JournalofComputationalPhysics231(2012)6401–6418 ContentslistsavailableatSciVerseScienceDirect Journal of Computational Physics journal homepage: www.elsevier.com/locate/jcp Sequential data assimilation with multiple models Akil Narayana, Youssef Marzoukb, Dongbin Xiua,⇑ aDepartmentofMathematics,PurdueUniversity,WestLafayette,IN47907,USA bDepartmentofAeronauticsandAstronautics,MassachusettsInstituteofTechnology,Cambridge,MA02139,USA a r t i c l e i n f o a b s t r a c t Articlehistory: Dataassimilationisanessentialtoolforpredictingthebehaviorofrealphysicalsystems Received18January2012 given approximate simulation models and limited observations. For many complex Receivedinrevisedform6May2012 systems, there may exist several models, each with different properties and predictive Accepted3June2012 capabilities.Itisdesirabletoincorporatemultiplemodelsintotheassimilationprocedure Availableonline21June2012 inordertoobtainamoreaccuratepredictionofthephysicsthananymodelalonecanpro- vide.Inthispaper,weproposeaframeworkforconductingsequentialdataassimilation Keywords: withmultiplemodelsandsourcesofdata.Theassimilatedsolutionisalinearcombination Uncertaintyquantification ofallmodelpredictionsanddata.Onenotablefeatureisthatthecombinationtakesthe Dataassimilation mostgeneralformwithmatrixweights.Bydoingsothemethodcanreadilyutilizediffer- Kalmanfilter Modelaveraging entweightsindifferentsectionsofthesolutionstatevectors,allowthemodelsanddatato havedifferentdimensions,anddealwiththecaseofasingularstatecovariance.Weprove thattheproposedassimilationmethod,termeddirectassimilation,minimizesavariational functional,ageneralizedversionoftheoneusedintheclassicalKalmanfilter.Wealsopro- poseanefficientiterativeassimilationmethodthatassimilatestwomodelsatatimeuntil allmodelsanddataareassimilated.Themathematicalequivalenceoftheiterativemethod andthedirectmethodisestablished.Numericalexamplesarepresentedtodemonstrate theeffectivenessofthenewmethod. (cid:2)2012ElsevierInc.Allrightsreserved. 1.Introduction Numericalsimulationsofmathematicalmodelsareessentialtoolsforpredictingthebehaviorofphysicalsystems.Myriad numericaltechniquesandapproximations areused tosimulatephysicalphenomenain fluiddynamics,electromagnetics, chemical systems, astrophysics, and more. Since all of these simulations involve approximations, uncertainty and error areinevitablypresentintheirpredictions.Tocomplicatematters,asinglephysicalprocessmaybedescribedbymultiple mathematical models and numerical approximations. In addition, one may have access to empirical observations of the system—noisyandlimitedinnumber,scope,andresolution.Anaturalquestiontoaskishowtocombinethemodelsand the observational data to predict the physical state with greater fidelity than can be obtained with any of the models individually? Varioustechniquesformodelaveraginganddataassimilation,allofwhichattempttoimplementsuchacombinationof modelsanddata,havereceivedattentioninrecentyears.Inthecaseofasingledynamicalmodelwithastreamofnoisy observations,theKalmanfilter[15,14]isbothsimpleandremarkablyeffective.TheassimilationstepoftheKalmanfilter updatesthestatebyweighingthemodelpredictionandthedatainordertominimizeaquadraticobjective.Thisoperation can be interpreted in many different ways, for instance, as a minimum variance estimator or as a Bayesian update. The ⇑ Correspondingauthor.Tel.:+17654962846. E-mailaddresses:[email protected](A.Narayan),[email protected](Y.Marzouk),[email protected](D.Xiu). 0021-9991/$-seefrontmatter(cid:2)2012ElsevierInc.Allrightsreserved. http://dx.doi.org/10.1016/j.jcp.2012.06.002 6402 A.Narayanetal./JournalofComputationalPhysics231(2012)6401–6418 originalKalmanfilterwasdesignedforlinearsystems,butderivatemethodsforfilteringnonlinearsystemsareplentiful,e.g. theextendedKalmanfilter[9,11],theensembleKalmanfilter[7,8]anditsvariants[1,2,5,21,24],andisthesubjectofexten- siveongoingwork. Theuseofmultiplemodelsforfiltering,ontheotherhand,hasseenlessdevelopment.Withstaticdatasets,Bayesian modelaveraging(BMA)isawell-establishedtechniqueforstatisticalpredictioninthepresenceofmodeluncertainty[10]. BMAwritesthepredictivedistributionofanyquantityofinterestasaweightedaverageoftheposteriorpredictionsdueto each model; the data-dependent scalar weights are the posterior model probabilities [19]. Alternatively, one might considernon-Bayesianapproachestomodelaveragingwithstaticdata;thesearegenerallyfocusedonprovidingpointpre- dictionsratherthanpredictivedistributions[10,6].Dynamicmodelaveraging(DMA)[20]generalizesBMAtothedynam- icalsetting,wheredataarrivesequentiallyandonewouldliketomakeonlinepredictionsaboutthestateofasystem.DMA updates the state conditional on a discrete model indicator, but some Markovian dynamics (e.g. a matrix of transition probabilities or a forgetting factor) for this model indicator must be specified. As in BMA, the predictive distribution is a mixture with one component for each model. Other methods for sequential estimation with multiple models include theInteractingMultipleModelfilter[4]andthegeneralizedpseudo-Bayesframework[23].Bothofthesetechniquesintro- ducedynamicsforthe‘‘switching’’behaviorbetweenmodelsand updatestateprobabilities basedoninnovationsfroma Kalman filter. Likealloftheaforementionedmethods,weproposeanassimilationtechniquethatreliesonaweightedarithmeticmean ofthemodels.Alimitationofthepreviousmethods,however,isthattheweightsusedinmodelaveragingarescalar-valued, evenwhenthestateisvector-valued.Therefore,theassimilationprocesscannotemploydifferentmodelweightsindifferent sectionsofthestatevector(correspondingtoregionsofspacewhereonemodelmightbesuperiortoanother,forinstance). Inthispaperweconsidermoreageneralassimilationtechnique:ifu ;...;u arestatevectorsforMdifferentmodelsandd 1 M isthedatavector,weattempttofindanassimilatedstatewoftheform XM w¼ A u þBd; ð1:1Þ m m m¼1 whereA andBarematrices.Therefore,weallowourassimilationtobethemostgenerallinearfunctionalofallthemodels m anddata.Thisformalsoallowsthemodelstatesanddatatohavedifferentdimensions.Alsoitispossibletohavedifferent, independentsourcesofdatad ;...;d ,measuringdifferentquantities-of-interest.Mathematicallytheycanbeconcatenated 1 N intoasinglevectord,allowingustouse(1.1)asageneralform.(Wewillshowthatassimilatingdataisphilosophicallythe sameassimplytakingthedatatobeextramodelstatesin(1.1).Inotherwords,ourmethodtreatsmodelpredictionsand dataasidenticalmathematicalobjects.) Wederiveourassimilationtechniquebyminimizingavariationalfunctionalsimilarto,andageneralizationof,theone usedintheclassicalKalmanfilter.Withonlyasinglemodelanddata,theassimilationisidenticaltotheKalmanfilter.When twoormoremodelsarepresent,thedirectassimilationintheform(1.1)canbeemployed,wheretheexplicitformsofthe matricesA andBarederived.Forpracticalsystemswithlargedimensions,wealsoproposeamoreefficientiterativeassim- m ilationmethod,whichseekstoperformaseriesoftwo-modelassimilationsuntilallmodelsanddataareassimilated.We thenestablishthemathematicalconditionsunderwhichtheiterativeassimilationisequivalenttothedirectassimilation, and more importantly, invariant to the permutation of the model states. Our proposed iterative assimilation approach canalsohandlesingularmodelanddatacovariancematrices.LikeallKalmanfilteringmethods,thepresentmethodology requirestheprescriptionandpropagationofthemodelcovariances.However,themethodisratheraframeworkandnottied toanyspecificalgorithmforcovariancepropagation.Therefore,themethodcanbereadilycombinedwithmostvariantsof theKalmanfilter,suchastheensembleKalmanfilter. Itisworthpointingoutthattheexplicitinclusionofthedatainourassimilationmethod(1.1)representsasubtle,andyet important,differencefromtheBMA.InBMA,theroleofdatapresentsitselfimplicitlyintheformoftheaveragingweights, whichisdeterminedbytheposteriorprobability.Asaresult,theBMAisan‘‘average’’ofallmodels.Whenallmodelsare consistentlybiasedtowardsonesideoftheprediction,theBMAresultis,byconstruction,guaranteedtobenobetterthan thebestavailablemodel.Theformof(1.1)effectivelypreventsthisfromhappening. In Section 2 we formalize notation and present the assimilation problem. This section also reviews existing assimila- tion methods that are relevant to our discussion. Section 3 introduces our algorithm and presents its mathematical jus- tification. In doing so, we compare a simultaneous assimilation procedure with a sequential assimilation procedure, and make the argument that the sequential procedure is more robust. A Bayesian interpretation of both procedures is also provided. Section 4 provides examples of our assimilation method in practice, and Section 5 follows with closing remarks. 2.Problemsetup Inthissectionwepresenttheoverallproblemofdataassimilationwithmultiplemodels,formalizingtheassumptions andnotationtobeusedinsubsequentanalysis.WealsoreviewtheKalmanfilter(KF),whichiswidelyusedindataassim- ilationwithasinglemodelandcloselyrelatedtoourproposedmethodformultiplemodelassimilation. A.Narayanetal./JournalofComputationalPhysics231(2012)6401–6418 6403 2.1.Dataassimilationwithmultiplemodels Followingusualpracticeindataassimilation,wepresentourmodelsintheformofdynamicalsystems,emphasizingthe temporalnatureoftheproblem.Letut2RNt,NtP1,denotethe‘‘truestate’’ofaphysicalphenomenon.Typicallyut isafi- niterepresentationofthespatiallydistributedstateofthephysicalsystem,aftersomespatialdiscretizationhasbeenap- plied.Moregenerally,ut isaquantityofinterestwhoseevolutionwewishtotrack.Thisevolutionisgovernedbycertain physicallawsandprocessesthatarenotcompletelyavailabletous.Nonetheless,wesupposethatthereexistssomeoperator thatcapturestheexactevolutionofthesystemunderconsideration.Consideringonlydiscretevaluesoftimet ,wecanwrite k utðt Þ¼Lðt ;utðt ÞÞ; ð2:1Þ kþ1 k k wheretheoperatorLisunknowntous,butrepresentstheevolutionofthetruthstateutfromonepointintimetothenext. InsteadofL,wehaveasetofmodelsindexedbym¼1...M,thatapproximatetheevolutionofut indifferentways.In particular,thesemodelsspecifythetemporalevolutionofdistinctstatevectorsum2RNm viaanoperatorgm: du m¼g ðt;u Þ; t2ð0;T(cid:2); dt m m ð2:2Þ u ð0Þ¼u ; m m;0 withT>0.Solutionsofthedifferentialequationsabovearethe‘‘forecast’’statesu ðtÞ.Wedefinethediscretesolutionoper- m atorforeachsystem,givenby u ðt Þ¼G ðt ;u ðt ÞÞ; ð2:3Þ m kþ1 m k m k wheretheoperatorG isthediscretizedversionofg ,andmaybenonlinearinu .Noteastrictfirst-orderMarkoviansetting m m m has been used throughout this section. This is done for mere notational convenience and does not affect our discussion below. Theforecaststatesareusefulbecausetheycarryinformationaboutthetruestate.Wewillassumethat,atanygiventime t ,theforecaststatevariablesu arelinearlyrelatedtothetruestateut,withtheadditionofastochasticdiscrepancy.In k m otherwords,wehave u ¼H utþ(cid:2) ; m¼1;...;M; ð2:4Þ m m m whereHm2RNm(cid:3)Nt,and(cid:2)m,satisfyingE½(cid:2)m(cid:2)¼0,arerandomvariablesthatcapturethediscrepancybetweenthetransformed truestateandu .Notethatthe(cid:2) canbetime-dependent. m m Inpracticetherelationbetweentheforecaststatesandthetruestatescouldbenonlinear: u ¼H ðutÞþ(cid:2) ; m¼1;...;M; ð2:5Þ m m m forsomenonlinearoperatorsH .Ourtechniqueusesafilteringproceduretoassimilatedifferentmodels,andincaseswhen m the measurement operators H are not linear, then nonlinear filtering techniques such as the Unscented Kalman Filter m [13,12]orparticlefilters[18,22]areappropriate.Herewerestrictourselvestothelinearcase,withtheunderstandingthat onecouldreplaceouruseoftheKalmanfilterwithanyappropriatenonlinearassimilationtechnique.Onecouldalsocon- sider(2.4)tobeanapproximationorlinearizationofthenonlinearoperatorH ,asoftendoneinpractice. m Weused2RNd; NdP1,todenoteasetofmeasurements d¼Hutþ(cid:2); ð2:6Þ whereH2RNd(cid:3)Nt isthemeasurementmatrixand(cid:2)2RNd isthemeasurementerrorsatisfyingE½(cid:2)(cid:2)¼0.Notethattherela- tionshipbetweenthemeasurementandthetruesolutioncouldingeneralbenonlinear,butwefocushereonthelinearcase. (AgainthemeasurementmatrixHcouldbeconsideredasalinearizationofanonlinearmeasurementoperator.)Ouruseof thediscrepancyterms(cid:2)and(cid:2) encompassesmanysourcesofuncertaintyincluding,butnotlimitedto,modeldiscrepancy, m temporal/spatialnumericaldiscretizationerror,numericalroundofferror,andmeasurementerror.Alsonotethat(2.6)easily generalizestothecaseofmultiplemeasurementsthatareconditionallyindependentgivenut.Forourpurposesitisnota- tionallyconvenienttocollectalltheseobservationsintoonevectord,butthealgorithmwepresentbelowcanimmediately beappliedtoassimilationproblemswheredifferentmeasurementsaretreatedasseparatevectors. Ourgoalistoconstructan‘‘analyzedsolution,’’denotedbyw2RNt andoftheform(1.1),usingtheforecastsolutions fu gM andthemeasurementdtoprovideamoreaccuratepredictionofthetruesolutionut. m m¼1 2.2.Kalmanfilter TheKalmanfilter(KF)iswidelyusedfordataassimilationwithasinglemodel;hereweonlylistrelevantproperties,and morein-depthdiscussioncanbefoundin[8].FollowingoursetupinSection2.1,weconsiderthecaseofM¼1andH ¼I, 1 whereIistheidentitymatrix.Thatis,thereexistsonlyoneforecaststateu anditisadirectpredictionofthetruestateut. 1 Let U12RN1(cid:3)N1 be the covariance matrix of the forecast solution u1 and suppress the subscript 1 hereafter only in this 6404 A.Narayanetal./JournalofComputationalPhysics231(2012)6401–6418 section.TheanalyzedsolutionwobtainedbythestandardKFisalinearcombinationoftheforecastsolutionuandthemea- surementdinthefollowingmanner, w¼uþKðd(cid:4)HuÞ; ð2:7Þ whereKistheso-calledKalmangainmatrixdefinedas K¼UHTðHUHTþDÞ(cid:4)1: ð2:8Þ Here the superscript T denotes the matrix transpose, and D2RNd(cid:3)Nd is the covariance of the measurement error (cid:2). The covariancematrixoftheanalyzedstatew,W2RNt(cid:3)Nt,isthenobtainedbytheupdate W¼ðI(cid:4)KHÞUðI(cid:4)KHÞTþKDKT ¼ðI(cid:4)KHÞU: ð2:9Þ Thisassimilationprocessisrepeatedateveryinstanceoftimewhendataisavailable.Theanalyzedstatewisthesolution thatminimizesthefollowingvariationalfunctional: J½w(cid:2)¼ðw(cid:4)uÞTU(cid:4)1ðw(cid:4)uÞþðHw(cid:4)dÞTD(cid:4)1ðHw(cid:4)dÞ: ð2:10Þ Therearemanywaystorationalizethedesiretominimizetheobjective(2.10).ThefunctionalJ½w(cid:2)isthesumofMahalan- obisdistancesbetweentheknownstatesVuandVdandwewanttofindastateVwlyingascloseaspossibletobothofthem. Alternatively,wemayposetheproblemintheBayesianframework:wesupposethatuanditscovariancespecifyaprior Gaussiandistributiononstatespace;assuminglikewisethatdisobtainedasaGaussianperturbationfromlinearmeasure- mentsthetruth,thelikelihoodofobservingthedatacanbecomputed.Wethentaketheanalyzedstatewtobethemodeof theposterior;equivalently,wminimizesthenegativelog-likelihoodoftheposterior.Inthissetup,thenegativelog-likeli- hoodisgivenbyJ,cf.(3.14)andSection3.7. 3.Assimilationofmultiplemodels Wepresentouralgorithmformultiplemodelassimilationinthissection.Section3.1beginsbystandardizingournota- tion.Ouralgorithmisimplicitlyrelatedtotheproblemofcomputingharmonicmeansofcovariancematrices,andsoSection 3.2introducestheconceptofharmonicmeansonpositivesemi-definitematrices.Anunavoidablecomplicationthatmay ariseinanyassimilationprocedureistheexistenceofmodeland/ormeasurementstatesthathavecompetingvaluesthat cannotbeclearlyresolved.WeacknowledgethisrealityinSection3.3andpresentsufficientconditionsunderwhichdiffer- ingvaluescanbeunambiguouslyassimilated.Section3.4presentsaversionofouralgorithmthatsimultaneouslyassimilates allmodelsandmeasurements,andSection3.5followsupwithourproposedsequentialalgorithm.Wethenprovideasimple exampletodemonstratewhysequentialassimilationispreferred.Section3.7concludesbyprovidingaBayesianinterpreta- tionofthemulti-modelassimilationscheme. 3.1.Preliminaries WeworkonacompleteprobabilityspaceðX;F;lÞwithXthecollectionofevents,Far-algebraonsetsofX,andlaprob- ability measure on F. All random variables considered here are in the L2 stochastic space: u2L2 )R kuðxÞk2dlðxÞ¼ l X kuðxÞk2 (cid:5)Ekuk2<1,wherekukisthestandardEuclideannormwhenuisvector-valued;thisissufficienttoensuretheexis- l tence of the mean and variance of u. When talking about limits of random variables, equality is in the L2 sense: l lime!0ue¼u)kue(cid:4)ukl!0. Throughoutthispaperwewilluselowercaseboldfaceletters(e.g.u)todenotevectorsanduppercaseboldfaceletters(e.g. A)todenotematrices.AT andAydenotethematrixtranspose,andtheMoore–PenrosepseudoinverseofA,respectively.For randomvectorswewillusethesameletterbutwithuppercasetodenotetheircorrespondingcovariancematrices.Forexam- ple,letv2RNbearandomvectorwithzeromean,thenV¼E½vvT(cid:2)2RN(cid:3)Ndenotesitscovariancematrix.AsquarematrixAis positivedefiniteifvTAv>0forallnon-trivialv,andispositivesemi-definite(or‘semi-positive’)ifvTAvP0.Foranyfixed sizeN,thespaceofallN(cid:3)NpositivedefinitematricesisdenotedbyH,andthespaceofallpositivesemi-definitematricesby H . 0 3.2.Matrixharmonicmeans ThestandardwaytodefineaharmonicmeanforpositivedefinitematricesA ;A 2His 1 2 (cid:2) (cid:3)(cid:4)1 F ¼2 A(cid:4)1þA(cid:4)1 2 1 2 anditisnotdifficulttoimaginegeneralizingthistoasequenceofmatricesA 2H; m¼1;...;M: m F ¼M XM A(cid:4)1!(cid:4)1: ð3:1Þ M m m¼1 A.Narayanetal./JournalofComputationalPhysics231(2012)6401–6418 6405 Itisclearthatthiscannotbeusedfor(non-invertible)semi-positivematrices.However,onecanproceedbytakingadifferent route. Definition1 (Matrixharmonicmean).LetA1;...;AM2H0,anddefineF1¼W1¼A1.Form¼2;...;M,define: W ¼W ðW þA ÞyA ; ð3:2aÞ m m(cid:4)1 m(cid:4)1 m m F ¼mW : ð3:2bÞ m m F iscalledtheharmonicmeanofthematricesA ;...;A . M 1 M This definition coincides with the traditional definition of harmonic means of MP2 positive-definite matrices. More importantly,thisdefinitionisageneralizationtosemi-positivematrices. Theorem1. ForasequenceofmatricesAm;m¼1;...;M,onH,theharmonicmeanofDefinition1coincideswiththeformula (3.1).ForAm onH0;FM is 1. closedonH :F 2H ; 0 M 0 2. continuous:ifFe istheharmonicmeanofAe;...;Ae 2H whereAe !A thenFe !F ; M 1 M 0 m m M M 3. consistent:A ¼A ¼(cid:6)(cid:6)(cid:6)¼A )F ¼A ; 1 2 M M 1 4. symmetric: For m ;m ;...;m any permutation of 1;2;...;M, the harmonic mean of A ;...;A is the same as that of 1 2 M m1 mM A ;A ;...;A ; 1 2 M 5. decreasing:F 6A forallm; M m 6. monotone:IfA 6B forallm,thenF 6J ,whereF istheharmonicmeanoftheA andJ istheharmonicmeanoftheB . m m M M M m m m TheabovepropertiesjustifycallingF amatrixmean.TheAppendixcontainstheproof,alongwithmathematicaldiscus- M sionsthatarenotdirectlyrelatedtoourpresenttaskofmultiplemodeldataassimilation. Wenoteherethatusingpropertiesofpseudoinversesonemayrewritetheiterativeprocedure(3.2a(a))forupdatingW : m (cid:2) (cid:3) W ¼ I(cid:4)W ðW þA Þy W ,ðI(cid:4)KÞW m m(cid:4)1 m(cid:4)1 m m(cid:4)1 m(cid:4)1 ComparingthiswiththeKalmanfiltercovarianceupdatefrom(2.8)and(2.9)whenH¼I,weseethattheiterativeprocedure forcomputingharmonicmeansisalmostidenticaltoastandardKalmanfilterprocedure. Ouralgorithmformodelassimilationproducesanassimilatedmodelstatewhosecovarianceisproportionaltothehar- monicmeanoftheinputcovariances.(IftheinputcovariancesareA ,thenthematrixW from(3.2b)istheassimilated m M covariance.)WewillseelaterthatthealgorithmitselfcanbeimplementedbyiteratingastandardKalmanfilter,andthus implicitlyusestheiterativedefinitionofthematrixharmonicmean(3.2b)tocomputetheassimilatedstate. 3.3.Consistentrandomvariables Anyassimilationproceduremustprecludethesituationwherethereisnologicalwaytoreconcileaquantitativediffer- encebetweentwomodels.Forexample,ifwehavetwomodelsofascalarquantityofinterestwithu ðxÞ¼1andu ðxÞ¼2 1 2 almostsurely,thennoassimilationprocedurecanproduceagoodsynthesis.Inoursetting,weexcludesuchsituationsby insistingthattherandomvariablescorrespondingtoourmodelstatevectorsareconsistent. Definition2. ConsiderL2ðXÞrandomvectorsum2RNm,m¼1;...;M,eachpairedwithameasurementmatrixHm2RNm(cid:3)Nt, whereN isthesizeofthetruthstate.1Thenu areconsistentifthecomponentsineachrandomvariablecorrespondingto t m zero variance can be assimilated, almost surely without contradiction, from the other variables. More precisely, let S0 be a m matrixoforthogonalcolumnvectorscorrespondingtothenullspaceofU .Thenu areconsistentifthelinearsystemdefined m m bytheMvector-valuedequations (cid:2) (cid:3)T (cid:2) (cid:3)T S0 H w¼ S0 E½u (cid:2); m¼1;2;...;M ð3:3Þ m m m m hasatleastonesolutionforthevectorw. Thecondition(3.3)essentiallystatesthattherandomvariablesu donothavecompetingzero-variancecomponents.If m alltherandomvariablesu havestrictlypositivecovariancekernels,thentheyareautomaticallyconsistent.Inallthatfol- m lows,wewillonlyconsidercollectionsofrandomvariablesthatareconsistent. 1 Recallfrom(2.4)thatHm isonlyusedtoconnectmodelstatestothetruthsolution.Thesourceofrandomness,whetherstemmingfrom(cid:2)m orfrom randomnessinthetruth,ishereirrelevant. 6406 A.Narayanetal./JournalofComputationalPhysics231(2012)6401–6418 3.4.Mainresult:directassimilationmethod Wenowprescribeamethodforassimilatingmultiplemodelsalongwithdata.Thesingle-modelKalmanfilterprocedure canbeidentifiedasminimizingthevariationalfunctional(2.10).Thissuggeststhatanassimilationprocedureforassimilat- ingmultiplemodelswithdatacanbeproposedsimplybymakingappropriatechangestothevariationalfunctional. Theorem2. ConsiderasetofMforecaststatesum;m¼1;...;M,satisfying(2.4)andwitherrorcovarianceUm¼E½(cid:2)m(cid:2)Tm(cid:2)2H, anddatavector(2.6)witherrorcovarianceD¼E½(cid:2)(cid:2)T(cid:2)2H.AssumethattherowspacesofHandHm spanallRNt: spanfranH;ranH ;ranH ;...;ranH g: ð3:4Þ 1 2 M Define J½w(cid:2)¼XM ðH w(cid:4)u ÞTU(cid:4)1ðH w(cid:4)u ÞþðHw(cid:4)dÞTD(cid:4)1ðHw(cid:4)dÞ; ð3:5Þ m m m m m m¼1 thentheminimizersatisfies ! w¼W XM HTU(cid:4)1u þHTD(cid:4)1d ; ð3:6Þ M m m m m¼1 whereW isgivenby: M W ¼ XM HTU(cid:4)1H þHTD(cid:4)1H!(cid:4)1: M m m m m¼1 Proof. Theproofcanbeeasilyobtainedbystraightforwardcalculus,wherethecondition(3.4)isrequiredtoassurestrict positivityofJ½w(cid:2). h Theanalyzedstateiswandtheanalyzedmodelstatesare v ¼H w; m¼1;...;M: ð3:7Þ m m ThematricesA in(1.1)arethusgivenby m A ¼W HTU(cid:4)1: ð3:8Þ m m m m Thetechnicalassumption(3.4)ismade2toensureauniqueminimizerforthequadraticformJ.While(3.6)willproducethe assimilatedstatewepropose,theassumptionsU ;D2H,i.e.,strictlypositivedefinitecovariances,maybetoorestrictivein m practice.(NotethatundersuchanassumptionallrandomvariablesinTheorem2areautomaticallyconsistent.)Thisrestriction canberelaxedbyusingamorerobustiterativeassimilationmethod. 3.5.Mainresult:iterativeassimilationmethod Wenowpresenttheiterativeassimilationmethodthatbehavesinamorerobustmanner,inthesensethatitcanreadily dealwithsemi-positivecovariancematrices. Theorem 3. Consider a set of M forecast variables um;m¼1;...;M, satisfying (2.4) and with error covariance Um¼E½(cid:2)m(cid:2)Tm(cid:2)2H0, and data vector (2.6) with error covariance D¼E½(cid:2)(cid:2)T(cid:2)2H0. Assume3 that H1¼I; set w1¼u1 and W1¼U1.Form¼2;3;...;M,let (cid:2) (cid:3)y K ¼W HT H W HT þU m m(cid:4)1 m m m(cid:4)1 m m (cid:2) (cid:3)y w ¼w þK ðu (cid:4)H w Þ¼w þW HT H W HT þU ðu (cid:4)H w Þ; ð3:9Þ m m(cid:4)1 m m m m(cid:4)1 m(cid:4)1 m(cid:4)1 m m m(cid:4)1 m m m m m(cid:4)1 (cid:2) (cid:3)y W ¼ðI(cid:4)K H ÞW ¼W (cid:4)W HT H W HT þU H W m m m m(cid:4)1 m(cid:4)1 m(cid:4)1 m m m(cid:4)1 m m m m(cid:4)1 2 Intheabsenceofanypriorinformationaboutthetruthstate,wealsoconsiderthisconditionasrequiredtoavoidinfinities:ifweknownothingaboutthe truthstateut,and(3.4)isviolated,allthemodelsanddataessentiallycontaininsufficientinformationtosayanythingaboutcertaincomponentsofut. Neverthelesswemustassignsomevaluetothesecomponents.Inordertocommunicateourlackofknowledge,prescribinginfinitevarianceistheonly quantitativelyaccurateassignment. 3 Thisassumptionismadeforsimplicityandisrelatedtotheconcernfromfootnote2.Weakeningthisassumption(H1–I)ispossiblebutrequiresspecial treatmenttoavoidinfinitevariancesintheearlystagesoftheassimilationprocedure.WhenH1–Ionecanformulateawell-definedassimilationprocedureso longas(3.4)holds. A.Narayanetal./JournalofComputationalPhysics231(2012)6401–6418 6407 Finally,assimilatethedatavector: (cid:2) (cid:3)y K¼W H HU HTþD M M ð3:10Þ w ¼w þKðd(cid:4)Hu Þ; Mþ1 M M W ¼ðI(cid:4)KHÞW : Mþ1 M W isthecovarianceofw .WhenU ; D2H,thenw isthesameaswfrom(3.6).Ifu ;...;u areconsistentrandomvari- m m m Mþ1 1 M ables,thenw isindependentoftheorderingintheiterativeprocedure(3.9). M WegivetheproofintheAppendix.Itisinthisproofthatwerequirethedefinitionofconsistentmodelstatesinorderto guaranteethattheassimilatedstatedoesnotdependontheorderingofthemodelstates. TherearemanyobservationstomakeabouttheiterativeproceduredefinedinTheorem3. (cid:7) Theiterativemethodallowsthecovariancematricestobesemi-positive.Whenthecovariancematricesarepositive,the iterativemethodisequivalenttothedirectmethod.Thereforetheiterativemethodhasamathematicallywiderrangeof applicabilitythanthedirectmethod. (cid:7) TheassumptionH ¼Iismadeonlytomakepresentationoftheassimilationprocedureclearer.Generallyweareinter- 1 estedindynamicalsystems,sothereisamodelstatewfromtheprevioustimestepthatcanbeused (cid:7) Theorderingoftheassimilationproceduredoesnotmatteriftherandomvariablesu ; m¼1;...;M,anddareconsis- m tent.Infactitisalsoindependentofthedata/modelordering.Therefore,onecantreatdataasanothersetofmodelsim- ulation results. Consequently, multiple and conditionally independent sources of data can be assimilated by simply performingadditionaldataassimilationsteps,independentoftheordering. (cid:7) ThematrixW canbeinterpretedasaharmonicmeanofthematricesU whenpairedwiththemeasurementmatrices M m H .IftheH areallidentitymatrices,thenW isexactly1=MtimestheharmonicmeanoftheU ,whereDefinition1is m m M m usedwhenanyoftheU issemi-positive.SeealsothediscussionattheendofSection3.2. m (cid:7) TheiterativeprocedureoutlinedaboveisessentiallyasequentialapplicationofastandardKalmanfilterupdate.(Useof thepseudoinverseisthemaindifference.)Thus,assimilationofeachnewmodelmaybeviewedasasingle-modelKalman filterupdate. (cid:7) Theiterativeschemeallowsonetoassimilateanysubsetofmodelsanddataattimeswhentheyareavailable.Oneprac- ticaluseofthisistheabilitytoassimilateonlymodelstatesintheabsenceofdata.Anexampleofsuchasituationisgiven inSection4.3. Theiterativeassimilationmethodcanbeimplementedinastraightforwardmanner: (cid:7) Initialization.Formodelu anddatad,performthestandardKalmanupdatetoobtainananalyzedmodelstatew with 1 1 covarianceW . 1 (cid:7) Iteration.Form¼2;...;M,applytheprocedure(3.9).Inotherwords,considerthepresentassimilatedmodelstatew m(cid:4)1 withitscovarianceW tobetheforecaststate,andconductaKalmanupdateusingthenewmodelpredictionu as m(cid:4)1 m ‘‘data’’ (with measurement matrix H ) to obtain the new analyzed state w¼w and the analyzed model states m Mþ1 v ¼H w. m m 3.6.Somemotivatingexamples ThedirectassimilationapproachisapplicabletocaseswhenthequadraticformJ from(3.5)ispositivedefinite;thisis satisfied,forexample,undertheassumptionsofTheorem2.Inothercases,forexamplewhensomecomponentshavezero variance,theiterativeprocedureismoreappropriate.However,theiterativeassimilationapproachisonlyrobustifthemod- elstatesareconsistent.Ifthemodelstatesarenotconsistent,thenonemustabandonthehopeofproducinganassimilation thatisfaithfultoallthemodels.Wenowpresentexamplesthatshowcasethesevarioussituations. Supposewehavetwomodelsu ;u 2R2withidentityobservationmatricesH ¼H ¼I.Thedirectassimilationscheme 1 2 1 2 istoformthevariable h i w¼ðU(cid:4)1þU(cid:4)1Þ(cid:4)1 U(cid:4)1u þU(cid:4)1u : ð3:11Þ 1 2 1 1 2 2 IfU andU arepositivedefinite,thereisnoissue.Butletusexploretheissueofcontinuitywithrespecttosemi-positive 1 2 definitematrices.Letusparameterizetheserandomvariableswithrespecttoasmallpositiveperturbatione: (cid:4)e 0(cid:5) (cid:4)1 0(cid:5) Ue ¼ ; Ue ¼ ; 1 0 1 2 0 e (cid:4)u (cid:5) (cid:4)u (cid:5) u ðxÞ¼ 11 ; u ðxÞ¼ 21 : 1 u 2 u 12 22 6408 A.Narayanetal./JournalofComputationalPhysics231(2012)6401–6418 Thevaluesofu andu arenotimportant,butclearlytheiruncertaintiesdependone.Smallvaluesofecorrespondtothe 1 2 casewhereu haslittleuncertaintyinitsfirstcomponent,andu haslittleuncertaintyinitssecondcomponent.The‘sen- 1 2 sible’waytoassimilatesuchstatesthen,istoputmostoftheweightonu andu .Indeedthedirectassimilationprocedure 11 22 doesexactlythis;fore>0weobtainfrom(3.11) we¼ 1 (cid:4)u11þeu21(cid:5): eþ1 eu þu 12 22 Wecandefinew¼lime!0we andUj¼lime!0Uej.Clearly,w¼ðu11;u22ÞT.Onecanverifythateitheriterativeprocedure w¼u þU ðU þU Þyðu (cid:4)u Þ ð3:12aÞ 1 1 1 2 2 1 w¼u þU ðU þU Þyðu (cid:4)u Þ ð3:12bÞ 2 2 2 1 1 2 producesthisstatewregardlessofordering(indeedU þU ¼I>0sothepseudoinverseisnotevennecessary).Onemay 1 2 thenbetemptedtousethedirectapproach(3.11),butbynaïvelyreplacingalldirectinverses(cid:4)1bypseudoinverses(cid:2).Ifwedo thisandthenapply(3.11),weobtainastatew¼ðu ;u ÞT.Thisstateistheoppositeofwhatweshoulddo:wecompletely 21 12 ignorethecomponentsthatwehavethemostinformationabout.Thisshowsthatthedirectassimilationapproachcannotbe remediedforpositivesemi-definitecovariances. Letusnowshowhowtheiterativeschemetreatsconsistentrandomvariableswithsemi-positivecovariances.Againwe takeu ;u 2R2,andwenowprescribethecovariances 1 2 (cid:4)e 0(cid:5) (cid:4)1 0(cid:5) Ue ¼ ; Ue ¼ : 1 0 e 2 0 e Wenowexpectthattheprocedureshoulddiscardu infavorofu ,andshouldequallyweighthevaluesfromu andu . 21 11 12 22 Whene>0wecanuseeitherthedirectoriterativeschemestoobtain 1 ðu þeu Þ! we¼ eþ1 11 21 : 1u þ1u 2 12 2 22 Takinglimitsweobtainwð1Þ,lime!0we¼(cid:6)u11;12u12þ12u22(cid:7)T asexpected.AgaindefineU1¼lime!0Ue1 andsimilarlyforU2. The iterative scheme (3.12a) produces the state wð2Þ¼ðu ;u ÞT whereas the second scheme (3.12b) produces 11 12 wð3Þ¼ðu ;u Þ.Bothofthesearepotentiallydifferentfromwð1Þ,andfromeachother.However,ifu andu areconsistent 11 22 1 2 randomvariables,thenu andu arealmostsurelyequal,andthereforewð1Þ¼wð2Þ¼wð3Þ almostsurely,sothatthefinal 12 22 choiceamongthethreeoptionsislargelyirrelevant. Iftherandomvariablesarenotconsistent,thenallthreewvectorsdifferwithnonzeroprobability,butinthiscasethere canbenoremedy:wehavetwomodelswithanon-vanishingdiscrepancythatarebothentirelysureoftheirownaccuracy. Weclosethissectionbynotingthattheabilitytoassimilatecomponentswithvanishingvarianceopensupattractivepos- sibilities.Onemayenforceconstraintsoftheanalyzedstatevector(e.g.conservationofmass)inapost-processingstepby treatingtheconstraintsaszero-variancedata. 3.7.Bayesianinterpretationofmulti-modelassimilation Toplacethepresentschemeincontext,itisinstructivetoconsideritsBayesianinterpretation.Letwk,wðt Þdenotethe k assimilatedstateattimet .FromtheBayesianperspective,wkisarandomvariablewhosedistributioncapturesthecurrent k stateofknowledgeaboutthetruthstateutðt Þ.Inotherwords,thedistributionofwkistheposteriordistributionofthesys- k temstate,giventhedatauptotimet andtheavailablemodels. k To be more specific, the present scheme provides the mean and covariance of the posterior probability density pðwkjd1:k;M ;...;M Þ,whered1:k,ðdðt Þ;dðt Þ;...;dðt ÞÞarethedataprovideduptoassimilationtimestept andM 1 M k k(cid:4)1 1 k m areindividualmodels.IfwehadonlyonemodelM andonesourceofdata,theposteriordensityofwk wouldbewritten 1 as p(cid:2)wkjd1:k;M (cid:3)/p(cid:2)dkjwk;M (cid:3)p(cid:2)wkjd1:k(cid:4)1;M (cid:3)¼p(cid:2)dkjwk(cid:3)Z p(cid:6)wkjwk(cid:4)1;M (cid:7)p(cid:2)wk(cid:4)1jd1:k(cid:4)1;M (cid:3)dwk(cid:4)1: ð3:13Þ 1 1 1 1 1 (cid:2) (cid:3) AsistypicalinKalmanfilteringvariants,theassimilationstepapproximatesthedatalikelihoodp dkjwk andtheforecast (cid:2) (cid:3) distribution p wkjd1:k(cid:4)1;M as Gaussian, even if propagation of uncertainty through a forecast model results in a non- 1 Gaussiandistribution.Inthiscase,iftheforecaststatehasmeanuk,covarianceUk,andH ¼I,suchthat 1 1 1 wk¼ukþ(cid:2)k; (cid:2)k (cid:8)Nð0;UkÞ; 1 1 1 1 thentheposteriormeanandcovarianceofwk areexactlygivenbytheKalmanupdatespecifiedinSection2.2. A.Narayanetal./JournalofComputationalPhysics231(2012)6401–6418 6409 Withmorethanonemodel,itisnaturaltointerpretmodelsM ,mP2,asprovidingadditionaltermsinthelikelihood m (cid:2) (cid:3) function,e.g.p ukjwk;d1:k(cid:4)1;M ,whereuk ,u ðt Þ.Thesetermscanbejustifiedasfollows.Beginningwiththemulti- m m m m m k (cid:2) (cid:3) modelpriorp wk(cid:4)1jd1:k(cid:4)1;M ,eachmodelpropagatesthisdistributionforwardtothenextassimilationtimeandaddsits 1:M ownsourcesofrandomness(e.g.parametricuncertaintyorprocessnoise).Eachresultingmodel-specificforecastdistribu- tionisthendescribedonlybyitsmeanuk andcovarianceUk.Onecanwritetheforecastsas m m H wk¼uk þ(cid:2)k; m m m where(cid:2)k (cid:8)Nð0;UkÞ.Theresultinglikelihoodtermis m m p (cid:2)ukjwk;d1:k(cid:4)1;M (cid:3)/exp(cid:4)(cid:4)1(cid:6)H wk(cid:4)uk(cid:7)TðUkÞ(cid:4)1(cid:6)H wk(cid:4)uk(cid:7)(cid:5): ð3:14Þ m m 1:M 2 m m m m m NotethattheconditioningonallmodelsM reflectsthefactthatalloftheseforecastsbeganwiththeassimilatedmulti- 1:M modelstateattimestepk(cid:4)1,butthemodel-specificsubscriptinp emphasizesthatsubsequentforecastingwasperformed m onlywiththemthmodel. Sincethemodelforecastsareconditionallyindependentgivenwk,thelikelihoodtermscanbecombinedtoyieldthemul- ti-modelposteriordensity: ! pðwkjd1:k;M Þ/pðdkjwkÞ YM p ðukjwk;d1:k(cid:4)1;M Þ p ðwkjd1:k(cid:4)1;M Þ: ð3:15Þ 1:M m m 1:M 1 1:M m¼2 Herethepriorpredictivep ðwkjd1:k(cid:4)1;M ÞischosentoreflecttheforecastofanyoneoftheMmodels,hereM .Assuming 1 1:M 1 H ¼I,thisdistributionisGaussianwithmeanuk andcovarianceUk. 1 1 1 Wecanmotivatetheformofthevariationalfunctional(3.5)forthedirectassimilationmethodfromthisBayesiananal- ysis:notethatmaximizingtheposteriorprobabilitygivenby(3.14)and(3.15)isequivalenttominimizingitsnegativelog- arithm.Thenegativelog-posterior(moduloconstants)isgivenbythefunctionalJ½w(cid:2)from(3.5). Comparedtoothermodelaveragingtechniques,thepresentschemedoesnotneedtospecifyadditionaldynamicsonthe modelspace.Instead,theroleofthecovarianceisparamountindeterminingtheweightassignedtoeachmodelprediction andtothedata.Thecovariance-basedschemethusallowsmatrix-valuedweightsandisanaturalgeneralizationoftheKal- manfilter. 4.Examples Inthissectionweprovideafewsimpleexamplesthatillustratethebroadrangeofapplicabilityofthemodelassimilation approachpreviouslydetailed.OurimplementedmethodsusetheiterativeprocedureoutlinedinTheorem3,andweassume thatallmodelsrepresentconsistentrandomvariables.Forour examples,thisisa valid assumption:allinvolvedrandom variableshavestrictlypositivecovariances.Thecostoftheassimilationproceduredoesnotsuffergreatlyfromuseofthe pseudoinverseimplementationasasafeguard. Ourfirstexampleconcernsarudimentarydifferentialequationy0¼ayandusesTaylorpolynomialsasthemodels.The secondexampleisarelatedstochasticdifferentialequation(SDE)examplethatusesthesameTaylorpolynomialmodels, but showcases the complex interplay that can occur between the models and the data. Finally, we consider a periodic one-dimensionaladvectionproblemwithnon-constantwavespeedtoshowhowthestrengthsofdifferentmodelscanbe combinedbyusingthemultimodelassimilationapproach. 4.1.Anexponentialmodel Considerasystemwhosetruthisgivenby dut ¼aut; ðutÞ ¼u ; dt 0 0 forsomeu .TheobservationsarescalarandthemeasurementmatrixHistheidentity(here,thescalar1).Themeasurement 0 noiseeisassumedtobeNð0;r2Þ.ForanymP1,theforecastmodelpropagatorsG from(2.3)aregivenby m ! G ðvÞ¼ mX(cid:4)1ðaDtÞk v; m k! k¼0 whichisadegree-ðm(cid:4)1ÞTaylorapproximationofthetruesolution.WefirstletDt¼0:05; a¼1; u ¼0:1,andr¼0:05. 0 WeuseM¼2models(constantandlinearapproximations).Havinginformationaboutthemodels,weassumethatthestan- darddeviationofthepropagationerrorðutÞ (cid:4)G ððutÞ Þisgivenby0:1Dtm(cid:4)1:i.e.,theconstantmodelisassumedtohave n m n(cid:4)1 errorwithstandarddeviation0:1Dt,whilethelinearmodel’serrorhasstandarddeviation0:1Dt2.Naturallythesearenot entirelyaccurateandwecanmakefarbetterassumptionsabouttheerror,butthiswillserveourpurposes.Furthermore, 6410 A.Narayanetal./JournalofComputationalPhysics231(2012)6401–6418 weassumethatdataisonlyavailableevery5timesteps—intheabsenceofdata,thepropagatorsG areusedtoobtained m analyzedstateswithoutanyassimilation. Notethatbyconstruction,alltheforecastmodelsareconsistentlybiasedbelowthetruesolutionanddata.Ifoneadopts Bayesianmodelaveraging(BMA),thentheanalyzedstateisguaranteedtobelessaccuratethanthebestavailableforecast Fig.4.1. PlotoftheevolutionoftheforecaststatesalongwithindicationofanalyzedstatesanddatawithM¼2forecastmodels.
Description: