ebook img

Sequential structures in cluster algebras and representation theory PDF

163 Pages·2017·1.11 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Sequential structures in cluster algebras and representation theory

SEQUENTIAL STRUCTURES IN CLUSTER ALGEBRAS AND REPRESENTATION THEORY Florian Gellert BielefeldUniversity Athesissubmittedforthedegreeof DoctorofMathematics(Dr.math.) BielefeldinApril2017 Abstract Thisthesisdealswitharangeofquestionsinclusteralgebrasandtherepresentationtheory ofquivers. Inparticular,weprovidesolutionstothefollowingproblems: 1. Doesaclusteralgebraadmitaquantisationandifitdoes,howuniqueisit? 2. Whatisthesmallestsimply-lacedquiverwithoutloopsand2-cycleswhoseprincipal extensiondoesnotadmitamaximalgreensequence? 3. Consideringtheposetofquiverrepresentationsofcertainorientationsoftype A n diagramsinducedbyinclusion,whatisthewidthofsuchaposet? Inparticular,foragivenclusteralgebraweconstructabasisofthosematriceswhichpro- videaquantisation. Leadingtothesmallestsimply-lacedquiverasproposedabove,we proveseveralcombinatoriallemmasforparticularquiverswithuptofourmutablevertices. Furthermore,weintroduceanewkindofperiodicityintheorientedexchangegraphofprin- cipallyextendedclusteralgebras. Thisperiodicitywestudyinmoredetailforaparticular extendedDynkinquiveroftypeA˜n−1andshowthatityieldsaninfinitesequenceofcluster tiltingobjectsinsidethepreinjectivecomponentoftheassociatedclustercategory. Key words: (Quantum) Cluster Algebra, Cluster Category, (Maximal) Green Sequences, RepresentationTheoryofQuivers i Acknowledgements IwouldliketothankmysupervisorProf.HenningKrauseforhissupportandadviceduring the work on my PhD project. Special thanks go to Dr. Philipp Lampe with whom I was fortunatetodoresearchtogether,leadingtomanyinterestingconversationsandresults. Besidescreatingapleasantenvironmentinitself,thanksgotoallmembersoftheBIREP researchgroupforplentytalks,meetingsandsocialgatheringsthathaveaccompaniedme throughoutmytimehere. IamalsogratefultoBielefeldUniversityandtheBielefeldGraduateSchoolinTheoretical Sciencesforfinancialsupport,aswellastothemanyorganisingpartiesofconferencesand workshopsIwasluckytoattend. Bielefeld,21April2017 FlorianGellert Man braucht fürs Schreiben jede Menge Zeit zum Verschwenden. Ian McEwana aZEITMAGAZIN NR. 27/2015, available at http://www.zeit.de/zeit-magazin/2015/27/ian-mcewan-rettung iii Contents 1 Introduction 1 2 Preliminaries 7 2.1 SetTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 GraphTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 RepresentationTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Clusteralgebras 15 3.1 Definitionsandclassicalresults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Quantisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2.1 Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2.2 Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4 Greensequences 33 4.1 Definitionsandfundamentalresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.2 Permissiblevertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.3 Theorientedpentatope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.4 Periodicitiesintheorientedexchangegraph . . . . . . . . . . . . . . . . . . . . . . . . 58 4.4.1 Periodicitiesinclustertheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.4.2 Greenpermissibleperiods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.4.3 TheextendedDynkincaseA˜n−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5 Antichainsinposetsofquiverrepresentations 73 5.1 Posetproperties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.2 Linearorientation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.2.1 Simplezigzag. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.3 Alternatingorientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6 ConclusionandOutlook 81 Bibliography 85 v Contents Appendix 89 A Cyclicquiverswithmaximalgreensequences 91 B ExtendedexchangematricesforproofsinSection4.3 109 B.1 ExtendedexchangematricesfortheproofofLemma4.3.6 . . . . . . . . . . . . . . 109 B.1.1 ExtendedexchangematricesformutationsofQsource. . . . . . . . . . . . . 109 tri B.1.2 ExtendedexchangematricesformutationsofQsink . . . . . . . . . . . . . . 114 tri B.2 B-andC-matricesfortheproofofTheorem4.3.9 . . . . . . . . . . . . . . . . . . . . 116 B.3 B-andC-matricesfortheproofofTheorem4.3.11. . . . . . . . . . . . . . . . . . . . 124 C Code 135 C.1 Quantisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 C.2 Greenpermissibleperiods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 vi 1 Introduction Intheearlyyearsofthismillennium,SergeyFominandAndreiZelevinskyintroducedand studiedclusteralgebrasinaseriesoffourarticles[FZ02;FZ03;BFZ05;FZ07],oneofwhichis co-authoredbyArkadyBerenstein. TheirmotivationwastogainnewinsightsintoLusztig’s canonicalbasisofquantumgroupsandtotalpositivity. Sincetheintroductionofcluster algebras,thesealgebraicstructureshavebecomeawide-rangedandintenseresearchtopic withmanyconnectionstoseveralbranchesofmathematicssuchasrepresentationtheory, geometry,topologyandeventotheoreticalphysics. Clusteralgebrasarecommutativealgebraswhichareconstructedbygenerators—called clustervariables—whicharegroupedintooverlappingsetsofthesamecardinalityn — calledclusters—andrelationsinsideanambientfield. Whenevertwoclusterssharen−1 clustervariables,therelationbetweenthetwonon-identicalelementsofthesetwosetsis encodedinaskew-symmetricn×n integermatrix—theso-calledexchangematrix—and theoperationexchangingthesetwoclustervariablesiscalledmutation. Generalisingthisconcept,ArkadyBerensteinandAndreiZelevinskydefinedquantumcluster algebrasin[BZ05]. Theseareq-deformationswhichspecialisetoordinaryclusteralgebras intheclassicallimitq =1. Thesegeneralised,non-commutativealgebrasplayanimportant rôle in cluster theory: on the one hand, quantisations are essential when trying to link clusteralgebrastoLusztig’scanonicalbases,seeforexample[Lus93;Lec04;Lam11;Lam14; GLS13;HL10]. Ontheotherhand,GoodearlandYakimov[GY14]comparequantumcluster algebrasandtheirso-calledupperbounds,whichareintersectionsofLaurentpolynomial ringsgeneratedbyaninitialandonce-mutatedclusters. Itisshownthatforalargeclassof 1 Chapter1. Introduction casesthesetwoalgebrascoincide,yieldinganapproximationofclusteralgebrasbytheir respectiveupperboundsintheclassicallimit. Unfortunately,noteveryclusteralgebraadmitsaquantisation.Ifitexists,thentheassociated exchangematrixB˜ isnecessarilyoffullrankasshownin[BZ05]. Inthisthesisweconsider thereversedirectionandproveinconjunctionwiththeresultof[BZ05]thattheexistenceof quantisationsofaclusteralgebradependsonlyontherankofB˜. Theorem[Cf.Theorem3.2.4]. AclusteralgebraAassociatedtoanexchangematrixB˜ admits aquantisationifandonlyifB˜ hasfullrank. DependingonthedimensionofB˜,aquantisationoftheassociatedclusteralgebraisnot necessarilyunique. Thisambiguitywemakemoreprecisebyrelatingallpossiblequanti- sationsviamatricesweexplicitlyconstructfromagivenB˜ usingparticularminors. Inthis fashion,wereobtainthefollowingresultfrom[GSV03],wherethesubjectisconsideredin thelanguageofcertainPoissonstructures. Theorem[Cf.Corollary3.2.12]. LetB˜ =(cid:2)B(cid:3)beanm×n exchangematrixoffullrankandr C thenumberofconnectedcomponentsofthemutablepartoftheassociatedquiver. Thenthe solutionspaceofmatricesΛsatisfyingthedefinitionofquantumclusteralgebrastoagiven skew-symmetriserD ofB isavectorspaceovertherationalnumbersofdimension(cid:0)m−n(cid:1). 2 Inparticular,thesetofallquantisationsliesinarationalvectorspaceofdimensionr +(cid:0)m−n(cid:1). 2 Aspreviouslyremarked,clusteralgebrasalsohavestrongconnectionstotheoreticalphysics. Onesuchintersectionisgivenbyquantumdilogarithms,forwhichBernhardKellershowed in[Kel11]thatcertainmutationsequences—calledgreensequences—inaprincipally extendedclusteralgebraleadtoidentitiesofsuchfunctions. Theredorgreencolouringof mutableverticesinseedsofsuchclusteralgebrasisdeterminedbythesignofthecolumnsof theassociatedC-matrix. Here,thesign-coherenceofc-vectors,asproveninfullgenerality in[Gro+14],isanessentialingredientofthewell-definednessofthisnotion. Thedefinitionofgreensequencesinturnledtoawealthofnewquestions. Inparticular,the existenceofmaximalgreensequences—thoseendinginquiversinwhicheachmutable vertex is coloured red — given a particular quiver is of high interest. In [BDP14] it was proventhatallacyclicquiversadmitamaximalgreensequenceandthisresulthassince beenextendedtoallfinite-typeclusteralgebrasexceptthosewhichareofmutationtype (cid:88) ,cf. theworkofMatthewMillsin[Mil16]. Theknowncasesofcyclicquiverswhichdo 7 notadmitamaximalgreensequenceareratherlimited. Besidesthosequiversoftype(cid:88) , 7 coveredbyAhmetSevenin[Sev14],itwasshownbyGregMullerin[Mul16]thatcyclicquivers onthreeverticesforwhicheverysideofthe3-cycleisamulti-edgedonotadmitamaximal greensequence. 2

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.