Table Of ContentJournalofComputationalPhysics231(2012)6401–6418
ContentslistsavailableatSciVerseScienceDirect
Journal of Computational Physics
journal homepage: www.elsevier.com/locate/jcp
Sequential data assimilation with multiple models
Akil Narayana, Youssef Marzoukb, Dongbin Xiua,⇑
aDepartmentofMathematics,PurdueUniversity,WestLafayette,IN47907,USA
bDepartmentofAeronauticsandAstronautics,MassachusettsInstituteofTechnology,Cambridge,MA02139,USA
a r t i c l e i n f o a b s t r a c t
Articlehistory: Dataassimilationisanessentialtoolforpredictingthebehaviorofrealphysicalsystems
Received18January2012 given approximate simulation models and limited observations. For many complex
Receivedinrevisedform6May2012 systems, there may exist several models, each with different properties and predictive
Accepted3June2012
capabilities.Itisdesirabletoincorporatemultiplemodelsintotheassimilationprocedure
Availableonline21June2012
inordertoobtainamoreaccuratepredictionofthephysicsthananymodelalonecanpro-
vide.Inthispaper,weproposeaframeworkforconductingsequentialdataassimilation
Keywords:
withmultiplemodelsandsourcesofdata.Theassimilatedsolutionisalinearcombination
Uncertaintyquantification
ofallmodelpredictionsanddata.Onenotablefeatureisthatthecombinationtakesthe
Dataassimilation
mostgeneralformwithmatrixweights.Bydoingsothemethodcanreadilyutilizediffer-
Kalmanfilter
Modelaveraging entweightsindifferentsectionsofthesolutionstatevectors,allowthemodelsanddatato
havedifferentdimensions,anddealwiththecaseofasingularstatecovariance.Weprove
thattheproposedassimilationmethod,termeddirectassimilation,minimizesavariational
functional,ageneralizedversionoftheoneusedintheclassicalKalmanfilter.Wealsopro-
poseanefficientiterativeassimilationmethodthatassimilatestwomodelsatatimeuntil
allmodelsanddataareassimilated.Themathematicalequivalenceoftheiterativemethod
andthedirectmethodisestablished.Numericalexamplesarepresentedtodemonstrate
theeffectivenessofthenewmethod.
(cid:2)2012ElsevierInc.Allrightsreserved.
1.Introduction
Numericalsimulationsofmathematicalmodelsareessentialtoolsforpredictingthebehaviorofphysicalsystems.Myriad
numericaltechniquesandapproximations areused tosimulatephysicalphenomenain fluiddynamics,electromagnetics,
chemical systems, astrophysics, and more. Since all of these simulations involve approximations, uncertainty and error
areinevitablypresentintheirpredictions.Tocomplicatematters,asinglephysicalprocessmaybedescribedbymultiple
mathematical models and numerical approximations. In addition, one may have access to empirical observations of the
system—noisyandlimitedinnumber,scope,andresolution.Anaturalquestiontoaskishowtocombinethemodelsand
the observational data to predict the physical state with greater fidelity than can be obtained with any of the models
individually?
Varioustechniquesformodelaveraginganddataassimilation,allofwhichattempttoimplementsuchacombinationof
modelsanddata,havereceivedattentioninrecentyears.Inthecaseofasingledynamicalmodelwithastreamofnoisy
observations,theKalmanfilter[15,14]isbothsimpleandremarkablyeffective.TheassimilationstepoftheKalmanfilter
updatesthestatebyweighingthemodelpredictionandthedatainordertominimizeaquadraticobjective.Thisoperation
can be interpreted in many different ways, for instance, as a minimum variance estimator or as a Bayesian update. The
⇑
Correspondingauthor.Tel.:+17654962846.
E-mailaddresses:akil@purdue.edu(A.Narayan),ymarz@mit.edu(Y.Marzouk),dxiu@purdue.edu(D.Xiu).
0021-9991/$-seefrontmatter(cid:2)2012ElsevierInc.Allrightsreserved.
http://dx.doi.org/10.1016/j.jcp.2012.06.002
6402 A.Narayanetal./JournalofComputationalPhysics231(2012)6401–6418
originalKalmanfilterwasdesignedforlinearsystems,butderivatemethodsforfilteringnonlinearsystemsareplentiful,e.g.
theextendedKalmanfilter[9,11],theensembleKalmanfilter[7,8]anditsvariants[1,2,5,21,24],andisthesubjectofexten-
siveongoingwork.
Theuseofmultiplemodelsforfiltering,ontheotherhand,hasseenlessdevelopment.Withstaticdatasets,Bayesian
modelaveraging(BMA)isawell-establishedtechniqueforstatisticalpredictioninthepresenceofmodeluncertainty[10].
BMAwritesthepredictivedistributionofanyquantityofinterestasaweightedaverageoftheposteriorpredictionsdueto
each model; the data-dependent scalar weights are the posterior model probabilities [19]. Alternatively, one might
considernon-Bayesianapproachestomodelaveragingwithstaticdata;thesearegenerallyfocusedonprovidingpointpre-
dictionsratherthanpredictivedistributions[10,6].Dynamicmodelaveraging(DMA)[20]generalizesBMAtothedynam-
icalsetting,wheredataarrivesequentiallyandonewouldliketomakeonlinepredictionsaboutthestateofasystem.DMA
updates the state conditional on a discrete model indicator, but some Markovian dynamics (e.g. a matrix of transition
probabilities or a forgetting factor) for this model indicator must be specified. As in BMA, the predictive distribution is
a mixture with one component for each model. Other methods for sequential estimation with multiple models include
theInteractingMultipleModelfilter[4]andthegeneralizedpseudo-Bayesframework[23].Bothofthesetechniquesintro-
ducedynamicsforthe‘‘switching’’behaviorbetweenmodelsand updatestateprobabilities basedoninnovationsfroma
Kalman filter.
Likealloftheaforementionedmethods,weproposeanassimilationtechniquethatreliesonaweightedarithmeticmean
ofthemodels.Alimitationofthepreviousmethods,however,isthattheweightsusedinmodelaveragingarescalar-valued,
evenwhenthestateisvector-valued.Therefore,theassimilationprocesscannotemploydifferentmodelweightsindifferent
sectionsofthestatevector(correspondingtoregionsofspacewhereonemodelmightbesuperiortoanother,forinstance).
Inthispaperweconsidermoreageneralassimilationtechnique:ifu ;...;u arestatevectorsforMdifferentmodelsandd
1 M
isthedatavector,weattempttofindanassimilatedstatewoftheform
XM
w¼ A u þBd; ð1:1Þ
m m
m¼1
whereA andBarematrices.Therefore,weallowourassimilationtobethemostgenerallinearfunctionalofallthemodels
m
anddata.Thisformalsoallowsthemodelstatesanddatatohavedifferentdimensions.Alsoitispossibletohavedifferent,
independentsourcesofdatad ;...;d ,measuringdifferentquantities-of-interest.Mathematicallytheycanbeconcatenated
1 N
intoasinglevectord,allowingustouse(1.1)asageneralform.(Wewillshowthatassimilatingdataisphilosophicallythe
sameassimplytakingthedatatobeextramodelstatesin(1.1).Inotherwords,ourmethodtreatsmodelpredictionsand
dataasidenticalmathematicalobjects.)
Wederiveourassimilationtechniquebyminimizingavariationalfunctionalsimilarto,andageneralizationof,theone
usedintheclassicalKalmanfilter.Withonlyasinglemodelanddata,theassimilationisidenticaltotheKalmanfilter.When
twoormoremodelsarepresent,thedirectassimilationintheform(1.1)canbeemployed,wheretheexplicitformsofthe
matricesA andBarederived.Forpracticalsystemswithlargedimensions,wealsoproposeamoreefficientiterativeassim-
m
ilationmethod,whichseekstoperformaseriesoftwo-modelassimilationsuntilallmodelsanddataareassimilated.We
thenestablishthemathematicalconditionsunderwhichtheiterativeassimilationisequivalenttothedirectassimilation,
and more importantly, invariant to the permutation of the model states. Our proposed iterative assimilation approach
canalsohandlesingularmodelanddatacovariancematrices.LikeallKalmanfilteringmethods,thepresentmethodology
requirestheprescriptionandpropagationofthemodelcovariances.However,themethodisratheraframeworkandnottied
toanyspecificalgorithmforcovariancepropagation.Therefore,themethodcanbereadilycombinedwithmostvariantsof
theKalmanfilter,suchastheensembleKalmanfilter.
Itisworthpointingoutthattheexplicitinclusionofthedatainourassimilationmethod(1.1)representsasubtle,andyet
important,differencefromtheBMA.InBMA,theroleofdatapresentsitselfimplicitlyintheformoftheaveragingweights,
whichisdeterminedbytheposteriorprobability.Asaresult,theBMAisan‘‘average’’ofallmodels.Whenallmodelsare
consistentlybiasedtowardsonesideoftheprediction,theBMAresultis,byconstruction,guaranteedtobenobetterthan
thebestavailablemodel.Theformof(1.1)effectivelypreventsthisfromhappening.
In Section 2 we formalize notation and present the assimilation problem. This section also reviews existing assimila-
tion methods that are relevant to our discussion. Section 3 introduces our algorithm and presents its mathematical jus-
tification. In doing so, we compare a simultaneous assimilation procedure with a sequential assimilation procedure, and
make the argument that the sequential procedure is more robust. A Bayesian interpretation of both procedures is also
provided. Section 4 provides examples of our assimilation method in practice, and Section 5 follows with closing
remarks.
2.Problemsetup
Inthissectionwepresenttheoverallproblemofdataassimilationwithmultiplemodels,formalizingtheassumptions
andnotationtobeusedinsubsequentanalysis.WealsoreviewtheKalmanfilter(KF),whichiswidelyusedindataassim-
ilationwithasinglemodelandcloselyrelatedtoourproposedmethodformultiplemodelassimilation.
A.Narayanetal./JournalofComputationalPhysics231(2012)6401–6418 6403
2.1.Dataassimilationwithmultiplemodels
Followingusualpracticeindataassimilation,wepresentourmodelsintheformofdynamicalsystems,emphasizingthe
temporalnatureoftheproblem.Letut2RNt,NtP1,denotethe‘‘truestate’’ofaphysicalphenomenon.Typicallyut isafi-
niterepresentationofthespatiallydistributedstateofthephysicalsystem,aftersomespatialdiscretizationhasbeenap-
plied.Moregenerally,ut isaquantityofinterestwhoseevolutionwewishtotrack.Thisevolutionisgovernedbycertain
physicallawsandprocessesthatarenotcompletelyavailabletous.Nonetheless,wesupposethatthereexistssomeoperator
thatcapturestheexactevolutionofthesystemunderconsideration.Consideringonlydiscretevaluesoftimet ,wecanwrite
k
utðt Þ¼Lðt ;utðt ÞÞ; ð2:1Þ
kþ1 k k
wheretheoperatorLisunknowntous,butrepresentstheevolutionofthetruthstateutfromonepointintimetothenext.
InsteadofL,wehaveasetofmodelsindexedbym¼1...M,thatapproximatetheevolutionofut indifferentways.In
particular,thesemodelsspecifythetemporalevolutionofdistinctstatevectorsum2RNm viaanoperatorgm:
du
m¼g ðt;u Þ; t2ð0;T(cid:2);
dt m m ð2:2Þ
u ð0Þ¼u ;
m m;0
withT>0.Solutionsofthedifferentialequationsabovearethe‘‘forecast’’statesu ðtÞ.Wedefinethediscretesolutionoper-
m
atorforeachsystem,givenby
u ðt Þ¼G ðt ;u ðt ÞÞ; ð2:3Þ
m kþ1 m k m k
wheretheoperatorG isthediscretizedversionofg ,andmaybenonlinearinu .Noteastrictfirst-orderMarkoviansetting
m m m
has been used throughout this section. This is done for mere notational convenience and does not affect our discussion
below.
Theforecaststatesareusefulbecausetheycarryinformationaboutthetruestate.Wewillassumethat,atanygiventime
t ,theforecaststatevariablesu arelinearlyrelatedtothetruestateut,withtheadditionofastochasticdiscrepancy.In
k m
otherwords,wehave
u ¼H utþ(cid:2) ; m¼1;...;M; ð2:4Þ
m m m
whereHm2RNm(cid:3)Nt,and(cid:2)m,satisfyingE½(cid:2)m(cid:2)¼0,arerandomvariablesthatcapturethediscrepancybetweenthetransformed
truestateandu .Notethatthe(cid:2) canbetime-dependent.
m m
Inpracticetherelationbetweentheforecaststatesandthetruestatescouldbenonlinear:
u ¼H ðutÞþ(cid:2) ; m¼1;...;M; ð2:5Þ
m m m
forsomenonlinearoperatorsH .Ourtechniqueusesafilteringproceduretoassimilatedifferentmodels,andincaseswhen
m
the measurement operators H are not linear, then nonlinear filtering techniques such as the Unscented Kalman Filter
m
[13,12]orparticlefilters[18,22]areappropriate.Herewerestrictourselvestothelinearcase,withtheunderstandingthat
onecouldreplaceouruseoftheKalmanfilterwithanyappropriatenonlinearassimilationtechnique.Onecouldalsocon-
sider(2.4)tobeanapproximationorlinearizationofthenonlinearoperatorH ,asoftendoneinpractice.
m
Weused2RNd; NdP1,todenoteasetofmeasurements
d¼Hutþ(cid:2); ð2:6Þ
whereH2RNd(cid:3)Nt isthemeasurementmatrixand(cid:2)2RNd isthemeasurementerrorsatisfyingE½(cid:2)(cid:2)¼0.Notethattherela-
tionshipbetweenthemeasurementandthetruesolutioncouldingeneralbenonlinear,butwefocushereonthelinearcase.
(AgainthemeasurementmatrixHcouldbeconsideredasalinearizationofanonlinearmeasurementoperator.)Ouruseof
thediscrepancyterms(cid:2)and(cid:2) encompassesmanysourcesofuncertaintyincluding,butnotlimitedto,modeldiscrepancy,
m
temporal/spatialnumericaldiscretizationerror,numericalroundofferror,andmeasurementerror.Alsonotethat(2.6)easily
generalizestothecaseofmultiplemeasurementsthatareconditionallyindependentgivenut.Forourpurposesitisnota-
tionallyconvenienttocollectalltheseobservationsintoonevectord,butthealgorithmwepresentbelowcanimmediately
beappliedtoassimilationproblemswheredifferentmeasurementsaretreatedasseparatevectors.
Ourgoalistoconstructan‘‘analyzedsolution,’’denotedbyw2RNt andoftheform(1.1),usingtheforecastsolutions
fu gM andthemeasurementdtoprovideamoreaccuratepredictionofthetruesolutionut.
m m¼1
2.2.Kalmanfilter
TheKalmanfilter(KF)iswidelyusedfordataassimilationwithasinglemodel;hereweonlylistrelevantproperties,and
morein-depthdiscussioncanbefoundin[8].FollowingoursetupinSection2.1,weconsiderthecaseofM¼1andH ¼I,
1
whereIistheidentitymatrix.Thatis,thereexistsonlyoneforecaststateu anditisadirectpredictionofthetruestateut.
1
Let U12RN1(cid:3)N1 be the covariance matrix of the forecast solution u1 and suppress the subscript 1 hereafter only in this
6404 A.Narayanetal./JournalofComputationalPhysics231(2012)6401–6418
section.TheanalyzedsolutionwobtainedbythestandardKFisalinearcombinationoftheforecastsolutionuandthemea-
surementdinthefollowingmanner,
w¼uþKðd(cid:4)HuÞ; ð2:7Þ
whereKistheso-calledKalmangainmatrixdefinedas
K¼UHTðHUHTþDÞ(cid:4)1: ð2:8Þ
Here the superscript T denotes the matrix transpose, and D2RNd(cid:3)Nd is the covariance of the measurement error (cid:2). The
covariancematrixoftheanalyzedstatew,W2RNt(cid:3)Nt,isthenobtainedbytheupdate
W¼ðI(cid:4)KHÞUðI(cid:4)KHÞTþKDKT ¼ðI(cid:4)KHÞU: ð2:9Þ
Thisassimilationprocessisrepeatedateveryinstanceoftimewhendataisavailable.Theanalyzedstatewisthesolution
thatminimizesthefollowingvariationalfunctional:
J½w(cid:2)¼ðw(cid:4)uÞTU(cid:4)1ðw(cid:4)uÞþðHw(cid:4)dÞTD(cid:4)1ðHw(cid:4)dÞ: ð2:10Þ
Therearemanywaystorationalizethedesiretominimizetheobjective(2.10).ThefunctionalJ½w(cid:2)isthesumofMahalan-
obisdistancesbetweentheknownstatesVuandVdandwewanttofindastateVwlyingascloseaspossibletobothofthem.
Alternatively,wemayposetheproblemintheBayesianframework:wesupposethatuanditscovariancespecifyaprior
Gaussiandistributiononstatespace;assuminglikewisethatdisobtainedasaGaussianperturbationfromlinearmeasure-
mentsthetruth,thelikelihoodofobservingthedatacanbecomputed.Wethentaketheanalyzedstatewtobethemodeof
theposterior;equivalently,wminimizesthenegativelog-likelihoodoftheposterior.Inthissetup,thenegativelog-likeli-
hoodisgivenbyJ,cf.(3.14)andSection3.7.
3.Assimilationofmultiplemodels
Wepresentouralgorithmformultiplemodelassimilationinthissection.Section3.1beginsbystandardizingournota-
tion.Ouralgorithmisimplicitlyrelatedtotheproblemofcomputingharmonicmeansofcovariancematrices,andsoSection
3.2introducestheconceptofharmonicmeansonpositivesemi-definitematrices.Anunavoidablecomplicationthatmay
ariseinanyassimilationprocedureistheexistenceofmodeland/ormeasurementstatesthathavecompetingvaluesthat
cannotbeclearlyresolved.WeacknowledgethisrealityinSection3.3andpresentsufficientconditionsunderwhichdiffer-
ingvaluescanbeunambiguouslyassimilated.Section3.4presentsaversionofouralgorithmthatsimultaneouslyassimilates
allmodelsandmeasurements,andSection3.5followsupwithourproposedsequentialalgorithm.Wethenprovideasimple
exampletodemonstratewhysequentialassimilationispreferred.Section3.7concludesbyprovidingaBayesianinterpreta-
tionofthemulti-modelassimilationscheme.
3.1.Preliminaries
WeworkonacompleteprobabilityspaceðX;F;lÞwithXthecollectionofevents,Far-algebraonsetsofX,andlaprob-
ability measure on F. All random variables considered here are in the L2 stochastic space: u2L2 )R kuðxÞk2dlðxÞ¼
l X
kuðxÞk2 (cid:5)Ekuk2<1,wherekukisthestandardEuclideannormwhenuisvector-valued;thisissufficienttoensuretheexis-
l
tence of the mean and variance of u. When talking about limits of random variables, equality is in the L2 sense:
l
lime!0ue¼u)kue(cid:4)ukl!0.
Throughoutthispaperwewilluselowercaseboldfaceletters(e.g.u)todenotevectorsanduppercaseboldfaceletters(e.g.
A)todenotematrices.AT andAydenotethematrixtranspose,andtheMoore–PenrosepseudoinverseofA,respectively.For
randomvectorswewillusethesameletterbutwithuppercasetodenotetheircorrespondingcovariancematrices.Forexam-
ple,letv2RNbearandomvectorwithzeromean,thenV¼E½vvT(cid:2)2RN(cid:3)Ndenotesitscovariancematrix.AsquarematrixAis
positivedefiniteifvTAv>0forallnon-trivialv,andispositivesemi-definite(or‘semi-positive’)ifvTAvP0.Foranyfixed
sizeN,thespaceofallN(cid:3)NpositivedefinitematricesisdenotedbyH,andthespaceofallpositivesemi-definitematricesby
H .
0
3.2.Matrixharmonicmeans
ThestandardwaytodefineaharmonicmeanforpositivedefinitematricesA ;A 2His
1 2
(cid:2) (cid:3)(cid:4)1
F ¼2 A(cid:4)1þA(cid:4)1
2 1 2
anditisnotdifficulttoimaginegeneralizingthistoasequenceofmatricesA 2H; m¼1;...;M:
m
F ¼M XM A(cid:4)1!(cid:4)1: ð3:1Þ
M m
m¼1
A.Narayanetal./JournalofComputationalPhysics231(2012)6401–6418 6405
Itisclearthatthiscannotbeusedfor(non-invertible)semi-positivematrices.However,onecanproceedbytakingadifferent
route.
Definition1 (Matrixharmonicmean).LetA1;...;AM2H0,anddefineF1¼W1¼A1.Form¼2;...;M,define:
W ¼W ðW þA ÞyA ; ð3:2aÞ
m m(cid:4)1 m(cid:4)1 m m
F ¼mW : ð3:2bÞ
m m
F iscalledtheharmonicmeanofthematricesA ;...;A .
M 1 M
This definition coincides with the traditional definition of harmonic means of MP2 positive-definite matrices. More
importantly,thisdefinitionisageneralizationtosemi-positivematrices.
Theorem1. ForasequenceofmatricesAm;m¼1;...;M,onH,theharmonicmeanofDefinition1coincideswiththeformula
(3.1).ForAm onH0;FM is
1. closedonH :F 2H ;
0 M 0
2. continuous:ifFe istheharmonicmeanofAe;...;Ae 2H whereAe !A thenFe !F ;
M 1 M 0 m m M M
3. consistent:A ¼A ¼(cid:6)(cid:6)(cid:6)¼A )F ¼A ;
1 2 M M 1
4. symmetric: For m ;m ;...;m any permutation of 1;2;...;M, the harmonic mean of A ;...;A is the same as that of
1 2 M m1 mM
A ;A ;...;A ;
1 2 M
5. decreasing:F 6A forallm;
M m
6. monotone:IfA 6B forallm,thenF 6J ,whereF istheharmonicmeanoftheA andJ istheharmonicmeanoftheB .
m m M M M m m m
TheabovepropertiesjustifycallingF amatrixmean.TheAppendixcontainstheproof,alongwithmathematicaldiscus-
M
sionsthatarenotdirectlyrelatedtoourpresenttaskofmultiplemodeldataassimilation.
Wenoteherethatusingpropertiesofpseudoinversesonemayrewritetheiterativeprocedure(3.2a(a))forupdatingW :
m
(cid:2) (cid:3)
W ¼ I(cid:4)W ðW þA Þy W ,ðI(cid:4)KÞW
m m(cid:4)1 m(cid:4)1 m m(cid:4)1 m(cid:4)1
ComparingthiswiththeKalmanfiltercovarianceupdatefrom(2.8)and(2.9)whenH¼I,weseethattheiterativeprocedure
forcomputingharmonicmeansisalmostidenticaltoastandardKalmanfilterprocedure.
Ouralgorithmformodelassimilationproducesanassimilatedmodelstatewhosecovarianceisproportionaltothehar-
monicmeanoftheinputcovariances.(IftheinputcovariancesareA ,thenthematrixW from(3.2b)istheassimilated
m M
covariance.)WewillseelaterthatthealgorithmitselfcanbeimplementedbyiteratingastandardKalmanfilter,andthus
implicitlyusestheiterativedefinitionofthematrixharmonicmean(3.2b)tocomputetheassimilatedstate.
3.3.Consistentrandomvariables
Anyassimilationproceduremustprecludethesituationwherethereisnologicalwaytoreconcileaquantitativediffer-
encebetweentwomodels.Forexample,ifwehavetwomodelsofascalarquantityofinterestwithu ðxÞ¼1andu ðxÞ¼2
1 2
almostsurely,thennoassimilationprocedurecanproduceagoodsynthesis.Inoursetting,weexcludesuchsituationsby
insistingthattherandomvariablescorrespondingtoourmodelstatevectorsareconsistent.
Definition2. ConsiderL2ðXÞrandomvectorsum2RNm,m¼1;...;M,eachpairedwithameasurementmatrixHm2RNm(cid:3)Nt,
whereN isthesizeofthetruthstate.1Thenu areconsistentifthecomponentsineachrandomvariablecorrespondingto
t m
zero variance can be assimilated, almost surely without contradiction, from the other variables. More precisely, let S0 be a
m
matrixoforthogonalcolumnvectorscorrespondingtothenullspaceofU .Thenu areconsistentifthelinearsystemdefined
m m
bytheMvector-valuedequations
(cid:2) (cid:3)T (cid:2) (cid:3)T
S0 H w¼ S0 E½u (cid:2); m¼1;2;...;M ð3:3Þ
m m m m
hasatleastonesolutionforthevectorw.
Thecondition(3.3)essentiallystatesthattherandomvariablesu donothavecompetingzero-variancecomponents.If
m
alltherandomvariablesu havestrictlypositivecovariancekernels,thentheyareautomaticallyconsistent.Inallthatfol-
m
lows,wewillonlyconsidercollectionsofrandomvariablesthatareconsistent.
1 Recallfrom(2.4)thatHm isonlyusedtoconnectmodelstatestothetruthsolution.Thesourceofrandomness,whetherstemmingfrom(cid:2)m orfrom
randomnessinthetruth,ishereirrelevant.
6406 A.Narayanetal./JournalofComputationalPhysics231(2012)6401–6418
3.4.Mainresult:directassimilationmethod
Wenowprescribeamethodforassimilatingmultiplemodelsalongwithdata.Thesingle-modelKalmanfilterprocedure
canbeidentifiedasminimizingthevariationalfunctional(2.10).Thissuggeststhatanassimilationprocedureforassimilat-
ingmultiplemodelswithdatacanbeproposedsimplybymakingappropriatechangestothevariationalfunctional.
Theorem2. ConsiderasetofMforecaststatesum;m¼1;...;M,satisfying(2.4)andwitherrorcovarianceUm¼E½(cid:2)m(cid:2)Tm(cid:2)2H,
anddatavector(2.6)witherrorcovarianceD¼E½(cid:2)(cid:2)T(cid:2)2H.AssumethattherowspacesofHandHm spanallRNt:
spanfranH;ranH ;ranH ;...;ranH g: ð3:4Þ
1 2 M
Define
J½w(cid:2)¼XM ðH w(cid:4)u ÞTU(cid:4)1ðH w(cid:4)u ÞþðHw(cid:4)dÞTD(cid:4)1ðHw(cid:4)dÞ; ð3:5Þ
m m m m m
m¼1
thentheminimizersatisfies
!
w¼W XM HTU(cid:4)1u þHTD(cid:4)1d ; ð3:6Þ
M m m m
m¼1
whereW isgivenby:
M
W ¼ XM HTU(cid:4)1H þHTD(cid:4)1H!(cid:4)1:
M m m m
m¼1
Proof. Theproofcanbeeasilyobtainedbystraightforwardcalculus,wherethecondition(3.4)isrequiredtoassurestrict
positivityofJ½w(cid:2). h
Theanalyzedstateiswandtheanalyzedmodelstatesare
v ¼H w; m¼1;...;M: ð3:7Þ
m m
ThematricesA in(1.1)arethusgivenby
m
A ¼W HTU(cid:4)1: ð3:8Þ
m m m m
Thetechnicalassumption(3.4)ismade2toensureauniqueminimizerforthequadraticformJ.While(3.6)willproducethe
assimilatedstatewepropose,theassumptionsU ;D2H,i.e.,strictlypositivedefinitecovariances,maybetoorestrictivein
m
practice.(NotethatundersuchanassumptionallrandomvariablesinTheorem2areautomaticallyconsistent.)Thisrestriction
canberelaxedbyusingamorerobustiterativeassimilationmethod.
3.5.Mainresult:iterativeassimilationmethod
Wenowpresenttheiterativeassimilationmethodthatbehavesinamorerobustmanner,inthesensethatitcanreadily
dealwithsemi-positivecovariancematrices.
Theorem 3. Consider a set of M forecast variables um;m¼1;...;M, satisfying (2.4) and with error covariance
Um¼E½(cid:2)m(cid:2)Tm(cid:2)2H0, and data vector (2.6) with error covariance D¼E½(cid:2)(cid:2)T(cid:2)2H0. Assume3 that H1¼I; set w1¼u1 and
W1¼U1.Form¼2;3;...;M,let
(cid:2) (cid:3)y
K ¼W HT H W HT þU
m m(cid:4)1 m m m(cid:4)1 m m
(cid:2) (cid:3)y
w ¼w þK ðu (cid:4)H w Þ¼w þW HT H W HT þU ðu (cid:4)H w Þ; ð3:9Þ
m m(cid:4)1 m m m m(cid:4)1 m(cid:4)1 m(cid:4)1 m m m(cid:4)1 m m m m m(cid:4)1
(cid:2) (cid:3)y
W ¼ðI(cid:4)K H ÞW ¼W (cid:4)W HT H W HT þU H W
m m m m(cid:4)1 m(cid:4)1 m(cid:4)1 m m m(cid:4)1 m m m m(cid:4)1
2 Intheabsenceofanypriorinformationaboutthetruthstate,wealsoconsiderthisconditionasrequiredtoavoidinfinities:ifweknownothingaboutthe
truthstateut,and(3.4)isviolated,allthemodelsanddataessentiallycontaininsufficientinformationtosayanythingaboutcertaincomponentsofut.
Neverthelesswemustassignsomevaluetothesecomponents.Inordertocommunicateourlackofknowledge,prescribinginfinitevarianceistheonly
quantitativelyaccurateassignment.
3 Thisassumptionismadeforsimplicityandisrelatedtotheconcernfromfootnote2.Weakeningthisassumption(H1–I)ispossiblebutrequiresspecial
treatmenttoavoidinfinitevariancesintheearlystagesoftheassimilationprocedure.WhenH1–Ionecanformulateawell-definedassimilationprocedureso
longas(3.4)holds.
A.Narayanetal./JournalofComputationalPhysics231(2012)6401–6418 6407
Finally,assimilatethedatavector:
(cid:2) (cid:3)y
K¼W H HU HTþD
M M
ð3:10Þ
w ¼w þKðd(cid:4)Hu Þ;
Mþ1 M M
W ¼ðI(cid:4)KHÞW :
Mþ1 M
W isthecovarianceofw .WhenU ; D2H,thenw isthesameaswfrom(3.6).Ifu ;...;u areconsistentrandomvari-
m m m Mþ1 1 M
ables,thenw isindependentoftheorderingintheiterativeprocedure(3.9).
M
WegivetheproofintheAppendix.Itisinthisproofthatwerequirethedefinitionofconsistentmodelstatesinorderto
guaranteethattheassimilatedstatedoesnotdependontheorderingofthemodelstates.
TherearemanyobservationstomakeabouttheiterativeproceduredefinedinTheorem3.
(cid:7) Theiterativemethodallowsthecovariancematricestobesemi-positive.Whenthecovariancematricesarepositive,the
iterativemethodisequivalenttothedirectmethod.Thereforetheiterativemethodhasamathematicallywiderrangeof
applicabilitythanthedirectmethod.
(cid:7) TheassumptionH ¼Iismadeonlytomakepresentationoftheassimilationprocedureclearer.Generallyweareinter-
1
estedindynamicalsystems,sothereisamodelstatewfromtheprevioustimestepthatcanbeused
(cid:7) Theorderingoftheassimilationproceduredoesnotmatteriftherandomvariablesu ; m¼1;...;M,anddareconsis-
m
tent.Infactitisalsoindependentofthedata/modelordering.Therefore,onecantreatdataasanothersetofmodelsim-
ulation results. Consequently, multiple and conditionally independent sources of data can be assimilated by simply
performingadditionaldataassimilationsteps,independentoftheordering.
(cid:7) ThematrixW canbeinterpretedasaharmonicmeanofthematricesU whenpairedwiththemeasurementmatrices
M m
H .IftheH areallidentitymatrices,thenW isexactly1=MtimestheharmonicmeanoftheU ,whereDefinition1is
m m M m
usedwhenanyoftheU issemi-positive.SeealsothediscussionattheendofSection3.2.
m
(cid:7) TheiterativeprocedureoutlinedaboveisessentiallyasequentialapplicationofastandardKalmanfilterupdate.(Useof
thepseudoinverseisthemaindifference.)Thus,assimilationofeachnewmodelmaybeviewedasasingle-modelKalman
filterupdate.
(cid:7) Theiterativeschemeallowsonetoassimilateanysubsetofmodelsanddataattimeswhentheyareavailable.Oneprac-
ticaluseofthisistheabilitytoassimilateonlymodelstatesintheabsenceofdata.Anexampleofsuchasituationisgiven
inSection4.3.
Theiterativeassimilationmethodcanbeimplementedinastraightforwardmanner:
(cid:7) Initialization.Formodelu anddatad,performthestandardKalmanupdatetoobtainananalyzedmodelstatew with
1 1
covarianceW .
1
(cid:7) Iteration.Form¼2;...;M,applytheprocedure(3.9).Inotherwords,considerthepresentassimilatedmodelstatew
m(cid:4)1
withitscovarianceW tobetheforecaststate,andconductaKalmanupdateusingthenewmodelpredictionu as
m(cid:4)1 m
‘‘data’’ (with measurement matrix H ) to obtain the new analyzed state w¼w and the analyzed model states
m Mþ1
v ¼H w.
m m
3.6.Somemotivatingexamples
ThedirectassimilationapproachisapplicabletocaseswhenthequadraticformJ from(3.5)ispositivedefinite;thisis
satisfied,forexample,undertheassumptionsofTheorem2.Inothercases,forexamplewhensomecomponentshavezero
variance,theiterativeprocedureismoreappropriate.However,theiterativeassimilationapproachisonlyrobustifthemod-
elstatesareconsistent.Ifthemodelstatesarenotconsistent,thenonemustabandonthehopeofproducinganassimilation
thatisfaithfultoallthemodels.Wenowpresentexamplesthatshowcasethesevarioussituations.
Supposewehavetwomodelsu ;u 2R2withidentityobservationmatricesH ¼H ¼I.Thedirectassimilationscheme
1 2 1 2
istoformthevariable
h i
w¼ðU(cid:4)1þU(cid:4)1Þ(cid:4)1 U(cid:4)1u þU(cid:4)1u : ð3:11Þ
1 2 1 1 2 2
IfU andU arepositivedefinite,thereisnoissue.Butletusexploretheissueofcontinuitywithrespecttosemi-positive
1 2
definitematrices.Letusparameterizetheserandomvariableswithrespecttoasmallpositiveperturbatione:
(cid:4)e 0(cid:5) (cid:4)1 0(cid:5)
Ue ¼ ; Ue ¼ ;
1 0 1 2 0 e
(cid:4)u (cid:5) (cid:4)u (cid:5)
u ðxÞ¼ 11 ; u ðxÞ¼ 21 :
1 u 2 u
12 22
6408 A.Narayanetal./JournalofComputationalPhysics231(2012)6401–6418
Thevaluesofu andu arenotimportant,butclearlytheiruncertaintiesdependone.Smallvaluesofecorrespondtothe
1 2
casewhereu haslittleuncertaintyinitsfirstcomponent,andu haslittleuncertaintyinitssecondcomponent.The‘sen-
1 2
sible’waytoassimilatesuchstatesthen,istoputmostoftheweightonu andu .Indeedthedirectassimilationprocedure
11 22
doesexactlythis;fore>0weobtainfrom(3.11)
we¼ 1 (cid:4)u11þeu21(cid:5):
eþ1 eu þu
12 22
Wecandefinew¼lime!0we andUj¼lime!0Uej.Clearly,w¼ðu11;u22ÞT.Onecanverifythateitheriterativeprocedure
w¼u þU ðU þU Þyðu (cid:4)u Þ ð3:12aÞ
1 1 1 2 2 1
w¼u þU ðU þU Þyðu (cid:4)u Þ ð3:12bÞ
2 2 2 1 1 2
producesthisstatewregardlessofordering(indeedU þU ¼I>0sothepseudoinverseisnotevennecessary).Onemay
1 2
thenbetemptedtousethedirectapproach(3.11),butbynaïvelyreplacingalldirectinverses(cid:4)1bypseudoinverses(cid:2).Ifwedo
thisandthenapply(3.11),weobtainastatew¼ðu ;u ÞT.Thisstateistheoppositeofwhatweshoulddo:wecompletely
21 12
ignorethecomponentsthatwehavethemostinformationabout.Thisshowsthatthedirectassimilationapproachcannotbe
remediedforpositivesemi-definitecovariances.
Letusnowshowhowtheiterativeschemetreatsconsistentrandomvariableswithsemi-positivecovariances.Againwe
takeu ;u 2R2,andwenowprescribethecovariances
1 2
(cid:4)e 0(cid:5) (cid:4)1 0(cid:5)
Ue ¼ ; Ue ¼ :
1 0 e 2 0 e
Wenowexpectthattheprocedureshoulddiscardu infavorofu ,andshouldequallyweighthevaluesfromu andu .
21 11 12 22
Whene>0wecanuseeitherthedirectoriterativeschemestoobtain
1 ðu þeu Þ!
we¼ eþ1 11 21 :
1u þ1u
2 12 2 22
Takinglimitsweobtainwð1Þ,lime!0we¼(cid:6)u11;12u12þ12u22(cid:7)T asexpected.AgaindefineU1¼lime!0Ue1 andsimilarlyforU2.
The iterative scheme (3.12a) produces the state wð2Þ¼ðu ;u ÞT whereas the second scheme (3.12b) produces
11 12
wð3Þ¼ðu ;u Þ.Bothofthesearepotentiallydifferentfromwð1Þ,andfromeachother.However,ifu andu areconsistent
11 22 1 2
randomvariables,thenu andu arealmostsurelyequal,andthereforewð1Þ¼wð2Þ¼wð3Þ almostsurely,sothatthefinal
12 22
choiceamongthethreeoptionsislargelyirrelevant.
Iftherandomvariablesarenotconsistent,thenallthreewvectorsdifferwithnonzeroprobability,butinthiscasethere
canbenoremedy:wehavetwomodelswithanon-vanishingdiscrepancythatarebothentirelysureoftheirownaccuracy.
Weclosethissectionbynotingthattheabilitytoassimilatecomponentswithvanishingvarianceopensupattractivepos-
sibilities.Onemayenforceconstraintsoftheanalyzedstatevector(e.g.conservationofmass)inapost-processingstepby
treatingtheconstraintsaszero-variancedata.
3.7.Bayesianinterpretationofmulti-modelassimilation
Toplacethepresentschemeincontext,itisinstructivetoconsideritsBayesianinterpretation.Letwk,wðt Þdenotethe
k
assimilatedstateattimet .FromtheBayesianperspective,wkisarandomvariablewhosedistributioncapturesthecurrent
k
stateofknowledgeaboutthetruthstateutðt Þ.Inotherwords,thedistributionofwkistheposteriordistributionofthesys-
k
temstate,giventhedatauptotimet andtheavailablemodels.
k
To be more specific, the present scheme provides the mean and covariance of the posterior probability density
pðwkjd1:k;M ;...;M Þ,whered1:k,ðdðt Þ;dðt Þ;...;dðt ÞÞarethedataprovideduptoassimilationtimestept andM
1 M k k(cid:4)1 1 k m
areindividualmodels.IfwehadonlyonemodelM andonesourceofdata,theposteriordensityofwk wouldbewritten
1
as
p(cid:2)wkjd1:k;M (cid:3)/p(cid:2)dkjwk;M (cid:3)p(cid:2)wkjd1:k(cid:4)1;M (cid:3)¼p(cid:2)dkjwk(cid:3)Z p(cid:6)wkjwk(cid:4)1;M (cid:7)p(cid:2)wk(cid:4)1jd1:k(cid:4)1;M (cid:3)dwk(cid:4)1: ð3:13Þ
1 1 1 1 1
(cid:2) (cid:3)
AsistypicalinKalmanfilteringvariants,theassimilationstepapproximatesthedatalikelihoodp dkjwk andtheforecast
(cid:2) (cid:3)
distribution p wkjd1:k(cid:4)1;M as Gaussian, even if propagation of uncertainty through a forecast model results in a non-
1
Gaussiandistribution.Inthiscase,iftheforecaststatehasmeanuk,covarianceUk,andH ¼I,suchthat
1 1 1
wk¼ukþ(cid:2)k; (cid:2)k (cid:8)Nð0;UkÞ;
1 1 1 1
thentheposteriormeanandcovarianceofwk areexactlygivenbytheKalmanupdatespecifiedinSection2.2.
A.Narayanetal./JournalofComputationalPhysics231(2012)6401–6418 6409
Withmorethanonemodel,itisnaturaltointerpretmodelsM ,mP2,asprovidingadditionaltermsinthelikelihood
m
(cid:2) (cid:3)
function,e.g.p ukjwk;d1:k(cid:4)1;M ,whereuk ,u ðt Þ.Thesetermscanbejustifiedasfollows.Beginningwiththemulti-
m m m m m k
(cid:2) (cid:3)
modelpriorp wk(cid:4)1jd1:k(cid:4)1;M ,eachmodelpropagatesthisdistributionforwardtothenextassimilationtimeandaddsits
1:M
ownsourcesofrandomness(e.g.parametricuncertaintyorprocessnoise).Eachresultingmodel-specificforecastdistribu-
tionisthendescribedonlybyitsmeanuk andcovarianceUk.Onecanwritetheforecastsas
m m
H wk¼uk þ(cid:2)k;
m m m
where(cid:2)k (cid:8)Nð0;UkÞ.Theresultinglikelihoodtermis
m m
p (cid:2)ukjwk;d1:k(cid:4)1;M (cid:3)/exp(cid:4)(cid:4)1(cid:6)H wk(cid:4)uk(cid:7)TðUkÞ(cid:4)1(cid:6)H wk(cid:4)uk(cid:7)(cid:5): ð3:14Þ
m m 1:M 2 m m m m m
NotethattheconditioningonallmodelsM reflectsthefactthatalloftheseforecastsbeganwiththeassimilatedmulti-
1:M
modelstateattimestepk(cid:4)1,butthemodel-specificsubscriptinp emphasizesthatsubsequentforecastingwasperformed
m
onlywiththemthmodel.
Sincethemodelforecastsareconditionallyindependentgivenwk,thelikelihoodtermscanbecombinedtoyieldthemul-
ti-modelposteriordensity:
!
pðwkjd1:k;M Þ/pðdkjwkÞ YM p ðukjwk;d1:k(cid:4)1;M Þ p ðwkjd1:k(cid:4)1;M Þ: ð3:15Þ
1:M m m 1:M 1 1:M
m¼2
Herethepriorpredictivep ðwkjd1:k(cid:4)1;M ÞischosentoreflecttheforecastofanyoneoftheMmodels,hereM .Assuming
1 1:M 1
H ¼I,thisdistributionisGaussianwithmeanuk andcovarianceUk.
1 1 1
Wecanmotivatetheformofthevariationalfunctional(3.5)forthedirectassimilationmethodfromthisBayesiananal-
ysis:notethatmaximizingtheposteriorprobabilitygivenby(3.14)and(3.15)isequivalenttominimizingitsnegativelog-
arithm.Thenegativelog-posterior(moduloconstants)isgivenbythefunctionalJ½w(cid:2)from(3.5).
Comparedtoothermodelaveragingtechniques,thepresentschemedoesnotneedtospecifyadditionaldynamicsonthe
modelspace.Instead,theroleofthecovarianceisparamountindeterminingtheweightassignedtoeachmodelprediction
andtothedata.Thecovariance-basedschemethusallowsmatrix-valuedweightsandisanaturalgeneralizationoftheKal-
manfilter.
4.Examples
Inthissectionweprovideafewsimpleexamplesthatillustratethebroadrangeofapplicabilityofthemodelassimilation
approachpreviouslydetailed.OurimplementedmethodsusetheiterativeprocedureoutlinedinTheorem3,andweassume
thatallmodelsrepresentconsistentrandomvariables.Forour examples,thisisa valid assumption:allinvolvedrandom
variableshavestrictlypositivecovariances.Thecostoftheassimilationproceduredoesnotsuffergreatlyfromuseofthe
pseudoinverseimplementationasasafeguard.
Ourfirstexampleconcernsarudimentarydifferentialequationy0¼ayandusesTaylorpolynomialsasthemodels.The
secondexampleisarelatedstochasticdifferentialequation(SDE)examplethatusesthesameTaylorpolynomialmodels,
but showcases the complex interplay that can occur between the models and the data. Finally, we consider a periodic
one-dimensionaladvectionproblemwithnon-constantwavespeedtoshowhowthestrengthsofdifferentmodelscanbe
combinedbyusingthemultimodelassimilationapproach.
4.1.Anexponentialmodel
Considerasystemwhosetruthisgivenby
dut
¼aut; ðutÞ ¼u ;
dt 0 0
forsomeu .TheobservationsarescalarandthemeasurementmatrixHistheidentity(here,thescalar1).Themeasurement
0
noiseeisassumedtobeNð0;r2Þ.ForanymP1,theforecastmodelpropagatorsG from(2.3)aregivenby
m
!
G ðvÞ¼ mX(cid:4)1ðaDtÞk v;
m k!
k¼0
whichisadegree-ðm(cid:4)1ÞTaylorapproximationofthetruesolution.WefirstletDt¼0:05; a¼1; u ¼0:1,andr¼0:05.
0
WeuseM¼2models(constantandlinearapproximations).Havinginformationaboutthemodels,weassumethatthestan-
darddeviationofthepropagationerrorðutÞ (cid:4)G ððutÞ Þisgivenby0:1Dtm(cid:4)1:i.e.,theconstantmodelisassumedtohave
n m n(cid:4)1
errorwithstandarddeviation0:1Dt,whilethelinearmodel’serrorhasstandarddeviation0:1Dt2.Naturallythesearenot
entirelyaccurateandwecanmakefarbetterassumptionsabouttheerror,butthiswillserveourpurposes.Furthermore,
6410 A.Narayanetal./JournalofComputationalPhysics231(2012)6401–6418
weassumethatdataisonlyavailableevery5timesteps—intheabsenceofdata,thepropagatorsG areusedtoobtained
m
analyzedstateswithoutanyassimilation.
Notethatbyconstruction,alltheforecastmodelsareconsistentlybiasedbelowthetruesolutionanddata.Ifoneadopts
Bayesianmodelaveraging(BMA),thentheanalyzedstateisguaranteedtobelessaccuratethanthebestavailableforecast
Fig.4.1. PlotoftheevolutionoftheforecaststatesalongwithindicationofanalyzedstatesanddatawithM¼2forecastmodels.
Description:pose an efficient iterative assimilation method that assimilates two models at The first example here is to show that data-blind assimilation is also a