetask ThisversionoftheSERIAmodelincludesanearlyunitu that,forsimplicity,weassume e producesonlyprosaccades,aninhibitoryunitthatstopsearlyresponsesu,alateunitthattrig- i gersantisaccadesu ,andafurtherunitthattriggerslateprosaccadesu .Asbefore,iftheearly a p unitreachesthresholdbeforeanyotherunit,aprosaccadeisgeneratedwithprobability pðU ¼tÞpðU >tÞpðU >tÞpðU >tÞ: ð19Þ e i a p Ifanyofthelateunitsarrivefirst,therespectiveactionisgeneratedwithprobability: Antisaccade: pðU ¼tÞpðU >tÞpðU >tÞpðU >tÞ: ð20Þ a p e i Prosaccade: pðU ¼tÞpðU >tÞpðU >tÞpðU >tÞ: ð21Þ p a e i Finally,iftheinhibitoryunitarrivesfirst,eitheralatepro-orantisaccadeisgeneratedwith probability 0 1 Zt B C Antisaccades: pðU ¼tÞpðU >tÞ@ pðU ¼tÞpðU >tÞdtA; ð22Þ a p i e 0 0 1 Zt B C Prosaccades: pðU ¼tÞpðU >tÞ@ pðU ¼tÞpðU >tÞdtA: ð23Þ p a i e 0 Implicitinthelasttwotermsisthecompetitionbetweenthelateunits,whichareassumed againtobeindependentofeachother.Formally,thiscompetitionisexpressedastheprobabil- ityof,forexample,thelateantisaccadeunitarrivingbeforealateprosaccadep(U =t)p(U > a p t).AschematicrepresentationofthemodelisshowninFig2.Thislateraceissimilartothe LinearBallisticAccumulationmodelproposedby[24],althoughinthatmodeldecisionsare seenastheresultofaraceofballisticaccumulationprocesseswithfixedthresholdbutstochas- ticbaselineandincreaserate.HereweonlyassumethatthelatedecisionprocessisaGO-GO race[21]. Thelikelihoodofanactionisgivenbysummingoverallpossibleoutcomesthatleadtothat action: pðA¼pro;T ¼tÞ¼pðU ¼tÞpðU >tÞpðU >tÞpðU >tÞþ e i a p 0 1 Zt B C pðU ¼tÞpðU >tÞpðU >tÞpðU >tÞþpðU ¼tÞpðU >tÞ@ pðU ¼tÞpðU >tÞdtA;ð24Þ p a i e p a i e 0 pðA¼anti;T ¼tÞ¼pðU ¼tÞpðU >tÞpðU >tÞpðU >tÞþ a p i e 0 1 Zt B C pðU ¼tÞpðU >tÞ@ pðU ¼tÞpðU >tÞdtA: ð25Þ a p i e 0 WehaveleftoutsomepossiblesimplificationsinEqs24and25forthesakeofclarity. PLOSComputationalBiology|https://doi.org/10.1371/journal.pcbi.1005692 August2,2017 7/36 SERIA—Amodelforerrorsandreactiontimesintheantisaccadetask Fig2.LayoutoftheSERIA model.Thepresentationofavisualcue(agreenbar)triggerstheraceoffour lr independentunits.Theinhibitoryunitcanstopanearlyresponse.Thelatedecisionprocessistriggeredbythe competitionbetweentwofurtherunits. https://doi.org/10.1371/journal.pcbi.1005692.g002 Theconditionalprobabilityofalateantisaccadeisgivenbytheinteractionbetweenthelate units,suchthat Z1 pðU <U Þ¼ pðU ¼tÞpðU >tÞdt ¼1(cid:0) pðU <U Þ; ð26Þ a p a p p a 0 isanalogoustotheprobabilityofalateantisaccade1−π intheSERIAmodel.Thisobservation l showsthatthemaindifferencebetweentheSERIAandSERIA modelisthattheformerpos- lr tulatesthatthedistributionoflatepro-andantisaccadesareequalandconditionallyindepen- dentoftheactionperformed,whereasthelatterconstrainstheprobabilityofalateantisaccade tobeafunctionofthearrivaltimesofthelateunits. Theexpectedresponsetimeoflatepro-andantisaccadeactionsisgivenby Z1 1 tpðU ¼tÞpðU >tÞdt; ð27Þ pðU <U Þ p a p a 0 PLOSComputationalBiology|https://doi.org/10.1371/journal.pcbi.1005692 August2,2017 8/36 SERIA—Amodelforerrorsandreactiontimesintheantisaccadetask Z1 1 tpðU ¼tÞpðU >tÞdt: ð28Þ pðU <U Þ a p a p 0 Wewillrefertothesetermsasthemeanresponsetimeofpro-andantisaccadeactions,incon- trasttothemeanarrivaltimes,whicharetheexpectedvalueofanysingleunit. Non-decisiontime Themodelsabovecanbefurtherfinessedtoaccountfornon-decisiontimesδbytransforming theRTttot =t−δ.Thedelayδmightbecausedby,forexample,conductancedelaysfromthe δ retinatothecortex.Inaddition,theantisaccadeorlateunitsmightincludeaconstantdelayδ , a whichisoftenreferredtoastheantisaccadecost[1].Notethatthemodelishighlysensitiveto δbecauseanyRTbelowithaszeroprobability.Inordertorelaxthisconditionandtoaccount forearlyoutliers,weassumedthatsaccadescouldbegeneratedbeforeδatarateη2[0,1]such thatthemarginallikelihoodofanoutlieris pðT <dÞ¼pðT <0Þ¼Z: ð29Þ d Forsimplicity,weassumethatoutliersaregeneratedwithuniformprobabilityintheinterval [0,δ]: Z pðT ¼tÞ¼ if t <d: ð30Þ d Furthermore,weassumethattheprobabilityofanearlyoutlierbeingaprosaccadewas approximately100timeshigherthanbeinganantisaccade.Becauseofthenewparameterη, thedistributionofsaccadeswithaRTlargerthanδneedstoberenormalizedbythefactor 1−η.InthecaseofthePROSAmodel,forexample,thismeansthatthejointdistributionof actionandRTisgivenbytheconditionalprobability pðA¼pro;T ¼t jt >0Þ¼pðU ¼t ÞpðU >t (cid:0) d ÞpðU >t Þ; ð31Þ d d p d a d a s d pðU <0Þ¼0; ð32Þ a (cid:18) Z (cid:19) td pðA¼anti;T ¼t jt >0Þ¼pðU ¼t (cid:0) d Þ pðU >t Þþ pðU ¼tÞpðU <tÞdt : ð33Þ d d a d a p d p s 0 AsimilarexpressionholdsfortheSERIAmodels.However,inthePROSAmodelaunit- specificdelayisequaltoanaction-specificdelay.Bycontrast,intheSERIAmodelbothearly andlateresponsescangeneratepro-andantisaccades.Thus,δ representsadelayinthelate a actionsthataffectsbothlatepro-andantisaccades. Parametricdistributionsoftheincreaserate Themodelsdiscussedintheprevioussectionscanbedefinedindependentlyofthedistribution oftherateofeachoftheunits.Inordertofitexperimentaldata,weconsideredfourparametric distributionswithpositivesupportfortherates:gamma[13],inversegamma,lognormal[25] andthetruncatednormaldistribution(similarlyto[22]and[24]).Table1andFig3summa- rizethesedistributions,theirparameters,andthecorrespondingarrivaltimedensities.We consideredfivedifferentconfigurations:1)allunitswereassignedinversegammadistributed rates,2)allunitswereassignedgammadistributedrates,3)theincreaserateoftheprosaccade PLOSComputationalBiology|https://doi.org/10.1371/journal.pcbi.1005692 August2,2017 9/36 SERIA—Amodelforerrorsandreactiontimesintheantisaccadetask Table1. Parametricdensityfunctionsoftheincreaserates. Name Parameters Ratep.d.f. Arrivaltimep.d.f. Gamma k,θ y(cid:0)ke(cid:0)r=yrk(cid:0)1 yk e(cid:0)y=tt(cid:0)k(cid:0)1 GðkÞ GðkÞ Inv.gamma k,θ yk e(cid:0)y=rr(cid:0)k(cid:0)1 y(cid:0)ke(cid:0)t=ytk(cid:0)1 GðkÞ GðkÞ Lognormal μ,σ2 pffi1ffiffiffi e(cid:0)12ðlnrs(cid:0)mÞ2 pffi1ffiffiffi e(cid:0)12ðlntsþmÞ2 2psr 2pst (cid:0) (cid:1) T.normal μ,σ2 Z1e(cid:0)12ðr(cid:0)smÞ2 Z1t2e(cid:0)12 t(cid:0)1s(cid:0)m 2 R (cid:16) (cid:17) ZisthenormalizationconstantZ¼ 1exp (cid:0) ðr(cid:0)mÞ2 dr. 0 2s2 https://doi.org/10.1371/journal.pcbi.1005692.t001 andstopunits(orearlyandtheinhibitoryunits)wasgammadistributedbuttheantisaccade (late)unit’sincreaseratewasinversegammadistributed,4)alltheunitswereassignedlognor- maldistributedratesor5)allunitswereassignedtruncatednormaldistributedrates. Alltheparametricdistributionsconsideredherecanbefullycharacterizedbytwoparame- terswhichwegenericallyrefertoaskandθ.Hence,thePROSAmodelischaracterizedbythe parametersforeachunitk ,k ,k,θ ,θ ,θ.TheSERIAmodelcanbecharacterizedbyanalogous p a s p a s parametersk,k,k,θ,θ,θ andtheprobabilitiesofearlyandlateprosaccadesπ andπ.Inthe e l i e l i e l caseoftheSERIA model,theprobabilityofalateprosaccadeisreplacedbytheparametersof lr alateprosaccadeunitk ,θ .Inadditiontotheunitparameters,allmodelsincludedthenon- p p decisiontimeδ,theantisaccade(orlateunit)costδ ,andthemarginalrateofearlyoutliersη. a Experimentalprocedures Inthissection,wedescribetheexperimentalprocedures,statisticalmethods,andinference schemeusedtoinvertthemodelsabove.Thedataisfromtheplaceboconditionofalarger pharmacologicalstudythatwillbereportedelsewhere. Fig3.Illustrationofprobabilitydistributionsusedtomodelincreaserates.Left:Distributionoftheratesbasedondifferentprobabilitydensity functions:Normal(red),gamma(blue),inversegamma(green),andlog-normal(cyan).Alldistributionswerematchedtohaveequalmeanand variance.Center:Probitplotsofthesamedistributions.Whilethegammaandlognormaldistributionsareveryclosetothestraightlineinducedbythe normaldistribution,theinversegammadistributiondivergesslightlymorefromlinearity.Right:Arrivaltimedistribution(scaledtoms). https://doi.org/10.1371/journal.pcbi.1005692.g003 PLOSComputationalBiology|https://doi.org/10.1371/journal.pcbi.1005692 August2,2017 10/36

Description:
each of the units and ultimately no explicit model of increase rates or thresholds is required. Thus, for the sake of clarity, we refer to this approach as a 'race' model, in contrast to 'race-to- threshold' models that explicitly describe increase rates and thresholds. Formally (but in a slight ab
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.