ebook img

Sequential Change Detection and Hypothesis Testing-General Non-i.i.d. Stochastic Models and Asymptotically Optimal Rules PDF

321 Pages·2019·8.913 MB·\321
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Sequential Change Detection and Hypothesis Testing-General Non-i.i.d. Stochastic Models and Asymptotically Optimal Rules

Sequential Change Detection and Hypothesis Testing Sequential Change Detection and Hypothesis Testing General Non-i.i.d. Stochastic Models and Asymptotically Optimal Rules Alexander G. Tartakovsky Moscow,Russia andLosAngeles,USA CRCPress Taylor&FrancisGroup 6000BrokenSoundParkwayNW,Suite300 BocaRaton,FL33487-2742 c 2020byTaylor&FrancisGroup,LLC (cid:13) CRCPressisanimprintofTaylor&FrancisGroup,anInformabusiness NoclaimtooriginalU.S.Governmentworks Printedonacid-freepaper InternationalStandardBookNumber-13:978-1-4987-5758-4(Hardback) Thisbookcontainsinformationobtainedfromauthenticandhighlyregardedsources.Reasonableeffortshavebeenmade topublishreliabledataandinformation,buttheauthorandpublishercannotassumeresponsibilityforthevalidityofall materialsortheconsequencesoftheiruse.Theauthorsandpublishershaveattemptedtotracethecopyrightholdersofall materialreproducedinthispublicationandapologizetocopyrightholdersifpermissiontopublishinthisformhasnotbeen obtained.Ifanycopyrightmaterialhasnotbeenacknowledgedpleasewriteandletusknowsowemayrectifyinanyfuture reprint. ExceptaspermittedunderU.S.CopyrightLaw,nopartofthisbookmaybereprinted,reproduced,transmitted,orutilizedin anyformbyanyelectronic,mechanical,orothermeans,nowknownorhereafterinvented,includingphotocopying,micro- filming,andrecording,orinanyinformationstorageorretrievalsystem,withoutwrittenpermissionfromthepublishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/)orcontacttheCopyrightClearanceCenter,Inc.(CCC),222RosewoodDrive,Danvers,MA 01923,978-750-8400.CCCisanot-for-profitorganizationthatprovideslicensesandregistrationforavarietyofusers.For organizationsthathavebeengrantedaphotocopylicensebytheCCC,aseparatesystemofpaymenthasbeenarranged. TrademarkNotice:Productorcorporatenamesmaybetrademarksorregisteredtrademarks,andareusedonlyforidenti- ficationandexplanationwithoutintenttoinfringe. VisittheTaylor&FrancisWebsiteat http://www.taylorandfrancis.com andtheCRCPressWebsiteat http://www.crcpress.com IN MEMORY OF MY FATHER GEORGIY P. TARTAKOVSKY AS WELL AS TO MY WIFE MARINA AND MY SON DANIEL Contents Preface xi NotationandSymbols xiii Introduction xvii 1 SequentialHypothesisTestinginMultipleDataStreams 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 SequentialMultistreamHypothesisTestingProblem . . . . . . . . . . . . . . . . 2 1.3 GeneralizedLikelihoodRatioandMixtureSequentialTests . . . . . . . . . . . . 3 1.4 AsymptoticOperatingCharacteristicsintheGeneralNon-i.i.d.Case . . . . . . . . 6 1.4.1 ProbabilitiesofErrorsintheGeneralNon-i.i.d.Case . . . . . . . . . . . . 6 1.4.1.1 UpperBoundsontheErrorProbabilities . . . . . . . . . . . . . 6 1.4.1.2 ErrorExponents . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4.1.3 MonteCarloImportanceSampling . . . . . . . . . . . . . . . . 9 1.4.1.4 AsymptoticOptimalityofGSLRTandMSLRT . . . . . . . . . 12 1.4.2 TheCaseofIndependentDataStreams . . . . . . . . . . . . . . . . . . . 15 1.4.2.1 AsymptoticOptimalityintheCaseofIndependentStreams . . . 16 1.4.2.2 ScalabilityintheCaseofIndependentStreams . . . . . . . . . . 16 1.4.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.4.4 MonteCarloSimulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.5 HigherOrderApproximationsandOptimalityinthei.i.d.Case . . . . . . . . . . . 26 1.5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.5.2 AsymptoticApproximationsfortheProbabilitiesofErrors . . . . . . . . . 29 1.5.3 Third-OrderAsymptoticApproximationsfortheESS . . . . . . . . . . . . 31 1.5.3.1 Asymptotic Approximations for the ESS Under Hypothesis HB andUnderHypothesisH intheAsymmetricCase . . . . . . . . 31 0 1.5.3.2 AsymptoticApproximationsfortheESSUnderHypothesisH in 0 theGeneralCase . . . . . . . . . . . . . . . . . . . . . . . . . . 36 1.5.4 High-OrderAsymptoticOptimality . . . . . . . . . . . . . . . . . . . . . 52 1.5.4.1 UniformAsymptoticOptimality . . . . . . . . . . . . . . . . . 52 1.5.4.2 Bayesian-typeAsymptoticOptimality . . . . . . . . . . . . . . 53 1.5.4.3 Asymptotic Minimax Properties with Respect to Kullback– LeiblerInformation . . . . . . . . . . . . . . . . . . . . . . . . 57 1.5.4.4 FurtherOptimizationandMCSimulations . . . . . . . . . . . . 58 2 Sequential Detection of Changes: Changepoint Models, Performance Metrics and OptimalityCriteria 63 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.2 ChangepointModels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.2.1 ModelsforObservedProcesses . . . . . . . . . . . . . . . . . . . . . . . 64 2.2.1.1 ASingleStreamScenario . . . . . . . . . . . . . . . . . . . . . 64 2.2.1.2 AMultistreamScenario . . . . . . . . . . . . . . . . . . . . . . 65 vii viii Contents 2.2.2 ModelsfortheChangePoint . . . . . . . . . . . . . . . . . . . . . . . . . 66 2.2.2.1 TypesofChanges . . . . . . . . . . . . . . . . . . . . . . . . . 66 2.2.2.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 2.3 OptimalityCriteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 2.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 2.3.2 MeasuresoftheFalseAlarmRisk . . . . . . . . . . . . . . . . . . . . . . 69 2.3.2.1 AverageRunLengthtoFalseAlarm . . . . . . . . . . . . . . . 70 2.3.2.2 WeightedProbabilityofFalseAlarm . . . . . . . . . . . . . . . 71 2.3.2.3 GlobalProbabilityofFalseAlarm . . . . . . . . . . . . . . . . 71 2.3.2.4 LocalProbabilitiesofFalseAlarm . . . . . . . . . . . . . . . . 72 2.3.3 AnExpectedDelaytoDetectioninaGeneralCase . . . . . . . . . . . . . 74 2.3.4 BayesianCriteriawithRespecttotheExpectedDelaytoDetection . . . . . 75 2.3.5 MinimaxCriteriawithRespecttotheExpectedDelaytoDetection . . . . . 77 2.3.6 PointwiseUniformOptimalityCriterion . . . . . . . . . . . . . . . . . . . 79 2.3.7 CriteriaMaximizingProbabilityofDetection . . . . . . . . . . . . . . . . 79 2.3.8 AsymptoticOptimalityCriteria . . . . . . . . . . . . . . . . . . . . . . . 81 3 BayesianQuickestChangeDetectioninaSinglePopulation 83 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.2 TheShiryaevandShiryaev–RobertsMixtureRules . . . . . . . . . . . . . . . . . 85 3.3 AsymptoticProblems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 3.4 AsymptoticOptimalityoftheMixtureShiryaevRule . . . . . . . . . . . . . . . . 88 3.4.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 3.4.2 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 3.4.3 AsymptoticOptimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.5 AsymptoticPerformanceoftheMixtureShiryaev–RobertsRule . . . . . . . . . . 99 3.6 AsymptoticOptimalitywithRespecttotheIntegratedRisk . . . . . . . . . . . . . 104 3.7 TheCaseofaSimplePost-ChangeHypothesis . . . . . . . . . . . . . . . . . . . 108 3.8 TheCaseofIndependentObservations . . . . . . . . . . . . . . . . . . . . . . . 110 3.9 Thei.i.d.Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 3.10 Window-LimitedChangeDetectionRules . . . . . . . . . . . . . . . . . . . . . . 116 3.11 SufficientConditionsofAsymptoticOptimalityforMarkovProcesses . . . . . . . 122 3.12 AsymptoticOptimalityforHiddenMarkovModels . . . . . . . . . . . . . . . . . 129 3.12.1 MarkovRandomWalkRepresentationoftheLLRforHHM . . . . . . . . 130 3.12.2 AsymptoticOptimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 3.12.3 HigherOrderAsymptoticApproximationsfortheAverageDetectionDelay andPFA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 3.12.4 TheCaseofConditionallyIndependentObservations . . . . . . . . . . . . 140 3.13 AdditionalExamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 3.14 ConcludingRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 4 NearlyOptimalPointwiseandMinimaxChangeDetectioninaSinglePopulation 149 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 4.2 NearlyOptimalPointwiseandMinimaxChangeDetection . . . . . . . . . . . . . 149 4.2.1 ProblemSetup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 4.2.2 AsymptoticOptimalityoftheMSRDetectionRule . . . . . . . . . . . . . 150 4.2.2.1 TheNon-i.i.d.Case . . . . . . . . . . . . . . . . . . . . . . . . 150 4.2.2.2 TheCaseofLLRwithIndependentIncrements. . . . . . . . . . 156 4.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 4.4 MonteCarloSimulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Contents ix 5 ChangeDetectionRulesOptimalfortheMaximalDetectionProbabilityCriterion 163 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 5.2 Shewhart’sRule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 5.2.1 OptimalitywithRespecttotheExpectedDetectionDelay . . . . . . . . . 164 5.2.2 MaximalAverageProbabilityofDetection:theBayesianApproach . . . . 165 5.2.3 MaximinFrequentistCriteria. . . . . . . . . . . . . . . . . . . . . . . . . 172 5.3 BayesianandMaximinSequentialDetectioninWindowswithArbitrarilySize . . 176 5.3.1 BayesOptimalChangeDetectionRule . . . . . . . . . . . . . . . . . . . 176 5.3.2 MaximinOptimalChangeDetectionRule . . . . . . . . . . . . . . . . . . 179 5.4 ConcludingRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 6 QuickestChangeDetectioninMultipleStreams 181 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 6.2 AMultistreamModelandChangeDetectionRules . . . . . . . . . . . . . . . . . 182 6.2.1 TheGeneralMultistreamModel . . . . . . . . . . . . . . . . . . . . . . . 182 6.2.2 Double-MixtureChangeDetectionRules . . . . . . . . . . . . . . . . . . 183 6.2.2.1 TheGeneralCase . . . . . . . . . . . . . . . . . . . . . . . . . 183 6.2.2.2 IndependentStreams . . . . . . . . . . . . . . . . . . . . . . . 185 6.3 AsymptoticOptimalityProblemsandAssumptions . . . . . . . . . . . . . . . . . 186 6.4 AsymptoticLowerBoundsforMomentsoftheDetectionDelayandAverageRisk Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 6.5 AsymptoticOptimalityofDouble-MixtureDetectionRules . . . . . . . . . . . . 189 6.5.1 AsymptoticOptimalityoftheDouble-MixtureRuleTp,W . . . . . . . . . . 189 A 6.5.2 AsymptoticOptimalityoftheDouble-MixtureRuleT(cid:101)p,W . . . . . . . . . . 193 A 6.6 AsymptoticOptimalitywithRespecttotheAverageRisk . . . . . . . . . . . . . . 197 6.7 AsymptoticOptimalityforaPutativeValueofthePost-ChangeParameter . . . . . 199 6.8 AsymptoticOptimalityintheCaseofIndependentStreams . . . . . . . . . . . . . 200 6.9 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 6.10 DiscussionandRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 7 JointChangepointDetectionandIdentification 207 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 7.2 TheModelandtheDetection–IdentificationRule . . . . . . . . . . . . . . . . . . 208 7.3 TheOptimizationProblemandAssumptions . . . . . . . . . . . . . . . . . . . . 209 7.4 UpperBoundsonProbabilitiesofFalseAlarmandMisidentification . . . . . . . . 211 7.5 LowerBoundsontheMomentsoftheDetectionDelay . . . . . . . . . . . . . . . 213 7.6 AsymptoticOptimalityoftheDetection–IdentificationRuleδ . . . . . . . . . . . 217 A 7.7 AnExample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 7.8 ConcludingRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 8 Applications 227 8.1 ApplicationtoObjectTrackManagementinSonarSystems . . . . . . . . . . . . 227 8.2 ApplicationtoDetectionofTracesofSpaceObjects . . . . . . . . . . . . . . . . 230 8.3 ApplicationtoDetectionofUnauthorizedBreak-insinComputerNetworks . . . . 235 AppendixA:UsefulAuxiliaryResults 239 AppendixB:StochasticConvergence 243 B.1 StandardModesofConvergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 B.2 Completeandr-QuickConvergence . . . . . . . . . . . . . . . . . . . . . . . . . 245

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.