ebook img

Sequential data assimilation with multiple models PDF

18 Pages·2012·0.63 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Sequential data assimilation with multiple models

JournalofComputationalPhysics231(2012)6401–6418 ContentslistsavailableatSciVerseScienceDirect Journal of Computational Physics journal homepage: www.elsevier.com/locate/jcp Sequential data assimilation with multiple models Akil Narayana, Youssef Marzoukb, Dongbin Xiua,⇑ aDepartmentofMathematics,PurdueUniversity,WestLafayette,IN47907,USA bDepartmentofAeronauticsandAstronautics,MassachusettsInstituteofTechnology,Cambridge,MA02139,USA a r t i c l e i n f o a b s t r a c t Articlehistory: Dataassimilationisanessentialtoolforpredictingthebehaviorofrealphysicalsystems Received18January2012 given approximate simulation models and limited observations. For many complex Receivedinrevisedform6May2012 systems, there may exist several models, each with different properties and predictive Accepted3June2012 capabilities.Itisdesirabletoincorporatemultiplemodelsintotheassimilationprocedure Availableonline21June2012 inordertoobtainamoreaccuratepredictionofthephysicsthananymodelalonecanpro- vide.Inthispaper,weproposeaframeworkforconductingsequentialdataassimilation Keywords: withmultiplemodelsandsourcesofdata.Theassimilatedsolutionisalinearcombination Uncertaintyquantification ofallmodelpredictionsanddata.Onenotablefeatureisthatthecombinationtakesthe Dataassimilation mostgeneralformwithmatrixweights.Bydoingsothemethodcanreadilyutilizediffer- Kalmanfilter Modelaveraging entweightsindifferentsectionsofthesolutionstatevectors,allowthemodelsanddatato havedifferentdimensions,anddealwiththecaseofasingularstatecovariance.Weprove thattheproposedassimilationmethod,termeddirectassimilation,minimizesavariational functional,ageneralizedversionoftheoneusedintheclassicalKalmanfilter.Wealsopro- poseanefficientiterativeassimilationmethodthatassimilatestwomodelsatatimeuntil allmodelsanddataareassimilated.Themathematicalequivalenceoftheiterativemethod andthedirectmethodisestablished.Numericalexamplesarepresentedtodemonstrate theeffectivenessofthenewmethod. (cid:2)2012ElsevierInc.Allrightsreserved. 1.Introduction Numericalsimulationsofmathematicalmodelsareessentialtoolsforpredictingthebehaviorofphysicalsystems.Myriad numericaltechniquesandapproximations areused tosimulatephysicalphenomenain fluiddynamics,electromagnetics, chemical systems, astrophysics, and more. Since all of these simulations involve approximations, uncertainty and error areinevitablypresentintheirpredictions.Tocomplicatematters,asinglephysicalprocessmaybedescribedbymultiple mathematical models and numerical approximations. In addition, one may have access to empirical observations of the system—noisyandlimitedinnumber,scope,andresolution.Anaturalquestiontoaskishowtocombinethemodelsand the observational data to predict the physical state with greater fidelity than can be obtained with any of the models individually? Varioustechniquesformodelaveraginganddataassimilation,allofwhichattempttoimplementsuchacombinationof modelsanddata,havereceivedattentioninrecentyears.Inthecaseofasingledynamicalmodelwithastreamofnoisy observations,theKalmanfilter[15,14]isbothsimpleandremarkablyeffective.TheassimilationstepoftheKalmanfilter updatesthestatebyweighingthemodelpredictionandthedatainordertominimizeaquadraticobjective.Thisoperation can be interpreted in many different ways, for instance, as a minimum variance estimator or as a Bayesian update. The ⇑ Correspondingauthor.Tel.:+17654962846. E-mailaddresses:[email protected](A.Narayan),[email protected](Y.Marzouk),[email protected](D.Xiu). 0021-9991/$-seefrontmatter(cid:2)2012ElsevierInc.Allrightsreserved. http://dx.doi.org/10.1016/j.jcp.2012.06.002 6402 A.Narayanetal./JournalofComputationalPhysics231(2012)6401–6418 originalKalmanfilterwasdesignedforlinearsystems,butderivatemethodsforfilteringnonlinearsystemsareplentiful,e.g. theextendedKalmanfilter[9,11],theensembleKalmanfilter[7,8]anditsvariants[1,2,5,21,24],andisthesubjectofexten- siveongoingwork. Theuseofmultiplemodelsforfiltering,ontheotherhand,hasseenlessdevelopment.Withstaticdatasets,Bayesian modelaveraging(BMA)isawell-establishedtechniqueforstatisticalpredictioninthepresenceofmodeluncertainty[10]. BMAwritesthepredictivedistributionofanyquantityofinterestasaweightedaverageoftheposteriorpredictionsdueto each model; the data-dependent scalar weights are the posterior model probabilities [19]. Alternatively, one might considernon-Bayesianapproachestomodelaveragingwithstaticdata;thesearegenerallyfocusedonprovidingpointpre- dictionsratherthanpredictivedistributions[10,6].Dynamicmodelaveraging(DMA)[20]generalizesBMAtothedynam- icalsetting,wheredataarrivesequentiallyandonewouldliketomakeonlinepredictionsaboutthestateofasystem.DMA updates the state conditional on a discrete model indicator, but some Markovian dynamics (e.g. a matrix of transition probabilities or a forgetting factor) for this model indicator must be specified. As in BMA, the predictive distribution is a mixture with one component for each model. Other methods for sequential estimation with multiple models include theInteractingMultipleModelfilter[4]andthegeneralizedpseudo-Bayesframework[23].Bothofthesetechniquesintro- ducedynamicsforthe‘‘switching’’behaviorbetweenmodelsand updatestateprobabilities basedoninnovationsfroma Kalman filter. Likealloftheaforementionedmethods,weproposeanassimilationtechniquethatreliesonaweightedarithmeticmean ofthemodels.Alimitationofthepreviousmethods,however,isthattheweightsusedinmodelaveragingarescalar-valued, evenwhenthestateisvector-valued.Therefore,theassimilationprocesscannotemploydifferentmodelweightsindifferent sectionsofthestatevector(correspondingtoregionsofspacewhereonemodelmightbesuperiortoanother,forinstance). Inthispaperweconsidermoreageneralassimilationtechnique:ifu ;...;u arestatevectorsforMdifferentmodelsandd 1 M isthedatavector,weattempttofindanassimilatedstatewoftheform XM w¼ A u þBd; ð1:1Þ m m m¼1 whereA andBarematrices.Therefore,weallowourassimilationtobethemostgenerallinearfunctionalofallthemodels m anddata.Thisformalsoallowsthemodelstatesanddatatohavedifferentdimensions.Alsoitispossibletohavedifferent, independentsourcesofdatad ;...;d ,measuringdifferentquantities-of-interest.Mathematicallytheycanbeconcatenated 1 N intoasinglevectord,allowingustouse(1.1)asageneralform.(Wewillshowthatassimilatingdataisphilosophicallythe sameassimplytakingthedatatobeextramodelstatesin(1.1).Inotherwords,ourmethodtreatsmodelpredictionsand dataasidenticalmathematicalobjects.) Wederiveourassimilationtechniquebyminimizingavariationalfunctionalsimilarto,andageneralizationof,theone usedintheclassicalKalmanfilter.Withonlyasinglemodelanddata,theassimilationisidenticaltotheKalmanfilter.When twoormoremodelsarepresent,thedirectassimilationintheform(1.1)canbeemployed,wheretheexplicitformsofthe matricesA andBarederived.Forpracticalsystemswithlargedimensions,wealsoproposeamoreefficientiterativeassim- m ilationmethod,whichseekstoperformaseriesoftwo-modelassimilationsuntilallmodelsanddataareassimilated.We thenestablishthemathematicalconditionsunderwhichtheiterativeassimilationisequivalenttothedirectassimilation, and more importantly, invariant to the permutation of the model states. Our proposed iterative assimilation approach canalsohandlesingularmodelanddatacovariancematrices.LikeallKalmanfilteringmethods,thepresentmethodology requirestheprescriptionandpropagationofthemodelcovariances.However,themethodisratheraframeworkandnottied toanyspecificalgorithmforcovariancepropagation.Therefore,themethodcanbereadilycombinedwithmostvariantsof theKalmanfilter,suchastheensembleKalmanfilter. Itisworthpointingoutthattheexplicitinclusionofthedatainourassimilationmethod(1.1)representsasubtle,andyet important,differencefromtheBMA.InBMA,theroleofdatapresentsitselfimplicitlyintheformoftheaveragingweights, whichisdeterminedbytheposteriorprobability.Asaresult,theBMAisan‘‘average’’ofallmodels.Whenallmodelsare consistentlybiasedtowardsonesideoftheprediction,theBMAresultis,byconstruction,guaranteedtobenobetterthan thebestavailablemodel.Theformof(1.1)effectivelypreventsthisfromhappening. In Section 2 we formalize notation and present the assimilation problem. This section also reviews existing assimila- tion methods that are relevant to our discussion. Section 3 introduces our algorithm and presents its mathematical jus- tification. In doing so, we compare a simultaneous assimilation procedure with a sequential assimilation procedure, and make the argument that the sequential procedure is more robust. A Bayesian interpretation of both procedures is also provided. Section 4 provides examples of our assimilation method in practice, and Section 5 follows with closing remarks. 2.Problemsetup Inthissectionwepresenttheoverallproblemofdataassimilationwithmultiplemodels,formalizingtheassumptions andnotationtobeusedinsubsequentanalysis.WealsoreviewtheKalmanfilter(KF),whichiswidelyusedindataassim- ilationwithasinglemodelandcloselyrelatedtoourproposedmethodformultiplemodelassimilation. A.Narayanetal./JournalofComputationalPhysics231(2012)6401–6418 6403 2.1.Dataassimilationwithmultiplemodels Followingusualpracticeindataassimilation,wepresentourmodelsintheformofdynamicalsystems,emphasizingthe temporalnatureoftheproblem.Letut2RNt,NtP1,denotethe‘‘truestate’’ofaphysicalphenomenon.Typicallyut isafi- niterepresentationofthespatiallydistributedstateofthephysicalsystem,aftersomespatialdiscretizationhasbeenap- plied.Moregenerally,ut isaquantityofinterestwhoseevolutionwewishtotrack.Thisevolutionisgovernedbycertain physicallawsandprocessesthatarenotcompletelyavailabletous.Nonetheless,wesupposethatthereexistssomeoperator thatcapturestheexactevolutionofthesystemunderconsideration.Consideringonlydiscretevaluesoftimet ,wecanwrite k utðt Þ¼Lðt ;utðt ÞÞ; ð2:1Þ kþ1 k k wheretheoperatorLisunknowntous,butrepresentstheevolutionofthetruthstateutfromonepointintimetothenext. InsteadofL,wehaveasetofmodelsindexedbym¼1...M,thatapproximatetheevolutionofut indifferentways.In particular,thesemodelsspecifythetemporalevolutionofdistinctstatevectorsum2RNm viaanoperatorgm: du m¼g ðt;u Þ; t2ð0;T(cid:2); dt m m ð2:2Þ u ð0Þ¼u ; m m;0 withT>0.Solutionsofthedifferentialequationsabovearethe‘‘forecast’’statesu ðtÞ.Wedefinethediscretesolutionoper- m atorforeachsystem,givenby u ðt Þ¼G ðt ;u ðt ÞÞ; ð2:3Þ m kþ1 m k m k wheretheoperatorG isthediscretizedversionofg ,andmaybenonlinearinu .Noteastrictfirst-orderMarkoviansetting m m m has been used throughout this section. This is done for mere notational convenience and does not affect our discussion below. Theforecaststatesareusefulbecausetheycarryinformationaboutthetruestate.Wewillassumethat,atanygiventime t ,theforecaststatevariablesu arelinearlyrelatedtothetruestateut,withtheadditionofastochasticdiscrepancy.In k m otherwords,wehave u ¼H utþ(cid:2) ; m¼1;...;M; ð2:4Þ m m m whereHm2RNm(cid:3)Nt,and(cid:2)m,satisfyingE½(cid:2)m(cid:2)¼0,arerandomvariablesthatcapturethediscrepancybetweenthetransformed truestateandu .Notethatthe(cid:2) canbetime-dependent. m m Inpracticetherelationbetweentheforecaststatesandthetruestatescouldbenonlinear: u ¼H ðutÞþ(cid:2) ; m¼1;...;M; ð2:5Þ m m m forsomenonlinearoperatorsH .Ourtechniqueusesafilteringproceduretoassimilatedifferentmodels,andincaseswhen m the measurement operators H are not linear, then nonlinear filtering techniques such as the Unscented Kalman Filter m [13,12]orparticlefilters[18,22]areappropriate.Herewerestrictourselvestothelinearcase,withtheunderstandingthat onecouldreplaceouruseoftheKalmanfilterwithanyappropriatenonlinearassimilationtechnique.Onecouldalsocon- sider(2.4)tobeanapproximationorlinearizationofthenonlinearoperatorH ,asoftendoneinpractice. m Weused2RNd; NdP1,todenoteasetofmeasurements d¼Hutþ(cid:2); ð2:6Þ whereH2RNd(cid:3)Nt isthemeasurementmatrixand(cid:2)2RNd isthemeasurementerrorsatisfyingE½(cid:2)(cid:2)¼0.Notethattherela- tionshipbetweenthemeasurementandthetruesolutioncouldingeneralbenonlinear,butwefocushereonthelinearcase. (AgainthemeasurementmatrixHcouldbeconsideredasalinearizationofanonlinearmeasurementoperator.)Ouruseof thediscrepancyterms(cid:2)and(cid:2) encompassesmanysourcesofuncertaintyincluding,butnotlimitedto,modeldiscrepancy, m temporal/spatialnumericaldiscretizationerror,numericalroundofferror,andmeasurementerror.Alsonotethat(2.6)easily generalizestothecaseofmultiplemeasurementsthatareconditionallyindependentgivenut.Forourpurposesitisnota- tionallyconvenienttocollectalltheseobservationsintoonevectord,butthealgorithmwepresentbelowcanimmediately beappliedtoassimilationproblemswheredifferentmeasurementsaretreatedasseparatevectors. Ourgoalistoconstructan‘‘analyzedsolution,’’denotedbyw2RNt andoftheform(1.1),usingtheforecastsolutions fu gM andthemeasurementdtoprovideamoreaccuratepredictionofthetruesolutionut. m m¼1 2.2.Kalmanfilter TheKalmanfilter(KF)iswidelyusedfordataassimilationwithasinglemodel;hereweonlylistrelevantproperties,and morein-depthdiscussioncanbefoundin[8].FollowingoursetupinSection2.1,weconsiderthecaseofM¼1andH ¼I, 1 whereIistheidentitymatrix.Thatis,thereexistsonlyoneforecaststateu anditisadirectpredictionofthetruestateut. 1 Let U12RN1(cid:3)N1 be the covariance matrix of the forecast solution u1 and suppress the subscript 1 hereafter only in this 6404 A.Narayanetal./JournalofComputationalPhysics231(2012)6401–6418 section.TheanalyzedsolutionwobtainedbythestandardKFisalinearcombinationoftheforecastsolutionuandthemea- surementdinthefollowingmanner, w¼uþKðd(cid:4)HuÞ; ð2:7Þ whereKistheso-calledKalmangainmatrixdefinedas K¼UHTðHUHTþDÞ(cid:4)1: ð2:8Þ Here the superscript T denotes the matrix transpose, and D2RNd(cid:3)Nd is the covariance of the measurement error (cid:2). The covariancematrixoftheanalyzedstatew,W2RNt(cid:3)Nt,isthenobtainedbytheupdate W¼ðI(cid:4)KHÞUðI(cid:4)KHÞTþKDKT ¼ðI(cid:4)KHÞU: ð2:9Þ Thisassimilationprocessisrepeatedateveryinstanceoftimewhendataisavailable.Theanalyzedstatewisthesolution thatminimizesthefollowingvariationalfunctional: J½w(cid:2)¼ðw(cid:4)uÞTU(cid:4)1ðw(cid:4)uÞþðHw(cid:4)dÞTD(cid:4)1ðHw(cid:4)dÞ: ð2:10Þ Therearemanywaystorationalizethedesiretominimizetheobjective(2.10).ThefunctionalJ½w(cid:2)isthesumofMahalan- obisdistancesbetweentheknownstatesVuandVdandwewanttofindastateVwlyingascloseaspossibletobothofthem. Alternatively,wemayposetheproblemintheBayesianframework:wesupposethatuanditscovariancespecifyaprior Gaussiandistributiononstatespace;assuminglikewisethatdisobtainedasaGaussianperturbationfromlinearmeasure- mentsthetruth,thelikelihoodofobservingthedatacanbecomputed.Wethentaketheanalyzedstatewtobethemodeof theposterior;equivalently,wminimizesthenegativelog-likelihoodoftheposterior.Inthissetup,thenegativelog-likeli- hoodisgivenbyJ,cf.(3.14)andSection3.7. 3.Assimilationofmultiplemodels Wepresentouralgorithmformultiplemodelassimilationinthissection.Section3.1beginsbystandardizingournota- tion.Ouralgorithmisimplicitlyrelatedtotheproblemofcomputingharmonicmeansofcovariancematrices,andsoSection 3.2introducestheconceptofharmonicmeansonpositivesemi-definitematrices.Anunavoidablecomplicationthatmay ariseinanyassimilationprocedureistheexistenceofmodeland/ormeasurementstatesthathavecompetingvaluesthat cannotbeclearlyresolved.WeacknowledgethisrealityinSection3.3andpresentsufficientconditionsunderwhichdiffer- ingvaluescanbeunambiguouslyassimilated.Section3.4presentsaversionofouralgorithmthatsimultaneouslyassimilates allmodelsandmeasurements,andSection3.5followsupwithourproposedsequentialalgorithm.Wethenprovideasimple exampletodemonstratewhysequentialassimilationispreferred.Section3.7concludesbyprovidingaBayesianinterpreta- tionofthemulti-modelassimilationscheme. 3.1.Preliminaries WeworkonacompleteprobabilityspaceðX;F;lÞwithXthecollectionofevents,Far-algebraonsetsofX,andlaprob- ability measure on F. All random variables considered here are in the L2 stochastic space: u2L2 )R kuðxÞk2dlðxÞ¼ l X kuðxÞk2 (cid:5)Ekuk2<1,wherekukisthestandardEuclideannormwhenuisvector-valued;thisissufficienttoensuretheexis- l tence of the mean and variance of u. When talking about limits of random variables, equality is in the L2 sense: l lime!0ue¼u)kue(cid:4)ukl!0. Throughoutthispaperwewilluselowercaseboldfaceletters(e.g.u)todenotevectorsanduppercaseboldfaceletters(e.g. A)todenotematrices.AT andAydenotethematrixtranspose,andtheMoore–PenrosepseudoinverseofA,respectively.For randomvectorswewillusethesameletterbutwithuppercasetodenotetheircorrespondingcovariancematrices.Forexam- ple,letv2RNbearandomvectorwithzeromean,thenV¼E½vvT(cid:2)2RN(cid:3)Ndenotesitscovariancematrix.AsquarematrixAis positivedefiniteifvTAv>0forallnon-trivialv,andispositivesemi-definite(or‘semi-positive’)ifvTAvP0.Foranyfixed sizeN,thespaceofallN(cid:3)NpositivedefinitematricesisdenotedbyH,andthespaceofallpositivesemi-definitematricesby H . 0 3.2.Matrixharmonicmeans ThestandardwaytodefineaharmonicmeanforpositivedefinitematricesA ;A 2His 1 2 (cid:2) (cid:3)(cid:4)1 F ¼2 A(cid:4)1þA(cid:4)1 2 1 2 anditisnotdifficulttoimaginegeneralizingthistoasequenceofmatricesA 2H; m¼1;...;M: m F ¼M XM A(cid:4)1!(cid:4)1: ð3:1Þ M m m¼1 A.Narayanetal./JournalofComputationalPhysics231(2012)6401–6418 6405 Itisclearthatthiscannotbeusedfor(non-invertible)semi-positivematrices.However,onecanproceedbytakingadifferent route. Definition1 (Matrixharmonicmean).LetA1;...;AM2H0,anddefineF1¼W1¼A1.Form¼2;...;M,define: W ¼W ðW þA ÞyA ; ð3:2aÞ m m(cid:4)1 m(cid:4)1 m m F ¼mW : ð3:2bÞ m m F iscalledtheharmonicmeanofthematricesA ;...;A . M 1 M This definition coincides with the traditional definition of harmonic means of MP2 positive-definite matrices. More importantly,thisdefinitionisageneralizationtosemi-positivematrices. Theorem1. ForasequenceofmatricesAm;m¼1;...;M,onH,theharmonicmeanofDefinition1coincideswiththeformula (3.1).ForAm onH0;FM is 1. closedonH :F 2H ; 0 M 0 2. continuous:ifFe istheharmonicmeanofAe;...;Ae 2H whereAe !A thenFe !F ; M 1 M 0 m m M M 3. consistent:A ¼A ¼(cid:6)(cid:6)(cid:6)¼A )F ¼A ; 1 2 M M 1 4. symmetric: For m ;m ;...;m any permutation of 1;2;...;M, the harmonic mean of A ;...;A is the same as that of 1 2 M m1 mM A ;A ;...;A ; 1 2 M 5. decreasing:F 6A forallm; M m 6. monotone:IfA 6B forallm,thenF 6J ,whereF istheharmonicmeanoftheA andJ istheharmonicmeanoftheB . m m M M M m m m TheabovepropertiesjustifycallingF amatrixmean.TheAppendixcontainstheproof,alongwithmathematicaldiscus- M sionsthatarenotdirectlyrelatedtoourpresenttaskofmultiplemodeldataassimilation. Wenoteherethatusingpropertiesofpseudoinversesonemayrewritetheiterativeprocedure(3.2a(a))forupdatingW : m (cid:2) (cid:3) W ¼ I(cid:4)W ðW þA Þy W ,ðI(cid:4)KÞW m m(cid:4)1 m(cid:4)1 m m(cid:4)1 m(cid:4)1 ComparingthiswiththeKalmanfiltercovarianceupdatefrom(2.8)and(2.9)whenH¼I,weseethattheiterativeprocedure forcomputingharmonicmeansisalmostidenticaltoastandardKalmanfilterprocedure. Ouralgorithmformodelassimilationproducesanassimilatedmodelstatewhosecovarianceisproportionaltothehar- monicmeanoftheinputcovariances.(IftheinputcovariancesareA ,thenthematrixW from(3.2b)istheassimilated m M covariance.)WewillseelaterthatthealgorithmitselfcanbeimplementedbyiteratingastandardKalmanfilter,andthus implicitlyusestheiterativedefinitionofthematrixharmonicmean(3.2b)tocomputetheassimilatedstate. 3.3.Consistentrandomvariables Anyassimilationproceduremustprecludethesituationwherethereisnologicalwaytoreconcileaquantitativediffer- encebetweentwomodels.Forexample,ifwehavetwomodelsofascalarquantityofinterestwithu ðxÞ¼1andu ðxÞ¼2 1 2 almostsurely,thennoassimilationprocedurecanproduceagoodsynthesis.Inoursetting,weexcludesuchsituationsby insistingthattherandomvariablescorrespondingtoourmodelstatevectorsareconsistent. Definition2. ConsiderL2ðXÞrandomvectorsum2RNm,m¼1;...;M,eachpairedwithameasurementmatrixHm2RNm(cid:3)Nt, whereN isthesizeofthetruthstate.1Thenu areconsistentifthecomponentsineachrandomvariablecorrespondingto t m zero variance can be assimilated, almost surely without contradiction, from the other variables. More precisely, let S0 be a m matrixoforthogonalcolumnvectorscorrespondingtothenullspaceofU .Thenu areconsistentifthelinearsystemdefined m m bytheMvector-valuedequations (cid:2) (cid:3)T (cid:2) (cid:3)T S0 H w¼ S0 E½u (cid:2); m¼1;2;...;M ð3:3Þ m m m m hasatleastonesolutionforthevectorw. Thecondition(3.3)essentiallystatesthattherandomvariablesu donothavecompetingzero-variancecomponents.If m alltherandomvariablesu havestrictlypositivecovariancekernels,thentheyareautomaticallyconsistent.Inallthatfol- m lows,wewillonlyconsidercollectionsofrandomvariablesthatareconsistent. 1 Recallfrom(2.4)thatHm isonlyusedtoconnectmodelstatestothetruthsolution.Thesourceofrandomness,whetherstemmingfrom(cid:2)m orfrom randomnessinthetruth,ishereirrelevant. 6406 A.Narayanetal./JournalofComputationalPhysics231(2012)6401–6418 3.4.Mainresult:directassimilationmethod Wenowprescribeamethodforassimilatingmultiplemodelsalongwithdata.Thesingle-modelKalmanfilterprocedure canbeidentifiedasminimizingthevariationalfunctional(2.10).Thissuggeststhatanassimilationprocedureforassimilat- ingmultiplemodelswithdatacanbeproposedsimplybymakingappropriatechangestothevariationalfunctional. Theorem2. ConsiderasetofMforecaststatesum;m¼1;...;M,satisfying(2.4)andwitherrorcovarianceUm¼E½(cid:2)m(cid:2)Tm(cid:2)2H, anddatavector(2.6)witherrorcovarianceD¼E½(cid:2)(cid:2)T(cid:2)2H.AssumethattherowspacesofHandHm spanallRNt: spanfranH;ranH ;ranH ;...;ranH g: ð3:4Þ 1 2 M Define J½w(cid:2)¼XM ðH w(cid:4)u ÞTU(cid:4)1ðH w(cid:4)u ÞþðHw(cid:4)dÞTD(cid:4)1ðHw(cid:4)dÞ; ð3:5Þ m m m m m m¼1 thentheminimizersatisfies ! w¼W XM HTU(cid:4)1u þHTD(cid:4)1d ; ð3:6Þ M m m m m¼1 whereW isgivenby: M W ¼ XM HTU(cid:4)1H þHTD(cid:4)1H!(cid:4)1: M m m m m¼1 Proof. Theproofcanbeeasilyobtainedbystraightforwardcalculus,wherethecondition(3.4)isrequiredtoassurestrict positivityofJ½w(cid:2). h Theanalyzedstateiswandtheanalyzedmodelstatesare v ¼H w; m¼1;...;M: ð3:7Þ m m ThematricesA in(1.1)arethusgivenby m A ¼W HTU(cid:4)1: ð3:8Þ m m m m Thetechnicalassumption(3.4)ismade2toensureauniqueminimizerforthequadraticformJ.While(3.6)willproducethe assimilatedstatewepropose,theassumptionsU ;D2H,i.e.,strictlypositivedefinitecovariances,maybetoorestrictivein m practice.(NotethatundersuchanassumptionallrandomvariablesinTheorem2areautomaticallyconsistent.)Thisrestriction canberelaxedbyusingamorerobustiterativeassimilationmethod. 3.5.Mainresult:iterativeassimilationmethod Wenowpresenttheiterativeassimilationmethodthatbehavesinamorerobustmanner,inthesensethatitcanreadily dealwithsemi-positivecovariancematrices. Theorem 3. Consider a set of M forecast variables um;m¼1;...;M, satisfying (2.4) and with error covariance Um¼E½(cid:2)m(cid:2)Tm(cid:2)2H0, and data vector (2.6) with error covariance D¼E½(cid:2)(cid:2)T(cid:2)2H0. Assume3 that H1¼I; set w1¼u1 and W1¼U1.Form¼2;3;...;M,let (cid:2) (cid:3)y K ¼W HT H W HT þU m m(cid:4)1 m m m(cid:4)1 m m (cid:2) (cid:3)y w ¼w þK ðu (cid:4)H w Þ¼w þW HT H W HT þU ðu (cid:4)H w Þ; ð3:9Þ m m(cid:4)1 m m m m(cid:4)1 m(cid:4)1 m(cid:4)1 m m m(cid:4)1 m m m m m(cid:4)1 (cid:2) (cid:3)y W ¼ðI(cid:4)K H ÞW ¼W (cid:4)W HT H W HT þU H W m m m m(cid:4)1 m(cid:4)1 m(cid:4)1 m m m(cid:4)1 m m m m(cid:4)1 2 Intheabsenceofanypriorinformationaboutthetruthstate,wealsoconsiderthisconditionasrequiredtoavoidinfinities:ifweknownothingaboutthe truthstateut,and(3.4)isviolated,allthemodelsanddataessentiallycontaininsufficientinformationtosayanythingaboutcertaincomponentsofut. Neverthelesswemustassignsomevaluetothesecomponents.Inordertocommunicateourlackofknowledge,prescribinginfinitevarianceistheonly quantitativelyaccurateassignment. 3 Thisassumptionismadeforsimplicityandisrelatedtotheconcernfromfootnote2.Weakeningthisassumption(H1–I)ispossiblebutrequiresspecial treatmenttoavoidinfinitevariancesintheearlystagesoftheassimilationprocedure.WhenH1–Ionecanformulateawell-definedassimilationprocedureso longas(3.4)holds. A.Narayanetal./JournalofComputationalPhysics231(2012)6401–6418 6407 Finally,assimilatethedatavector: (cid:2) (cid:3)y K¼W H HU HTþD M M ð3:10Þ w ¼w þKðd(cid:4)Hu Þ; Mþ1 M M W ¼ðI(cid:4)KHÞW : Mþ1 M W isthecovarianceofw .WhenU ; D2H,thenw isthesameaswfrom(3.6).Ifu ;...;u areconsistentrandomvari- m m m Mþ1 1 M ables,thenw isindependentoftheorderingintheiterativeprocedure(3.9). M WegivetheproofintheAppendix.Itisinthisproofthatwerequirethedefinitionofconsistentmodelstatesinorderto guaranteethattheassimilatedstatedoesnotdependontheorderingofthemodelstates. TherearemanyobservationstomakeabouttheiterativeproceduredefinedinTheorem3. (cid:7) Theiterativemethodallowsthecovariancematricestobesemi-positive.Whenthecovariancematricesarepositive,the iterativemethodisequivalenttothedirectmethod.Thereforetheiterativemethodhasamathematicallywiderrangeof applicabilitythanthedirectmethod. (cid:7) TheassumptionH ¼Iismadeonlytomakepresentationoftheassimilationprocedureclearer.Generallyweareinter- 1 estedindynamicalsystems,sothereisamodelstatewfromtheprevioustimestepthatcanbeused (cid:7) Theorderingoftheassimilationproceduredoesnotmatteriftherandomvariablesu ; m¼1;...;M,anddareconsis- m tent.Infactitisalsoindependentofthedata/modelordering.Therefore,onecantreatdataasanothersetofmodelsim- ulation results. Consequently, multiple and conditionally independent sources of data can be assimilated by simply performingadditionaldataassimilationsteps,independentoftheordering. (cid:7) ThematrixW canbeinterpretedasaharmonicmeanofthematricesU whenpairedwiththemeasurementmatrices M m H .IftheH areallidentitymatrices,thenW isexactly1=MtimestheharmonicmeanoftheU ,whereDefinition1is m m M m usedwhenanyoftheU issemi-positive.SeealsothediscussionattheendofSection3.2. m (cid:7) TheiterativeprocedureoutlinedaboveisessentiallyasequentialapplicationofastandardKalmanfilterupdate.(Useof thepseudoinverseisthemaindifference.)Thus,assimilationofeachnewmodelmaybeviewedasasingle-modelKalman filterupdate. (cid:7) Theiterativeschemeallowsonetoassimilateanysubsetofmodelsanddataattimeswhentheyareavailable.Oneprac- ticaluseofthisistheabilitytoassimilateonlymodelstatesintheabsenceofdata.Anexampleofsuchasituationisgiven inSection4.3. Theiterativeassimilationmethodcanbeimplementedinastraightforwardmanner: (cid:7) Initialization.Formodelu anddatad,performthestandardKalmanupdatetoobtainananalyzedmodelstatew with 1 1 covarianceW . 1 (cid:7) Iteration.Form¼2;...;M,applytheprocedure(3.9).Inotherwords,considerthepresentassimilatedmodelstatew m(cid:4)1 withitscovarianceW tobetheforecaststate,andconductaKalmanupdateusingthenewmodelpredictionu as m(cid:4)1 m ‘‘data’’ (with measurement matrix H ) to obtain the new analyzed state w¼w and the analyzed model states m Mþ1 v ¼H w. m m 3.6.Somemotivatingexamples ThedirectassimilationapproachisapplicabletocaseswhenthequadraticformJ from(3.5)ispositivedefinite;thisis satisfied,forexample,undertheassumptionsofTheorem2.Inothercases,forexamplewhensomecomponentshavezero variance,theiterativeprocedureismoreappropriate.However,theiterativeassimilationapproachisonlyrobustifthemod- elstatesareconsistent.Ifthemodelstatesarenotconsistent,thenonemustabandonthehopeofproducinganassimilation thatisfaithfultoallthemodels.Wenowpresentexamplesthatshowcasethesevarioussituations. Supposewehavetwomodelsu ;u 2R2withidentityobservationmatricesH ¼H ¼I.Thedirectassimilationscheme 1 2 1 2 istoformthevariable h i w¼ðU(cid:4)1þU(cid:4)1Þ(cid:4)1 U(cid:4)1u þU(cid:4)1u : ð3:11Þ 1 2 1 1 2 2 IfU andU arepositivedefinite,thereisnoissue.Butletusexploretheissueofcontinuitywithrespecttosemi-positive 1 2 definitematrices.Letusparameterizetheserandomvariableswithrespecttoasmallpositiveperturbatione: (cid:4)e 0(cid:5) (cid:4)1 0(cid:5) Ue ¼ ; Ue ¼ ; 1 0 1 2 0 e (cid:4)u (cid:5) (cid:4)u (cid:5) u ðxÞ¼ 11 ; u ðxÞ¼ 21 : 1 u 2 u 12 22 6408 A.Narayanetal./JournalofComputationalPhysics231(2012)6401–6418 Thevaluesofu andu arenotimportant,butclearlytheiruncertaintiesdependone.Smallvaluesofecorrespondtothe 1 2 casewhereu haslittleuncertaintyinitsfirstcomponent,andu haslittleuncertaintyinitssecondcomponent.The‘sen- 1 2 sible’waytoassimilatesuchstatesthen,istoputmostoftheweightonu andu .Indeedthedirectassimilationprocedure 11 22 doesexactlythis;fore>0weobtainfrom(3.11) we¼ 1 (cid:4)u11þeu21(cid:5): eþ1 eu þu 12 22 Wecandefinew¼lime!0we andUj¼lime!0Uej.Clearly,w¼ðu11;u22ÞT.Onecanverifythateitheriterativeprocedure w¼u þU ðU þU Þyðu (cid:4)u Þ ð3:12aÞ 1 1 1 2 2 1 w¼u þU ðU þU Þyðu (cid:4)u Þ ð3:12bÞ 2 2 2 1 1 2 producesthisstatewregardlessofordering(indeedU þU ¼I>0sothepseudoinverseisnotevennecessary).Onemay 1 2 thenbetemptedtousethedirectapproach(3.11),butbynaïvelyreplacingalldirectinverses(cid:4)1bypseudoinverses(cid:2).Ifwedo thisandthenapply(3.11),weobtainastatew¼ðu ;u ÞT.Thisstateistheoppositeofwhatweshoulddo:wecompletely 21 12 ignorethecomponentsthatwehavethemostinformationabout.Thisshowsthatthedirectassimilationapproachcannotbe remediedforpositivesemi-definitecovariances. Letusnowshowhowtheiterativeschemetreatsconsistentrandomvariableswithsemi-positivecovariances.Againwe takeu ;u 2R2,andwenowprescribethecovariances 1 2 (cid:4)e 0(cid:5) (cid:4)1 0(cid:5) Ue ¼ ; Ue ¼ : 1 0 e 2 0 e Wenowexpectthattheprocedureshoulddiscardu infavorofu ,andshouldequallyweighthevaluesfromu andu . 21 11 12 22 Whene>0wecanuseeitherthedirectoriterativeschemestoobtain 1 ðu þeu Þ! we¼ eþ1 11 21 : 1u þ1u 2 12 2 22 Takinglimitsweobtainwð1Þ,lime!0we¼(cid:6)u11;12u12þ12u22(cid:7)T asexpected.AgaindefineU1¼lime!0Ue1 andsimilarlyforU2. The iterative scheme (3.12a) produces the state wð2Þ¼ðu ;u ÞT whereas the second scheme (3.12b) produces 11 12 wð3Þ¼ðu ;u Þ.Bothofthesearepotentiallydifferentfromwð1Þ,andfromeachother.However,ifu andu areconsistent 11 22 1 2 randomvariables,thenu andu arealmostsurelyequal,andthereforewð1Þ¼wð2Þ¼wð3Þ almostsurely,sothatthefinal 12 22 choiceamongthethreeoptionsislargelyirrelevant. Iftherandomvariablesarenotconsistent,thenallthreewvectorsdifferwithnonzeroprobability,butinthiscasethere canbenoremedy:wehavetwomodelswithanon-vanishingdiscrepancythatarebothentirelysureoftheirownaccuracy. Weclosethissectionbynotingthattheabilitytoassimilatecomponentswithvanishingvarianceopensupattractivepos- sibilities.Onemayenforceconstraintsoftheanalyzedstatevector(e.g.conservationofmass)inapost-processingstepby treatingtheconstraintsaszero-variancedata. 3.7.Bayesianinterpretationofmulti-modelassimilation Toplacethepresentschemeincontext,itisinstructivetoconsideritsBayesianinterpretation.Letwk,wðt Þdenotethe k assimilatedstateattimet .FromtheBayesianperspective,wkisarandomvariablewhosedistributioncapturesthecurrent k stateofknowledgeaboutthetruthstateutðt Þ.Inotherwords,thedistributionofwkistheposteriordistributionofthesys- k temstate,giventhedatauptotimet andtheavailablemodels. k To be more specific, the present scheme provides the mean and covariance of the posterior probability density pðwkjd1:k;M ;...;M Þ,whered1:k,ðdðt Þ;dðt Þ;...;dðt ÞÞarethedataprovideduptoassimilationtimestept andM 1 M k k(cid:4)1 1 k m areindividualmodels.IfwehadonlyonemodelM andonesourceofdata,theposteriordensityofwk wouldbewritten 1 as p(cid:2)wkjd1:k;M (cid:3)/p(cid:2)dkjwk;M (cid:3)p(cid:2)wkjd1:k(cid:4)1;M (cid:3)¼p(cid:2)dkjwk(cid:3)Z p(cid:6)wkjwk(cid:4)1;M (cid:7)p(cid:2)wk(cid:4)1jd1:k(cid:4)1;M (cid:3)dwk(cid:4)1: ð3:13Þ 1 1 1 1 1 (cid:2) (cid:3) AsistypicalinKalmanfilteringvariants,theassimilationstepapproximatesthedatalikelihoodp dkjwk andtheforecast (cid:2) (cid:3) distribution p wkjd1:k(cid:4)1;M as Gaussian, even if propagation of uncertainty through a forecast model results in a non- 1 Gaussiandistribution.Inthiscase,iftheforecaststatehasmeanuk,covarianceUk,andH ¼I,suchthat 1 1 1 wk¼ukþ(cid:2)k; (cid:2)k (cid:8)Nð0;UkÞ; 1 1 1 1 thentheposteriormeanandcovarianceofwk areexactlygivenbytheKalmanupdatespecifiedinSection2.2. A.Narayanetal./JournalofComputationalPhysics231(2012)6401–6418 6409 Withmorethanonemodel,itisnaturaltointerpretmodelsM ,mP2,asprovidingadditionaltermsinthelikelihood m (cid:2) (cid:3) function,e.g.p ukjwk;d1:k(cid:4)1;M ,whereuk ,u ðt Þ.Thesetermscanbejustifiedasfollows.Beginningwiththemulti- m m m m m k (cid:2) (cid:3) modelpriorp wk(cid:4)1jd1:k(cid:4)1;M ,eachmodelpropagatesthisdistributionforwardtothenextassimilationtimeandaddsits 1:M ownsourcesofrandomness(e.g.parametricuncertaintyorprocessnoise).Eachresultingmodel-specificforecastdistribu- tionisthendescribedonlybyitsmeanuk andcovarianceUk.Onecanwritetheforecastsas m m H wk¼uk þ(cid:2)k; m m m where(cid:2)k (cid:8)Nð0;UkÞ.Theresultinglikelihoodtermis m m p (cid:2)ukjwk;d1:k(cid:4)1;M (cid:3)/exp(cid:4)(cid:4)1(cid:6)H wk(cid:4)uk(cid:7)TðUkÞ(cid:4)1(cid:6)H wk(cid:4)uk(cid:7)(cid:5): ð3:14Þ m m 1:M 2 m m m m m NotethattheconditioningonallmodelsM reflectsthefactthatalloftheseforecastsbeganwiththeassimilatedmulti- 1:M modelstateattimestepk(cid:4)1,butthemodel-specificsubscriptinp emphasizesthatsubsequentforecastingwasperformed m onlywiththemthmodel. Sincethemodelforecastsareconditionallyindependentgivenwk,thelikelihoodtermscanbecombinedtoyieldthemul- ti-modelposteriordensity: ! pðwkjd1:k;M Þ/pðdkjwkÞ YM p ðukjwk;d1:k(cid:4)1;M Þ p ðwkjd1:k(cid:4)1;M Þ: ð3:15Þ 1:M m m 1:M 1 1:M m¼2 Herethepriorpredictivep ðwkjd1:k(cid:4)1;M ÞischosentoreflecttheforecastofanyoneoftheMmodels,hereM .Assuming 1 1:M 1 H ¼I,thisdistributionisGaussianwithmeanuk andcovarianceUk. 1 1 1 Wecanmotivatetheformofthevariationalfunctional(3.5)forthedirectassimilationmethodfromthisBayesiananal- ysis:notethatmaximizingtheposteriorprobabilitygivenby(3.14)and(3.15)isequivalenttominimizingitsnegativelog- arithm.Thenegativelog-posterior(moduloconstants)isgivenbythefunctionalJ½w(cid:2)from(3.5). Comparedtoothermodelaveragingtechniques,thepresentschemedoesnotneedtospecifyadditionaldynamicsonthe modelspace.Instead,theroleofthecovarianceisparamountindeterminingtheweightassignedtoeachmodelprediction andtothedata.Thecovariance-basedschemethusallowsmatrix-valuedweightsandisanaturalgeneralizationoftheKal- manfilter. 4.Examples Inthissectionweprovideafewsimpleexamplesthatillustratethebroadrangeofapplicabilityofthemodelassimilation approachpreviouslydetailed.OurimplementedmethodsusetheiterativeprocedureoutlinedinTheorem3,andweassume thatallmodelsrepresentconsistentrandomvariables.Forour examples,thisisa valid assumption:allinvolvedrandom variableshavestrictlypositivecovariances.Thecostoftheassimilationproceduredoesnotsuffergreatlyfromuseofthe pseudoinverseimplementationasasafeguard. Ourfirstexampleconcernsarudimentarydifferentialequationy0¼ayandusesTaylorpolynomialsasthemodels.The secondexampleisarelatedstochasticdifferentialequation(SDE)examplethatusesthesameTaylorpolynomialmodels, but showcases the complex interplay that can occur between the models and the data. Finally, we consider a periodic one-dimensionaladvectionproblemwithnon-constantwavespeedtoshowhowthestrengthsofdifferentmodelscanbe combinedbyusingthemultimodelassimilationapproach. 4.1.Anexponentialmodel Considerasystemwhosetruthisgivenby dut ¼aut; ðutÞ ¼u ; dt 0 0 forsomeu .TheobservationsarescalarandthemeasurementmatrixHistheidentity(here,thescalar1).Themeasurement 0 noiseeisassumedtobeNð0;r2Þ.ForanymP1,theforecastmodelpropagatorsG from(2.3)aregivenby m ! G ðvÞ¼ mX(cid:4)1ðaDtÞk v; m k! k¼0 whichisadegree-ðm(cid:4)1ÞTaylorapproximationofthetruesolution.WefirstletDt¼0:05; a¼1; u ¼0:1,andr¼0:05. 0 WeuseM¼2models(constantandlinearapproximations).Havinginformationaboutthemodels,weassumethatthestan- darddeviationofthepropagationerrorðutÞ (cid:4)G ððutÞ Þisgivenby0:1Dtm(cid:4)1:i.e.,theconstantmodelisassumedtohave n m n(cid:4)1 errorwithstandarddeviation0:1Dt,whilethelinearmodel’serrorhasstandarddeviation0:1Dt2.Naturallythesearenot entirelyaccurateandwecanmakefarbetterassumptionsabouttheerror,butthiswillserveourpurposes.Furthermore, 6410 A.Narayanetal./JournalofComputationalPhysics231(2012)6401–6418 weassumethatdataisonlyavailableevery5timesteps—intheabsenceofdata,thepropagatorsG areusedtoobtained m analyzedstateswithoutanyassimilation. Notethatbyconstruction,alltheforecastmodelsareconsistentlybiasedbelowthetruesolutionanddata.Ifoneadopts Bayesianmodelaveraging(BMA),thentheanalyzedstateisguaranteedtobelessaccuratethanthebestavailableforecast Fig.4.1. PlotoftheevolutionoftheforecaststatesalongwithindicationofanalyzedstatesanddatawithM¼2forecastmodels.

Description:
pose an efficient iterative assimilation method that assimilates two models at The first example here is to show that data-blind assimilation is also a
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.