Mon.Not.R.Astron.Soc.000,000–000(0000) Printed2February2008 (MNLATEXstylefilev2.2) Sequential and Spontaneous Star Formation Around the Mid-Infrared Halo H II Region KR 140 1⋆ 1 2 3 C. R. Kerton , K. Arvidsson , Lewis B. G. Knee , and C. Brunt 8 1DepartmentofPhysicsandAstronomy,IowaStateUniversity,Ames,IA50011,USA 0 2AtacamaLargeMillimeterArray,AvenidaElGolf40,Piso18,LasCondes,Santiago,Chile 0 3SchoolofPhysics,UniversityofExeter,StockerRoad,ExeterEX44QL,UK 2 n a 2February2008 J 0 1 ABSTRACT We use2MASSandMSX infraredobservations,alongwithnewmolecularline(CO)obser- ] vations, to examine the distribution of young stellar objects (YSOs) in the molecular cloud h p surroundingthehaloHII regionKR140inordertodetermineiftheongoingstar-formation - activityinthisregionisdominatedbysequentialstarformationwithinthephotodissociation o region(PDR)surroundingtheHIIregion.WefindthatKR140hasanextensivepopulationof r YSOsthathave“spontaneously”formedduetoprocessesnotrelatedtotheexpansionofthe t s HIIregion.MuchoftheYSOpopulationinthemolecularcloudisconcentratedalongadense a filamentarymolecularstructure,tracedbyC18O,thathasnotbeenerasedbytheformationof [ the exciting O star. Some of the previouslyobservedsubmillimetreclumpssurroundingthe 1 HII region are shown to be sites of recent intermediate and low-mass star formation while v other massive starless clumps clearly associated with the PDR may be the next sites of se- 5 quentialstarformation. 2 6 Keywords: stars:pre-main-sequence–stars:formation–HIIRegions–infrared:stars 1 . 1 0 8 1 INTRODUCTION sociationregion(PDR)surrounding theHII regionasameansof 0 gaugingtherelativeimportanceofspontaneousandsequential,or : Thisstudy is the fourth in a series of papers exploring the struc- v triggered,starformationinthisregion.Toachievethiswehavean- i tureoftheHIIregionKR140anditsassociatedstar-formingac- alyzedacombinationofsubmmdatafromKertonetal.(2001)and X tivity. In Kerton,Ballantyne,&Martin (1999) VES 735, the O- Mooreetal.(2007),2MASS(2MicronAllSkySurvey)andMid- r star powering the HII region was examined. A second paper, a courseSpaceExperiment(MSX)infrareddata,andnewlyacquired Ballantyne,Kerton&Martin(2000),wasamultiwavelengthstudy 12CO,13COandC18OmolecularlinedatafromtheFiveCollege of thestructure, energetics,and kinematicsof theHII region. Fi- RadioAstronomyObservatory(FCRAO).Inthenextsectionwere- nally, Kertonetal. (2001) presented an analysis of submillimetre viewthepertinentparametersofKR140andprovideinformation (submmhereafter)observationsoftheregionat450and850µm. onthenewobservationsoftheregion.In§3and§4wefirstshow ThemainresultofKertonetal.(2001)wasthediscoveryofnumer- how 2MASS datacan be utilizedtoidentify theYSO population oussubmmdustcoreslocatedwithinthemoleculargassurrounding andthenexamineitsspatialdistribution.Ourresultsarediscussed theHIIregion,includingalargenumberofcoresthatwereclearly in§5andconclusionsarepresentedin§6. locatedattheinterfacebetweenionizedandmoleculargas,alikely locationforstar-formationinducedor“triggered”bytheexpansion oftheHIIregion(Elmegreen1998).Twoofthemoreisolatedcores wereclearlyassociatedwithIRASsources,butthelowresolution ofIRAScombinedwiththeextensivediffuseemissionofdustasso- 2 KR140:PROPERTIESANDOBSERVATIONS ciatedwiththeHIIregionmadeitimpossibletodetermineifany oftheothercoreswereassociatedwithstar-formationactivity. KR 140 (l = 133◦.425, b = +0◦.054; Kallas&Reich 1980) isa Thegoalofthisstudyistodeterminethedistributionofyoung 5.7pcdiameterHIIregionlocatedatadistanceof2.3±0.3kpc.It stellarobjects(YSOs)throughouttheKR140molecularcloud.We iscloseto,butapparentlyisolatedfrom,thelargeW3/W4/W5star- focus especially on the embedded stellar content of the submm formation complex. The region is ionized by a single O8.5 V(e) cores as these are potentially the youngest star-forming regions. star VES 735. Foreground extinction is AV = 5.7 ± 0.2 mag- WeusethespatialdistributionoftheYSOsrelativetothephotodis- nitudes toward VES 735 and ranges between AV ∼ 6−7 over theHII region. Molecular lineobservations (12CO J=1−0) indi- catethattheHIIregionisassociatedwithamolecularcloudwith ⋆ E-mail:[email protected] amassintherange 103.7 –104.0 M⊙.A detaileddiscussionand 2 Kertonet al. Table 1. Spatial correspondence between Kertonetal. (2001) and Mooreetal.(2007)submmclumps(KMJBandM07respectively). KMJB M07 KMJB M07 1 37 11 14 2 ··· 12 11 3 32 13 8&10 4 33 14 5 5 26&29 15 ··· 6 25 16 6 7 24 17 ··· 8 23 18 4 9 17 19 3 10 ··· 20 ··· derivationofthesepropertiescanbefoundinKertonetal.(1999) Figure1.MSXBandA(8.3µm)imageoftheKR140region.Notethedis- andBallantyneetal.(2000). tinctivehalomorphologyofthePDR.Whitecrossesindicatethepositions ofsubmmclumpsapparently associated withthePDRandblackcrosses indicatethesubmmclumpsfoundawayfromthePDR. 2.1 SubmillimetreObservations 2.3 MolecularLineObservations Forthisstudyweusedacombinedsampleofsubmmclumpsiden- tified in the Kertonetal. (2001) and Mooreetal. (2007) 850 µm We obtained new molecular line observations of KR 140 in or- SCUBA scan-maps of the KR 140 region. There are only minor der todeterminethefullspatial extent of thesurrounding molec- disagreementsbetweenthetwosampleswheretheyoverlapdueto ularcloudandtoidentifyanyhighcolumndensityregions.Maps, the different ways in which structures were identified in the two covering a 0◦.8 square region around KR 140, were obtained in studiesandthecorrespondencebetweenthetwosamplesisshown the J=1−0 transition of 12CO (115.3 GHz), 13CO (110.2 GHz) inTable1.Intheareacoveredbyourmolecular-lineobservations and C18O (109.8 GHz) using the SEQUOIA array on the 14 m (2h18m15s 6α2000 62h22m30sand60◦54′ 6δ2000 661◦20′, FCRAOmillimetre-wavetelescope(Ericksonetal.1999).There- see§2.3)thereareatotalof39submmclumps:KMJB1-KMJB sulting data cubes have a spatial resolution of ∼ 45′′ (20′′ pixel 20 from Kertonetal. (2001) and clumps 7, 9, 12-13, 21, 39-40, grid)andavelocityresolutionof0.065kms−1.Integratedinten- 42-45and47-54fromMooreetal.(2007). sity(zeroth moment) 12CO and 13COmaps of emissionbetween −54 < VLSR < −44 km s−1 are shown in Fig. 2. Contours of integrated intensity C18O emission are also shown on each map highlightingthetwomainregionsofhighcolumndensityfoundto 2.2 Mid-InfraredMSXObservations theeastandwestoftheHIIregion. Mid-infrared emission from polycyclic aromatic hydrocarbons We find a mass of 8500 ± 1000 M⊙ for the cloud based (PAHs)canbeusedtodetectthePDRsthatariseattheinterfacebe- on the integrated 12CO data. A value of X = 1.9×1020 from tweenionizedgasinanHIIregionandsurroundingmolecularma- Strong&Mattox (1996) to convert between integrated intensity terial(Giardetal.1994).WeobtainedMSXBandA(λo=8.3µm, (K km s−1) and H2 column density and using a mean molecular λ=7−11µm)imagesofKR140with20′′resolutiontakenaspart weightof2.29toaccountforthemolecularnatureofthehydrogen oftheMSXGalacticPlaneSurvey(Priceetal.2001).TheBandA andthepresenceofHe.Thisestimateislargerthanthatquotedin emissionisdominatedbyintenselineemissionfromPAHscaused Ballantyneetal.(2000)mainlybecauseweareusingalargerspa- by various C−C stretching and C−H bending modes. An up-to- tialrangetodefinetheassociatedcloud. datelistingofthenumerousPAHfeaturesinthemid-infraredcan befoundinDraine&Li(2007). Thedistinctivemid-infraredmorphologyexhibitedbyKR140 2.4 Near-infraredData (seeFig.1)andinothersimilarHIIregions(e.g.Cohen&Green Photometric(J,H,Ks1)dataonYSOsassociatedwithKR140were 2001; Deharvengetal. 2003) arises from changes in the relative obtainedfromthe2MASSAll-SkyPointSourceCatalog(2MASS balancebetweenultraviolet(UV)photonswhichpreferentiallyde- PSChereafter)usingtheon-lineGATORquerytoolattheInfrared stroy PAHs and those which excite their emission. Deep within ScienceArchive(IRSA).Detaileddiscussionofthesurveyandthe the HII region, hard UV radiation destroys PAHs and are them- various data products are available in Skrutskieetal. (2006) and selves destroyed. Outside the PAH-free zone, the remaining UV Cutrietal. (2003). Here we note that the overall quality of each photonsmoveintothesurroundingPDRandexcitePAHemission 2MASS photometric measurement is indicated by a photometric in a layer around the HII region. This layer isrelatively thin be- qualityflag(“ph qual”) inthe2MASS PSC.Validmeasurements cause UV fluxes continue to drop through the PDR, resulting in are indicated by a ph qual value of A, B, C, or D for each filter a drop in PAH emission. The overall result isa striking ring-like withthesignal-to-noiseofthedetectiondecreasing asonemoves or“halo”morphology. InFig.1wealsoshow thelocationofthe fromph qual=Athroughph qual=D.Non-detectioninafilteris submmclumpsdiscussedin§2.1:thecorrespondencebetweenthe locationofsomeofthecoresandtheinterfaceregiontracedbythe mid-infraredemissionisevident. 1 InthisstudyweuseKsandKbandphotometryinterchangeably StarFormationAroundKR 140 3 Figure3.Near-infrared colour-colour diagram. TTauriandHAeBe data from Kenyon&Hartmann (1995) and The´etal. (1994) respectively are shownshiftedtoadistanceof2300pcandwithAV =5.5offoreground reddening.Thesolidlinesshowtheintrinsiccoloursofmain-sequence(V) andgiant(III)stars(Koornneef1983;Bessell&Brett1988).Thedash-dot lines show AV = 20reddening vectors fora K5V and O9V star de- rivedusingtheinfraredextinctionlawE(J−H)/E(H−K)=1.7±0.4from Rieke&Lebofsky(1985). Figure2.Integrated12CO(top)and13CO(bottom)mapsoftheKR140 molecularcloud.ContoursinbothpanelsshowintegratedC18Oemissionat the1.2and1.4Kkms−1levels.Whitecrossesinthelowerpanelindicate thepositionsofalldetectedsubmmclumps. typicallyindicatedbyph qual=U,inwhichcaseanupperbright- nesslimitisgiven. 3 USING2MASSTODEFINETHEYSOPOPULATION 3.1 JHKColour-ColourandColour-MagnitudeDiagrams Since we know the distance to KR 140 and the amount of fore- groundextinction,ourapproachistoscaleobservationsofdiffer- enttypesofYSOsinlocalstar-formingregionstothedistanceof KR140,includingtheeffectofforegroundextinction,thusdefin- Figure4.Colour-magnitudediagramforobjectsatadistanceof2300pc. DataarethesameasinFig.3.Themain-sequence (V)andgiant branch ingregionsontheJHK colour-colour(CC)andcolour-magnitude (III)areshown(solidlines)withsomerepresentativespectraltypeslabeled. (CM) diagrams where we would expect to find YSOs associated Reddeningvectors(dash-dotlines)aredrawnforAV = 20foranO9V withtheKR140molecularcloud. andK5Vstar. InFig.3wehaveplottednear-infraredcoloursofTTauristars (approximatelysolar-massYSOswithopticallythickdisksofcir- cumstellar material) from the Kenyon&Hartmann (1995) study sented in Robitailleetal. (2006), once the appropriate amount of of the Taurus-Auriga region (distance ∼ 140 pc). Intermediate- foregroundextinctionisappliedtothemodel-basedCCdiagrams. mass YSO colours are illustrated using 2MASS photometry for The near-infrared CM diagram showing scaled T Tauri and a subset of the The´,deWinter,&Pe´rez (1994) catalogue of Her- HAeBedataisshowninFig.4.TheutilityofhavingboththeCC big Ae and Be stars (HAeBe) that have distance estimates from and CM diagrams available for data analysis is readily apparent. Finkenzeller&Mundt (1984). One sees that the majority of the Forexample,intheCMdiagramtheHAeBesampleisclearlydis- sample lies outside of the band of reddened stellar photospheres, tinctfromthelowerluminosityTTauristars.Also,possibleconfu- withaportionoftheTTaurisamplebeingthemainexception.The sionbetweenHAeBestarsandgiantscanbeavoidedbyusingthe regionoccupiedbyourYSOsampleagreesnicelywiththeCCdi- CCdiagram,wherethetwosamplesarewellseparated. agrams constructed using an extensive grid of YSO models pre- Table2showstheaveragemagnitudeandstandarddeviation 4 Kertonet al. Table2.JHKmagnitudesofYSOsamplesat2300pc. Sample Band Avg. σ min max 10σa Db HAeBe J 12.73 1.8 9.30 16.41 15.8 17.2 H 11.28 1.5 8.62 14.59 15.1 16.1 K 10.03 1.4 8.16 13.14 14.3 15.3 TTauri J 18.21 2.0 13.91 25.73 15.8 17.2 H 16.50 1.6 12.52 21.36 15.1 16.1 K 15.44 1.3 11.22 19.12 14.3 15.3 a2MASScompletenesslimits. b2MASSphqual=DlimitsforKR140region. cataloguesearchesandthecriteriausedtoidentifyYSOsdiscussed belowaresummarizedinTable3.Figs.5and6showboththeYSO andnon-YSOpopulationoftheregionforcomparisonwhileFig.7 showsthespatiallocationoftheYSOsample. We first searched for all stars with valid photometry (i.e., Figure5.2MASSColour-colourdiagram.Coloursforthe4144starswith ph qualvaluesofA,B,C,orDinallthreebands2).Thissearchre- valid JHK photometry are plotted (dots) along with colours of the P1 turned4144starsfromthecatalogue.Thesurfacedensityofstarsis (crosses),P1+(diamonds),andP2(squares)YSOsamples.TheP2(J−H) fairlyuniformacrossthesearchareaat∼4.7stars/⊔⊓′(1σ=1.3). coloursarelowerlimits(indicated bythearrows).Note,forclarity,error WithinthissampleofstarswesearchedforYSOsdefinedasstars barsarenotshown. with(J−H)>1and(J−H)<1.7(H−K)−0.075.Thefirstlimit on (J−H) reflects the fact we expect there to be sufficient fore- groundextinctiontopushanyYSOabovethe(J−H)>1line.The secondcriteriaselectsstarslyingredwardofthereddeningvector associatedwithanO6Vstar.Thissearchfinds72starswhichwe calltheP1sample. Wedidanadditionalsearchforstarsthatmaybelocatedinthe overlapregionofTTauristarsandreddenedstellarphotospheres. Thisregionislocatedbetween1.3 <(J−H)< 1.6andbetween the two main-sequence reddening vectors. We also required that K > 14.5 in order to reduce contamination from giant stars and distantearlymain-sequencestars.Thisresultsinanadditional 38 stars, which wecall the P1+ sample. We note the conclusions of this paper are not sensitive to whether or not one uses the more conservativeselectioncriteriaoftheP1sampleorthecombinedP1 andP1+sampleof110stars.Weexpectthatanycontaminationof the larger sample will arise from distant A and F main-sequence starsascloser,laterspectraltypestarswilltendnottohaveenough Figure6.2MASSColour-magnitudediagram.AsFig.5butalsoshowing extinctiontomatchthecolourcriteria. the P3 (diamond) YSO sample. TheP3 (H−K)colours are lower limits TheKR140regionwasthenre-examinedforstarswithanup- (indicatedbythearrows). perbrightnesslimitatJandvalidHandKphotometry(ph qual= [U][A-D][A-D]).Thiscataloguesearchreturned133stars.Possible YSOsweredefinedusing(H−K)>1and(J−H)<1.7(H−K)− alongwiththemaximumandminimummagnitudeforeachofthe 0.075.Thelatterconstraintplacesthe(J−H)lowerlimitbelowthe YSOsamples.Alsotabulatedarethe2MASSlimitingmagnitudes reddenedstellarphotosphereregionoftheCCdiagram.Intotal33 for a complete sample (“10σ”) and for ph qual =D quality pho- starsmatchthesecriteriaandweidentifythemastheP2sample. tometry(“D”;see§2.4).WeseethatHAeBestarswillbedetected Finally we searched the region for stars with only upper inallthreebandswithinthe10σ limits.TTauristarswillalsobe brightnesslimitsinJ andH alongwithvalidK band photometry detectedinallthreebandsalthoughthesamplewillbeincomplete, (ph qual=[U][U][A-D]).Ofthe37starsfound,10ofthemwere missingveryheavilyembeddedsources defined as possible YSOs by requiring the lower limit of (H−K) >1. 3.2 TheYSOPopulationofKR140 UsingtheintegratedCOmapsasaguideweinvestigateda0◦.5× 0◦.4 region centered on the KR 140 HII region (2h18m15s 6 α2000 6 2h22m30s and60◦54′ 6 δ2000 6 61◦20′).The2MASS PSC was queried using the GATOR software at IRSA. All of the 2 phqualMATCHES[A-D][A-D][A-D]inSQLusedbyGATOR StarFormationAroundKR 140 5 tionalassociations. FortheKertonetal.(2001)sampleweuseda searchradiusofDeff/2,whereDeff isthedeconvolvedFWHMofa Gaussianfittoanazimuthally-averagedprofileofeachsource.The averagesearchradiuswas0.18pc.Sincewedonothavesizeinfor- mationfor the Mooreetal. (2007) sample, weused a20′′ search radius(0.22pcat2.3kpc)foreachsourceinthatsample.Table4 showstheresultsofthissearch.Column1givestheclumpIDnum- ber.Columns2through5containthe2MASSPSCsourcenumber forassociatedYSOsfromtheP1,P1+,P2,andP3samplesrespec- tively. Column 7contains the column density of the submm core expressed in termsof visual extinction, AV. For the Mooreetal. (2007) samples masses were calculated for a distance of 2.3 kpc andaclumptemperatureof20Kassumingthatalltheclumpshad adiameterof0.36pc.ThisresultsinAV ∼10S850 whereS850is theintegratedfluxdensityat850µm.AlloftheseAV estimatesare veryroughasthecolumndensitywillvarywiththesquareofthe estimateddiameterandthetemperatureentersinthroughtheexpo- nentialinthePlanckfunction.Valuesfortheremainingcoreswere taken from Kertonetal. (2001). Finally, Column 7 denotes if the Figure7.ThespatialdistributionoftheP1(crosses)P1+(diamonds),P2 coreisapparently isolatedor associated withthePDR.Thetable (squares)andP3(triangles)YSOsamplesareshownagainsttheintegrated 13COemissionassociatedwithKR140.Theboxesshowthelocationofthe includestwosubmmclumps,3and53m,thathaveonlyassociated IRASsourcesandarepossibleClass0/IYSOs. fourconcentrationsofYSOsdiscussedinthetext,RegionA-D,fromleftto right.Whiteorblacksymbolsareusedinterchangeably dependingonthe InFig.8andFig.9weplottheCCandCMdiagramsshow- backgroundlevel. ingtheYSOsassociatedwiththesubmmclumps.TheCMdiagram clearlyseparatestheintermediate-massYSOs(HAeBestars)asso- ciatedwithclumps 1, 4 and 19, from thelower luminosity (solar Table3.YSOsamples. massorTTauri)YSOs.Theformerobjectsprovideanimportant constraint on the timing of star-formation throughout the molec- Sample Number phqualvalues Colourlimitsa ular cloud asHAeBestarsclear substantial portions of surround- ingmolecularmaterialontimescalesof∼106years(Fuenteetal. P1 72 [A-D][A-D][A-D] (J−H)>1 1998). (J−H)<1.7(H−K)−0.075 P1+ 38 [A-D][A-D][A-D] 1.3<(J−H)<1.6 TheTTauriYSOsfoundassociatedwiththesubmmclumps, (J−H)<1.7(H−K)−0.075 and those associated with the dense C18O filament (see § 4.2), (J−H)<1.7(H−K)+0.3805 arealsolikelytracingstarformationonsimilartimescales.Given K>14.5 thatthetypicalradiusfor thesubmmclumps isonly0.25 pcand P2 33 [U][A-D][A-D] (J−H)L<1.7(H−K)−0.075 the velocity dispersion of T Tauri stars is typically 1–2 km s−1 (H−K)>1.0 (Neuhauseretal. 1998) it will only take the T Tauri star 0.2–0.4 P3 10 [U][U][A-D] (H−K)L>1.0 Myrtonolonger beassociatedwiththeclumpasseenbyanob- a(J−H)Land(H−K)Lindicatelowerlimits. server(assuming,forexample,thatthestarismovingat45◦tothe line-of-sight). SimilarlyYSOsassociated withthe C18O filament 4 THEYSOPOPULATIONOFTHEKR140 havenothadenoughtimetodispersefarfromtheirpointoforigin. MOLECULARCLOUD Thereisgrowingobservationalevidencefromtheanalysisof large-scale maps of molecular clouds that star-formation is more Usingthe2MASSsampledefinedabove,wenowexploretwoques- likelytooccurinhighcolumndensityregionsofmolecularclouds tions:1)WhatistheassociationbetweentheYSOsandthesubmm wherealowerionizationfractioncanreducetheefficiencyofmag- sourcesidentifiedbyKertonetal.(2001)andMooreetal.(2007), netic support (McKee 1999) and/or turbulent magnetohydrody- and2)WhatistheoverallspatialdistributionoftheYSOsthrough namic support (Ruffleetal. 1998). Many studies have found an themolecularcloud? extinction threshold (AtV) where regions with AV > AtV are abletocollapseandfragmenttoformstellar-sizedstructures;ob- servedvaluesrangefromAV ∼ 4forTaurus(Onishietal.1998), 4.1 YSOsandSubmmSources through AV ∼ 6 for Perseus (Kirketal. 2006) to values around The submm clumps identified by Kertonetal. (2001) have typ- AV ∼ 15forOphiuchus(Johnstone,DiFrancesco,&Kirk2004). ical diameters of 0.5 pc (105 AU), which is about an order of TheHatchelletal. (2005) study of Perseusdoes not show such a magnitude larger than the 0.05 pc (104 AU) size scale typi- clear threshold, but does findan increasing probabilityof finding cally associated with the smaller core structures within molec- cores at increasing levels of AV. We note that all of these stud- ular clouds thought to be forming individual stars, for exam- iesrefer totheconditions required for coreformationanddo not ple, the Kirk,Johnstone,&DiFrancesco (2006) observations of considertheYSOcontentofthecore. the Perseus molecular cloud and the Class 0/I YSO models of InFig.10ahistogramshowshowthenumberofclumpswith Robitailleetal.(2006).Thusitisquitepossiblethatasingleclump andwithoutassociatedYSOsvariesasafunctionofAV.Whilewe willhavemultiplesitesofstar-formationassociatedwithitandthat donotseeanobvioussinglethresholdvalueitdoesappearthatstar- these regions need not correspond with the peak position of the formationisveryunlikelytooccurintheverylowcolumndensity submm emission. We examined our entire YSO sample for posi- clumps. There are 14 clumps with AV < 4, of which 11 (79%) 6 Kertonet al. Figure 10. Plot showing the number of clumps with (black) and with- out (white) YSOs as a function of clump extinction for the combined Kertonetal.(2001)andMooreetal.(2007)sample.Forexample,thereare 5clumpswith1 6AV < 2ofwhich2haveassociatedYSOsand3do not.TherightmostbinincludesallclumpswithAV >20. Figure8.AsinFig.5butshowingthepositionofYSOsspatiallyassociated withsubmmclumps.Thesize ofthesymbols indicate theuncertainty in colour.YSOsareidentifiedusingthenomenclaturefromTable4,e.g.,the 4.2 GeneralYSOSpatialDistribution YSOfromthe“P2”sampleassociatedwithclump13islabeled“13.P2”.A lowerlimittothe(J−H)colourisindicatedbyanarrowsymbol. Visually there appear to be four concentrations of YSOs in the KR140molecularcloud(fordiscussionwewilldenotetheseRe- gions A through D) along with a noticeable lack of YSOs in the northeast portion of the molecular cloud (see Fig. 7). Region A is at the eastern end of the molecular filament near 2h22m, Re- gionBisassociatedwithsubmmclump1at2h21m,RegionCis nearthecentralPDRat2h20m,andfinallyRegionDisassociated with clumps 17, 18 and 19 near 2h19m30s. To quantify this vi- sualimpressionwedividedthemolecular cloudareainto2′ ×2′ boxesandcountedthenumber ofstarsfallingwithineachboxas aroughmeasureoftheYSOsurfacedensity.Theaveragenumber ofYSOs/boxis0.7±1.4(±1σ)andboxesnearthefourregions inquestion hadsurface densitiesof7, 7,6and11for AtoDre- spectively.Therewerenootherregionsinthemolecularcloudwith similar>3σdeviationsfromtheaveragevalue. RegionAconsistsof17YSOs,fourofwhichareassociated withsubmmclumps.AlloftheYSOsinthisregionareTTauri-like withanaverage(H−K)valueof0.92±0.25.NoneoftheYSOsare coincidentwithIRAS02186+6033(MSX6CG133.6890+00.1643), strengtheningitsidentificationasaClass0/IYSO. Figure9.AsinFig.6butshowingthepositionofYSOsspatiallyassociated withsubmmclumps.Thesize ofthesymbols indicate theuncertainty in The focal point of Region B is the submm clump KMJB 1 magnitude and colour. YSOs are identified using the nomenclature from which was identified as a Class I YSO (IRAS 02174+6052) Table4,e.g.,theYSOfromthe“P2”sampleassociatedwithclump13is in Kertonetal. (2001). The higher resolution of the MSX and labeled“13.P2”.Alowerlimittothe(H−K)colourisindicatedbyanarrow 2MASSdatarevealthatClump1containstwoYSOs,includingan symbol. intermediate-massHAeBewhichisalsoaMSX pointsourcewith averyredmid-infraredspectrum(F8.3 = 0.22Jy,F14.65 = 0.73 Jy). Just to the east of the clump there are two very red YSOs. donothaveassociatedYSOsanditisunlikelythatstarformation 2MASS02210851+6105582 isdetectedonlyinone2MASSband willoccurintheseclumps.Attheotherendoftheextinctionrange withK= 14.306 andalowerlimitcolour of (H−K)L > 3.26. It allthreeoftheclumpswithAV > 20haveYSOs.Theremaining isalsoabright MSX point source (MSX6CG133.5561+00.0919) 22 clumps with 4 < AV < 20 areessentially evenly split, with with an extremely red spectrum (F8.2 = 0.34 Jy, F14.65 = 1.4 10havingassociatedYSOsand12nothavingYSOs.Basedonthe Jy). The other YSO, 2MASS 02210610+6106043, is detected in studiesofotherstar-formingregionsmentionedaboveweinterpret boththeHandK bandsandhas(H−K)= 3.63andK = 11.899. theclumpsinthisextinctionrangewithoutYSOsasbeingpotential BothoftheseYSOsareprobablymorehighlyembeddedversions star-formationsites.ThelackofdetectableYSOswiththeseclumps of1.P1.Inaddition, justtothewestof KMJB1,thereisanother could reflect their relative youth, or it may be the case that any highlyembeddedYSOwithK = 15.208and(H−K)L > 2.30.It YSOsthathaveformedmaybeverylowmassandthusfallbelow isquite likelythat theseobjects haveformed together asasingle the2MASSdetectionlimitsevenforourP3sample. groupingofstars. StarFormationAroundKR 140 7 Table4.YSOsassociatedwithsubmmclumps. 2MASSYSOsample PDR(P) ClumpIDa P1 P1+ P2 P3 AV orIsolated(I) 1 02210449+6106045b ··· 02210217+6105496 ··· 5.1 I 2 ··· ··· ··· 02205994+6107173 1.6 I 3c ··· ··· ··· ··· 4.5 I 4 02205329+6108215 ··· ··· ··· 15.4 I 6 ··· ··· 02203428+6107425 ··· 13.1 P 12 ··· ··· 02195506+6105211 ··· 68.2 P 13 ··· ··· 02195384+6102192 ··· 1.4 P 16 ··· ··· 02194584+6101426 ··· 1.1 P 17 ··· ··· ··· 02193257+6107399 8.7 P 19 02192184+6107069 ··· 02192272+6107157 ··· 21.7 P 45m ··· ··· ··· 02214126+6105457 37.7 I 02214085+6105439 47m 02215369+6106275 ··· ··· ··· 6.8 I 49m ··· ··· 02215837+6106405 ··· 5.4 I 51m 02220660+6107253 ··· ··· ··· 6.5 I 52m ··· 02222067+61073111 ··· ··· 15.7 I 53md ··· ··· ··· ··· 13.4 I aMooreetal.(2007)IDnumbershaveatrailingm(e.g.7m),otherIDnumbersfromKertonetal.(2001) b2MASS02210449+6106045=MSX6CG133.5492+00.0900 cIRAS02171+6058 dIRAS02186+6033=MSX6CG133.6890+00.1643 RegionCisinterestingbecauseofitsassociationwiththePDR beyondthedirectinfluenceoftheHIIregion,andthePDR,which ridgeseenintheMSXimages.Themajorityofthestarsarefound istheregiondirectlyinfluencedbytheexpansionandUVfluxof tothe northeast of thePDR,while5 of the remaining 6starsare theHIIregionandwhichcanbeclearlytracedbyPAHemission.A foundalongthePDRwithoneoftheYSOsbeingcoincidentwith comparisonoftheYSOpopulationfoundineachoftheseregions asubmm clump. Thispattern suggests that star-formationispro- thengivesameasureof therelativeimportance ofsequential and gressingfromnortheasttosouthwestwiththesubmmclumpsfound spontaneousstarformationwithinthemolecularcloud. alongthePDRbeingthelatestroundofstarformation. To delineate these two regions we use the 1.5 × 10−6 Region D contains the submm clumps 17, 18, and 19. W m−2 sr−1 contour in the MSX Band A image to (generously) Intermediate-mass and solar-mass YSOs are associated with define the extent of the PDR. We find that 42% of the full YSO clump 19 and, just to the north of this clump, there are an addi- sample (P1, P1+, P2 and P3) lie within the PDR as defined and tional six T Tauri YSOs. All three of these clumps make up the 58% lieoutside thePDR. Theexact percentages willvary some- infrared source IRAS 02157+6053 which MSX and 2MASS now what depending on how the PDR is defined. For example, using clearly show is actually a concentration of YSOs combined with a more conservative definition for the PDR region (1.75×10−6 extendedemissionfromthePDR. Wm−2sr−1)resultsin31%oftheYSOswithinthePDRand69% outsidethePDR.Thepercentages,inbothcases,arethesamefor theYSOpopulationbothwithandwithoutincludingtheP1+sam- ple. In all cases it is clear that a substantial fraction of the YSO 5 DISCUSSION populationliesbeyondthePDRinthisstar-formingregionandis 5.1 SpontaneousversusSequentialStarFormation thusnottheresultofsequentialstarformationassociatedwiththe HIIregion. When examining star formation processes within a molecu- lar cloud containing an HII region, a key distinction is be- tween sequential star formation, where the trigger for star for- 5.2 AScenarioforStarFormationinKR140 mation is directly related to the presence of the HII region (e.g., Deharveng,Zavagno&Caplan2005),andspontaneousstarforma- TheexcitingstaroftheHII region,VES735,isabout2Myrold tion, which occurs with no apparent causal relationship with the (Kertonetal. 1999), and kinematic models of the HII region set HIIregion.Itiswellknownthatforbothclassicaldensity-bounded expansiontimescalesof1-2Myr(Ballantyneetal.2000).Ourob- HII regions and blister/champagne-flow HII regions, the ioniza- servationsandanalysisofKR140areconsistentwithamolecular tion front (IF) is preceded by a shock front as it propagates into cloudundergoingcontinuousstarformationoverthisperiod.There the molecular cloud (Osterbrock 1985; Bedijn&Tenorio-Tagle isnoclearsignatureofasignificantolderpopulationofstarsseen 1981).Time-dependentmodelsofPDR/IFdevelopmentaroundOB inthe2MASSphotometryoftheregion(seeFigs.5and6).Lower stars(Roger&Dewdney1992;Diaz-Miller,Franco&Shore1998) massYSOsthatformedatthesametimeasVES735havehadtime show that the IF and PD front merge rapidly, i.e., on time scales todispersethroughthemolecularcloudandmayformsomeofthe lessthanthemain-sequencelifetimeoftheexcitingstar,fortypical morespatiallydistributedpopulationofYSOsseeninoursample. molecularclouddensities.Withthisinminditisusefultoconsider TheexpansionoftheHIIregionhassweptupmaterialwhich two distinct environments within the molecular cloud; the region hassubsequentlycollapsedtoformthesubmmclumpsthatweob- 8 Kertonet al. serveinthePDR.Atthesametimetheelongatedmorphology of Bessell,M.S.,Brett,J.M.,1988,PASP,100,1134 the densest portion of the molecular cloud has resulted in ongo- Cohen,M.,Green,A.J.,2001,MNRAS,325,531 ing star formation inregions well away from thedirect influence Cutri, R.M. et al., 2003, Explanatory Supplement to the oftheHIIregion.Asdiscussedearlier,theassociationofHAeBe 2MASS All Sky Data Release (Washington: NASA), andTTauristarswithdenseregionstracedinthesubmmandC18O http://www.ipac.caltech.edu/2mass/releases/allsky/doc/explsup.html supportagesof. 106 years.ThepresenceoftheClass0/IYSOs, Diaz-Miller,R.I.,Franco,J.,Shore,S.N.,1998,ApJ,501,192 IRAS02171+6058andIRAS02186+6033showstherecontinuesto Deharveng, L., Zavangno, A., Salas, L., Porras, A., Caplan, J., be very recent star formation activity on the timescale of ∼ 105 Cruz-Gonzalez,I.,2003,A&A,399,1135 years(Robitailleetal.2006). Deharveng,L.,Zavagno,A.,Caplan,J.,2005,A&A,433,565 Finally, many of the massive, apparently starless, submm Draine,B.T.,Li,A.,2007,ApJ,657,810 clumpsassociatedwiththePDRmayrepresentthenextsitesofstar Elmegreen,B.G.,1998,inWoodward,C.E.,Shull,J.M.,Thronson formationinthemolecular cloud. Deeperimagesoftheregionat Jr., H.A., eds, ASP Conf. Ser., Vol. 148, Origins, Astron. Soc. longerwavelengthswouldbeabletodetermineiftheseclumpsare Pac.,SanFrancisco,p.150 starlessandtestthescenariooutlinedabovebybeingabletodistin- Erickson, N.R., Grosslein, R.M., Erickson, R.B., Weinreb, S., guishbetweendifferentYSOevolutionarystages(Robitailleetal. 1999,IEEETrans.MicrowaveTheoryTech.,47,2212 2006). Finkenzeller,U.,Mundt,R.,1984,A&AS,55,109 Fuente, A., Martin-Pintado, J., Bachiller, R., Neri, R., Palla, F., 1998,A&A,334,253 6 CONCLUSIONS Giard, M., Bernard, J.P., Lacombe, F., Normand, P., Rouan, D., 1994,A&A,291,239 Whilemuchofthefocusofstudiesofstarformationinandaround Hatchell, J., Richer, J.S., Fuller, G.A., Qualtrough, C.J., Ladd, HII regions is on the interface regions, our study of KR 140 il- E.F.,Chandler,C.J.,2005,A&A,440,151 lustratesthatspontaneousstarformationoccurringawayfromthe Johnstone,D.,DiFrancesco,J.,Kirk,H.,2004,ApJ,611,L45 interfaceregionsinthesemolecularcloudscanbeasimportantas Kallas,E.,Reich,W.,1980,A&AS,42,227 sequential or triggered star formation related to the expansion of Kenyon,S.J,Hartmann,L.,1995,ApJS,101,117 theHIIregion.Ouranalysisshowsthatthemolecularcloudasso- Kerton,C.R.,Ballantyne,D.,Martin,P.G.,1999,AJ,117,2485 ciatedwithKR140containsanextensivepopulationofYSOsthat Kerton,C.R.,Martin,P.G.,Johnstone,D.,Ballantyne,D.R.,2001, isnotassociatedwiththePDR. ApJ,552,601 We have also shown that this YSO population is not uni- Kirk,H.,Johnstone,D.,DiFrancesco,J.,2006,ApJ,646,1009 formlydistributedthoughthemolecularcloudbutisconcentrated Koornneef,J.,A&A,1983,128,84 in four distinct regions. Many of the YSOs are also clearly as- McKee,C.,1999,inLada,C.J.,Kylafis,N.D.,eds,TheOriginof sociated with a filamentary structure within the molecular cloud StarsandPlanetarySystems.Kluwer,Dordrecht,p.29 which is traced by C18O emission. Finally, we see that both Moore, T.J.T.,Bretherton, D.E.,Fujiyoshi, T.,Ridge, N.A.,All- low-mass and intermediate-mass YSOs are forming throughout sopp,J.,Hoare,M.G.,Lumsden, S.L.,Richer,J.S.,2007, MN- the molecular cloud. Particularly interesting is the region around RAS,379,663 KMJB 1 (IRAS 02174+6052) which contains a tight group- Neuhasuer, R., Frink, S., Torres, G., Sterzik, M.F., Roeser, S., ing of a number of embedded intermediate-mass and solar-mass Randich,S.,1998inDonahue,R.A.Bookbinder,J.A.,eds,ASP YSOsincludingtheveryhighlyembeddedintermediate-massYSO Conf. Ser. Vol. 154, The Tenth Cambridge Workshop on Cool 2MASS02210610+6106043. Stars,StellarSystemsandtheSun.Astron.Soc.Pac.,SanFran- cisco,p.1748 Onishi, T., Mizuno, A., Kawamura, A., Ogawa, H., Fukui, Y., ACKNOWLEDGMENTS 1998,ApJ,502,296 Osterbrock, D.E., 1985, Astrophysics of Gaseous Nebulae and ThisresearchhasmadeextensiveuseoftheNASA/IPACInfrared ActiveGalacticNuclei,UniversityScienceBooks,Sausalito,CA Science Archive (IRSA), the Canadian Astronomy Data Centre Price, S.D., Egan, M.P., Carey, S., Mizuno, D.R., Kuchar, T.A., (CADC),anddatafromtheTwoMicronAllSkySurvey(2MASS). 2001,AJ,121,2819 IRSAisoperatedbytheJetPropulsionLaboratory,CaliforniaIn- Rieke,G.H.,Lebofsky,M.J.,1985,ApJ,288,618 stituteofTechnology,undercontractwithNASA.2MASSisajoint Robitaille,T.P.,Whitney,B.A.,Indebetouw,R.,Wood,K.,Denz- projectoftheUniversityofMassachusettsandtheInfraredProcess- more,P.,2006,ApJS,167,256 ingandAnalysisCenter/CaliforniaInstituteofTechnology,funded Roger,R.S.,Dewdney,P.E.,1992,ApJ,385,536 byNASAandtheNSF.TheCADCisoperatedbytheNationalRe- Ruffle, D.P., Hartquist, T.W., Rawlings, J.M.C.,Williams, D.A., searchCouncilofCanadawiththesupportoftheCanadianSpace 1998,A&A,334,678 Agency.FCRAOwassupportedbyNSFgrantAST0540852. CB Rydgren,A.E.,Vrba,F.J.,1983,AJ,88,1017 issupported byanRCUKFellowshipattheUniversityofExeter, Skrutskie,M.F.etal.,2006,AJ,131,1163 UK.TheauthorswouldliketoacknowledgetheworkdonebyCar- Strong,A.W.,Mattox,J.R.,1996,A&A,308,21 olinePomerleauintheinitialstagesofthisprojectsupportedbythe The´,P.S.,deWinter,D.,Pe´rez,M.R.,1994,A&AS,104,315 WomeninEngineeringandScienceprogramofNRCCanada. REFERENCES Ballantyne,D.R.,Kerton,C.R.,Martin,P.G.,2000,ApJ,539,283 Bedijn,P.J,Tenorio-Tagle,G.,1981,A&A,98,85