ebook img

Sequential and Spontaneous Star Formation Around the Mid-Infrared Halo HII Region KR 140 PDF

0.38 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Sequential and Spontaneous Star Formation Around the Mid-Infrared Halo HII Region KR 140

Mon.Not.R.Astron.Soc.000,000–000(0000) Printed2February2008 (MNLATEXstylefilev2.2) Sequential and Spontaneous Star Formation Around the Mid-Infrared Halo H II Region KR 140 1⋆ 1 2 3 C. R. Kerton , K. Arvidsson , Lewis B. G. Knee , and C. Brunt 8 1DepartmentofPhysicsandAstronomy,IowaStateUniversity,Ames,IA50011,USA 0 2AtacamaLargeMillimeterArray,AvenidaElGolf40,Piso18,LasCondes,Santiago,Chile 0 3SchoolofPhysics,UniversityofExeter,StockerRoad,ExeterEX44QL,UK 2 n a 2February2008 J 0 1 ABSTRACT We use2MASSandMSX infraredobservations,alongwithnewmolecularline(CO)obser- ] vations, to examine the distribution of young stellar objects (YSOs) in the molecular cloud h p surroundingthehaloHII regionKR140inordertodetermineiftheongoingstar-formation - activityinthisregionisdominatedbysequentialstarformationwithinthephotodissociation o region(PDR)surroundingtheHIIregion.WefindthatKR140hasanextensivepopulationof r YSOsthathave“spontaneously”formedduetoprocessesnotrelatedtotheexpansionofthe t s HIIregion.MuchoftheYSOpopulationinthemolecularcloudisconcentratedalongadense a filamentarymolecularstructure,tracedbyC18O,thathasnotbeenerasedbytheformationof [ the exciting O star. Some of the previouslyobservedsubmillimetreclumpssurroundingthe 1 HII region are shown to be sites of recent intermediate and low-mass star formation while v other massive starless clumps clearly associated with the PDR may be the next sites of se- 5 quentialstarformation. 2 6 Keywords: stars:pre-main-sequence–stars:formation–HIIRegions–infrared:stars 1 . 1 0 8 1 INTRODUCTION sociationregion(PDR)surrounding theHII regionasameansof 0 gaugingtherelativeimportanceofspontaneousandsequential,or : Thisstudy is the fourth in a series of papers exploring the struc- v triggered,starformationinthisregion.Toachievethiswehavean- i tureoftheHIIregionKR140anditsassociatedstar-formingac- alyzedacombinationofsubmmdatafromKertonetal.(2001)and X tivity. In Kerton,Ballantyne,&Martin (1999) VES 735, the O- Mooreetal.(2007),2MASS(2MicronAllSkySurvey)andMid- r star powering the HII region was examined. A second paper, a courseSpaceExperiment(MSX)infrareddata,andnewlyacquired Ballantyne,Kerton&Martin(2000),wasamultiwavelengthstudy 12CO,13COandC18OmolecularlinedatafromtheFiveCollege of thestructure, energetics,and kinematicsof theHII region. Fi- RadioAstronomyObservatory(FCRAO).Inthenextsectionwere- nally, Kertonetal. (2001) presented an analysis of submillimetre viewthepertinentparametersofKR140andprovideinformation (submmhereafter)observationsoftheregionat450and850µm. onthenewobservationsoftheregion.In§3and§4wefirstshow ThemainresultofKertonetal.(2001)wasthediscoveryofnumer- how 2MASS datacan be utilizedtoidentify theYSO population oussubmmdustcoreslocatedwithinthemoleculargassurrounding andthenexamineitsspatialdistribution.Ourresultsarediscussed theHIIregion,includingalargenumberofcoresthatwereclearly in§5andconclusionsarepresentedin§6. locatedattheinterfacebetweenionizedandmoleculargas,alikely locationforstar-formationinducedor“triggered”bytheexpansion oftheHIIregion(Elmegreen1998).Twoofthemoreisolatedcores wereclearlyassociatedwithIRASsources,butthelowresolution ofIRAScombinedwiththeextensivediffuseemissionofdustasso- 2 KR140:PROPERTIESANDOBSERVATIONS ciatedwiththeHIIregionmadeitimpossibletodetermineifany oftheothercoreswereassociatedwithstar-formationactivity. KR 140 (l = 133◦.425, b = +0◦.054; Kallas&Reich 1980) isa Thegoalofthisstudyistodeterminethedistributionofyoung 5.7pcdiameterHIIregionlocatedatadistanceof2.3±0.3kpc.It stellarobjects(YSOs)throughouttheKR140molecularcloud.We iscloseto,butapparentlyisolatedfrom,thelargeW3/W4/W5star- focus especially on the embedded stellar content of the submm formation complex. The region is ionized by a single O8.5 V(e) cores as these are potentially the youngest star-forming regions. star VES 735. Foreground extinction is AV = 5.7 ± 0.2 mag- WeusethespatialdistributionoftheYSOsrelativetothephotodis- nitudes toward VES 735 and ranges between AV ∼ 6−7 over theHII region. Molecular lineobservations (12CO J=1−0) indi- catethattheHIIregionisassociatedwithamolecularcloudwith ⋆ E-mail:[email protected] amassintherange 103.7 –104.0 M⊙.A detaileddiscussionand 2 Kertonet al. Table 1. Spatial correspondence between Kertonetal. (2001) and Mooreetal.(2007)submmclumps(KMJBandM07respectively). KMJB M07 KMJB M07 1 37 11 14 2 ··· 12 11 3 32 13 8&10 4 33 14 5 5 26&29 15 ··· 6 25 16 6 7 24 17 ··· 8 23 18 4 9 17 19 3 10 ··· 20 ··· derivationofthesepropertiescanbefoundinKertonetal.(1999) Figure1.MSXBandA(8.3µm)imageoftheKR140region.Notethedis- andBallantyneetal.(2000). tinctivehalomorphologyofthePDR.Whitecrossesindicatethepositions ofsubmmclumpsapparently associated withthePDRandblackcrosses indicatethesubmmclumpsfoundawayfromthePDR. 2.1 SubmillimetreObservations 2.3 MolecularLineObservations Forthisstudyweusedacombinedsampleofsubmmclumpsiden- tified in the Kertonetal. (2001) and Mooreetal. (2007) 850 µm We obtained new molecular line observations of KR 140 in or- SCUBA scan-maps of the KR 140 region. There are only minor der todeterminethefullspatial extent of thesurrounding molec- disagreementsbetweenthetwosampleswheretheyoverlapdueto ularcloudandtoidentifyanyhighcolumndensityregions.Maps, the different ways in which structures were identified in the two covering a 0◦.8 square region around KR 140, were obtained in studiesandthecorrespondencebetweenthetwosamplesisshown the J=1−0 transition of 12CO (115.3 GHz), 13CO (110.2 GHz) inTable1.Intheareacoveredbyourmolecular-lineobservations and C18O (109.8 GHz) using the SEQUOIA array on the 14 m (2h18m15s 6α2000 62h22m30sand60◦54′ 6δ2000 661◦20′, FCRAOmillimetre-wavetelescope(Ericksonetal.1999).There- see§2.3)thereareatotalof39submmclumps:KMJB1-KMJB sulting data cubes have a spatial resolution of ∼ 45′′ (20′′ pixel 20 from Kertonetal. (2001) and clumps 7, 9, 12-13, 21, 39-40, grid)andavelocityresolutionof0.065kms−1.Integratedinten- 42-45and47-54fromMooreetal.(2007). sity(zeroth moment) 12CO and 13COmaps of emissionbetween −54 < VLSR < −44 km s−1 are shown in Fig. 2. Contours of integrated intensity C18O emission are also shown on each map highlightingthetwomainregionsofhighcolumndensityfoundto 2.2 Mid-InfraredMSXObservations theeastandwestoftheHIIregion. Mid-infrared emission from polycyclic aromatic hydrocarbons We find a mass of 8500 ± 1000 M⊙ for the cloud based (PAHs)canbeusedtodetectthePDRsthatariseattheinterfacebe- on the integrated 12CO data. A value of X = 1.9×1020 from tweenionizedgasinanHIIregionandsurroundingmolecularma- Strong&Mattox (1996) to convert between integrated intensity terial(Giardetal.1994).WeobtainedMSXBandA(λo=8.3µm, (K km s−1) and H2 column density and using a mean molecular λ=7−11µm)imagesofKR140with20′′resolutiontakenaspart weightof2.29toaccountforthemolecularnatureofthehydrogen oftheMSXGalacticPlaneSurvey(Priceetal.2001).TheBandA andthepresenceofHe.Thisestimateislargerthanthatquotedin emissionisdominatedbyintenselineemissionfromPAHscaused Ballantyneetal.(2000)mainlybecauseweareusingalargerspa- by various C−C stretching and C−H bending modes. An up-to- tialrangetodefinetheassociatedcloud. datelistingofthenumerousPAHfeaturesinthemid-infraredcan befoundinDraine&Li(2007). Thedistinctivemid-infraredmorphologyexhibitedbyKR140 2.4 Near-infraredData (seeFig.1)andinothersimilarHIIregions(e.g.Cohen&Green Photometric(J,H,Ks1)dataonYSOsassociatedwithKR140were 2001; Deharvengetal. 2003) arises from changes in the relative obtainedfromthe2MASSAll-SkyPointSourceCatalog(2MASS balancebetweenultraviolet(UV)photonswhichpreferentiallyde- PSChereafter)usingtheon-lineGATORquerytoolattheInfrared stroy PAHs and those which excite their emission. Deep within ScienceArchive(IRSA).Detaileddiscussionofthesurveyandthe the HII region, hard UV radiation destroys PAHs and are them- various data products are available in Skrutskieetal. (2006) and selves destroyed. Outside the PAH-free zone, the remaining UV Cutrietal. (2003). Here we note that the overall quality of each photonsmoveintothesurroundingPDRandexcitePAHemission 2MASS photometric measurement is indicated by a photometric in a layer around the HII region. This layer isrelatively thin be- qualityflag(“ph qual”) inthe2MASS PSC.Validmeasurements cause UV fluxes continue to drop through the PDR, resulting in are indicated by a ph qual value of A, B, C, or D for each filter a drop in PAH emission. The overall result isa striking ring-like withthesignal-to-noiseofthedetectiondecreasing asonemoves or“halo”morphology. InFig.1wealsoshow thelocationofthe fromph qual=Athroughph qual=D.Non-detectioninafilteris submmclumpsdiscussedin§2.1:thecorrespondencebetweenthe locationofsomeofthecoresandtheinterfaceregiontracedbythe mid-infraredemissionisevident. 1 InthisstudyweuseKsandKbandphotometryinterchangeably StarFormationAroundKR 140 3 Figure3.Near-infrared colour-colour diagram. TTauriandHAeBe data from Kenyon&Hartmann (1995) and The´etal. (1994) respectively are shownshiftedtoadistanceof2300pcandwithAV =5.5offoreground reddening.Thesolidlinesshowtheintrinsiccoloursofmain-sequence(V) andgiant(III)stars(Koornneef1983;Bessell&Brett1988).Thedash-dot lines show AV = 20reddening vectors fora K5V and O9V star de- rivedusingtheinfraredextinctionlawE(J−H)/E(H−K)=1.7±0.4from Rieke&Lebofsky(1985). Figure2.Integrated12CO(top)and13CO(bottom)mapsoftheKR140 molecularcloud.ContoursinbothpanelsshowintegratedC18Oemissionat the1.2and1.4Kkms−1levels.Whitecrossesinthelowerpanelindicate thepositionsofalldetectedsubmmclumps. typicallyindicatedbyph qual=U,inwhichcaseanupperbright- nesslimitisgiven. 3 USING2MASSTODEFINETHEYSOPOPULATION 3.1 JHKColour-ColourandColour-MagnitudeDiagrams Since we know the distance to KR 140 and the amount of fore- groundextinction,ourapproachistoscaleobservationsofdiffer- enttypesofYSOsinlocalstar-formingregionstothedistanceof KR140,includingtheeffectofforegroundextinction,thusdefin- Figure4.Colour-magnitudediagramforobjectsatadistanceof2300pc. DataarethesameasinFig.3.Themain-sequence (V)andgiant branch ingregionsontheJHK colour-colour(CC)andcolour-magnitude (III)areshown(solidlines)withsomerepresentativespectraltypeslabeled. (CM) diagrams where we would expect to find YSOs associated Reddeningvectors(dash-dotlines)aredrawnforAV = 20foranO9V withtheKR140molecularcloud. andK5Vstar. InFig.3wehaveplottednear-infraredcoloursofTTauristars (approximatelysolar-massYSOswithopticallythickdisksofcir- cumstellar material) from the Kenyon&Hartmann (1995) study sented in Robitailleetal. (2006), once the appropriate amount of of the Taurus-Auriga region (distance ∼ 140 pc). Intermediate- foregroundextinctionisappliedtothemodel-basedCCdiagrams. mass YSO colours are illustrated using 2MASS photometry for The near-infrared CM diagram showing scaled T Tauri and a subset of the The´,deWinter,&Pe´rez (1994) catalogue of Her- HAeBedataisshowninFig.4.TheutilityofhavingboththeCC big Ae and Be stars (HAeBe) that have distance estimates from and CM diagrams available for data analysis is readily apparent. Finkenzeller&Mundt (1984). One sees that the majority of the Forexample,intheCMdiagramtheHAeBesampleisclearlydis- sample lies outside of the band of reddened stellar photospheres, tinctfromthelowerluminosityTTauristars.Also,possibleconfu- withaportionoftheTTaurisamplebeingthemainexception.The sionbetweenHAeBestarsandgiantscanbeavoidedbyusingthe regionoccupiedbyourYSOsampleagreesnicelywiththeCCdi- CCdiagram,wherethetwosamplesarewellseparated. agrams constructed using an extensive grid of YSO models pre- Table2showstheaveragemagnitudeandstandarddeviation 4 Kertonet al. Table2.JHKmagnitudesofYSOsamplesat2300pc. Sample Band Avg. σ min max 10σa Db HAeBe J 12.73 1.8 9.30 16.41 15.8 17.2 H 11.28 1.5 8.62 14.59 15.1 16.1 K 10.03 1.4 8.16 13.14 14.3 15.3 TTauri J 18.21 2.0 13.91 25.73 15.8 17.2 H 16.50 1.6 12.52 21.36 15.1 16.1 K 15.44 1.3 11.22 19.12 14.3 15.3 a2MASScompletenesslimits. b2MASSphqual=DlimitsforKR140region. cataloguesearchesandthecriteriausedtoidentifyYSOsdiscussed belowaresummarizedinTable3.Figs.5and6showboththeYSO andnon-YSOpopulationoftheregionforcomparisonwhileFig.7 showsthespatiallocationoftheYSOsample. We first searched for all stars with valid photometry (i.e., Figure5.2MASSColour-colourdiagram.Coloursforthe4144starswith ph qualvaluesofA,B,C,orDinallthreebands2).Thissearchre- valid JHK photometry are plotted (dots) along with colours of the P1 turned4144starsfromthecatalogue.Thesurfacedensityofstarsis (crosses),P1+(diamonds),andP2(squares)YSOsamples.TheP2(J−H) fairlyuniformacrossthesearchareaat∼4.7stars/⊔⊓′(1σ=1.3). coloursarelowerlimits(indicated bythearrows).Note,forclarity,error WithinthissampleofstarswesearchedforYSOsdefinedasstars barsarenotshown. with(J−H)>1and(J−H)<1.7(H−K)−0.075.Thefirstlimit on (J−H) reflects the fact we expect there to be sufficient fore- groundextinctiontopushanyYSOabovethe(J−H)>1line.The secondcriteriaselectsstarslyingredwardofthereddeningvector associatedwithanO6Vstar.Thissearchfinds72starswhichwe calltheP1sample. Wedidanadditionalsearchforstarsthatmaybelocatedinthe overlapregionofTTauristarsandreddenedstellarphotospheres. Thisregionislocatedbetween1.3 <(J−H)< 1.6andbetween the two main-sequence reddening vectors. We also required that K > 14.5 in order to reduce contamination from giant stars and distantearlymain-sequencestars.Thisresultsinanadditional 38 stars, which wecall the P1+ sample. We note the conclusions of this paper are not sensitive to whether or not one uses the more conservativeselectioncriteriaoftheP1sampleorthecombinedP1 andP1+sampleof110stars.Weexpectthatanycontaminationof the larger sample will arise from distant A and F main-sequence starsascloser,laterspectraltypestarswilltendnottohaveenough Figure6.2MASSColour-magnitudediagram.AsFig.5butalsoshowing extinctiontomatchthecolourcriteria. the P3 (diamond) YSO sample. TheP3 (H−K)colours are lower limits TheKR140regionwasthenre-examinedforstarswithanup- (indicatedbythearrows). perbrightnesslimitatJandvalidHandKphotometry(ph qual= [U][A-D][A-D]).Thiscataloguesearchreturned133stars.Possible YSOsweredefinedusing(H−K)>1and(J−H)<1.7(H−K)− alongwiththemaximumandminimummagnitudeforeachofthe 0.075.Thelatterconstraintplacesthe(J−H)lowerlimitbelowthe YSOsamples.Alsotabulatedarethe2MASSlimitingmagnitudes reddenedstellarphotosphereregionoftheCCdiagram.Intotal33 for a complete sample (“10σ”) and for ph qual =D quality pho- starsmatchthesecriteriaandweidentifythemastheP2sample. tometry(“D”;see§2.4).WeseethatHAeBestarswillbedetected Finally we searched the region for stars with only upper inallthreebandswithinthe10σ limits.TTauristarswillalsobe brightnesslimitsinJ andH alongwithvalidK band photometry detectedinallthreebandsalthoughthesamplewillbeincomplete, (ph qual=[U][U][A-D]).Ofthe37starsfound,10ofthemwere missingveryheavilyembeddedsources defined as possible YSOs by requiring the lower limit of (H−K) >1. 3.2 TheYSOPopulationofKR140 UsingtheintegratedCOmapsasaguideweinvestigateda0◦.5× 0◦.4 region centered on the KR 140 HII region (2h18m15s 6 α2000 6 2h22m30s and60◦54′ 6 δ2000 6 61◦20′).The2MASS PSC was queried using the GATOR software at IRSA. All of the 2 phqualMATCHES[A-D][A-D][A-D]inSQLusedbyGATOR StarFormationAroundKR 140 5 tionalassociations. FortheKertonetal.(2001)sampleweuseda searchradiusofDeff/2,whereDeff isthedeconvolvedFWHMofa Gaussianfittoanazimuthally-averagedprofileofeachsource.The averagesearchradiuswas0.18pc.Sincewedonothavesizeinfor- mationfor the Mooreetal. (2007) sample, weused a20′′ search radius(0.22pcat2.3kpc)foreachsourceinthatsample.Table4 showstheresultsofthissearch.Column1givestheclumpIDnum- ber.Columns2through5containthe2MASSPSCsourcenumber forassociatedYSOsfromtheP1,P1+,P2,andP3samplesrespec- tively. Column 7contains the column density of the submm core expressed in termsof visual extinction, AV. For the Mooreetal. (2007) samples masses were calculated for a distance of 2.3 kpc andaclumptemperatureof20Kassumingthatalltheclumpshad adiameterof0.36pc.ThisresultsinAV ∼10S850 whereS850is theintegratedfluxdensityat850µm.AlloftheseAV estimatesare veryroughasthecolumndensitywillvarywiththesquareofthe estimateddiameterandthetemperatureentersinthroughtheexpo- nentialinthePlanckfunction.Valuesfortheremainingcoreswere taken from Kertonetal. (2001). Finally, Column 7 denotes if the Figure7.ThespatialdistributionoftheP1(crosses)P1+(diamonds),P2 coreisapparently isolatedor associated withthePDR.Thetable (squares)andP3(triangles)YSOsamplesareshownagainsttheintegrated 13COemissionassociatedwithKR140.Theboxesshowthelocationofthe includestwosubmmclumps,3and53m,thathaveonlyassociated IRASsourcesandarepossibleClass0/IYSOs. fourconcentrationsofYSOsdiscussedinthetext,RegionA-D,fromleftto right.Whiteorblacksymbolsareusedinterchangeably dependingonthe InFig.8andFig.9weplottheCCandCMdiagramsshow- backgroundlevel. ingtheYSOsassociatedwiththesubmmclumps.TheCMdiagram clearlyseparatestheintermediate-massYSOs(HAeBestars)asso- ciatedwithclumps 1, 4 and 19, from thelower luminosity (solar Table3.YSOsamples. massorTTauri)YSOs.Theformerobjectsprovideanimportant constraint on the timing of star-formation throughout the molec- Sample Number phqualvalues Colourlimitsa ular cloud asHAeBestarsclear substantial portions of surround- ingmolecularmaterialontimescalesof∼106years(Fuenteetal. P1 72 [A-D][A-D][A-D] (J−H)>1 1998). (J−H)<1.7(H−K)−0.075 P1+ 38 [A-D][A-D][A-D] 1.3<(J−H)<1.6 TheTTauriYSOsfoundassociatedwiththesubmmclumps, (J−H)<1.7(H−K)−0.075 and those associated with the dense C18O filament (see § 4.2), (J−H)<1.7(H−K)+0.3805 arealsolikelytracingstarformationonsimilartimescales.Given K>14.5 thatthetypicalradiusfor thesubmmclumps isonly0.25 pcand P2 33 [U][A-D][A-D] (J−H)L<1.7(H−K)−0.075 the velocity dispersion of T Tauri stars is typically 1–2 km s−1 (H−K)>1.0 (Neuhauseretal. 1998) it will only take the T Tauri star 0.2–0.4 P3 10 [U][U][A-D] (H−K)L>1.0 Myrtonolonger beassociatedwiththeclumpasseenbyanob- a(J−H)Land(H−K)Lindicatelowerlimits. server(assuming,forexample,thatthestarismovingat45◦tothe line-of-sight). SimilarlyYSOsassociated withthe C18O filament 4 THEYSOPOPULATIONOFTHEKR140 havenothadenoughtimetodispersefarfromtheirpointoforigin. MOLECULARCLOUD Thereisgrowingobservationalevidencefromtheanalysisof large-scale maps of molecular clouds that star-formation is more Usingthe2MASSsampledefinedabove,wenowexploretwoques- likelytooccurinhighcolumndensityregionsofmolecularclouds tions:1)WhatistheassociationbetweentheYSOsandthesubmm wherealowerionizationfractioncanreducetheefficiencyofmag- sourcesidentifiedbyKertonetal.(2001)andMooreetal.(2007), netic support (McKee 1999) and/or turbulent magnetohydrody- and2)WhatistheoverallspatialdistributionoftheYSOsthrough namic support (Ruffleetal. 1998). Many studies have found an themolecularcloud? extinction threshold (AtV) where regions with AV > AtV are abletocollapseandfragmenttoformstellar-sizedstructures;ob- servedvaluesrangefromAV ∼ 4forTaurus(Onishietal.1998), 4.1 YSOsandSubmmSources through AV ∼ 6 for Perseus (Kirketal. 2006) to values around The submm clumps identified by Kertonetal. (2001) have typ- AV ∼ 15forOphiuchus(Johnstone,DiFrancesco,&Kirk2004). ical diameters of 0.5 pc (105 AU), which is about an order of TheHatchelletal. (2005) study of Perseusdoes not show such a magnitude larger than the 0.05 pc (104 AU) size scale typi- clear threshold, but does findan increasing probabilityof finding cally associated with the smaller core structures within molec- cores at increasing levels of AV. We note that all of these stud- ular clouds thought to be forming individual stars, for exam- iesrefer totheconditions required for coreformationanddo not ple, the Kirk,Johnstone,&DiFrancesco (2006) observations of considertheYSOcontentofthecore. the Perseus molecular cloud and the Class 0/I YSO models of InFig.10ahistogramshowshowthenumberofclumpswith Robitailleetal.(2006).Thusitisquitepossiblethatasingleclump andwithoutassociatedYSOsvariesasafunctionofAV.Whilewe willhavemultiplesitesofstar-formationassociatedwithitandthat donotseeanobvioussinglethresholdvalueitdoesappearthatstar- these regions need not correspond with the peak position of the formationisveryunlikelytooccurintheverylowcolumndensity submm emission. We examined our entire YSO sample for posi- clumps. There are 14 clumps with AV < 4, of which 11 (79%) 6 Kertonet al. Figure 10. Plot showing the number of clumps with (black) and with- out (white) YSOs as a function of clump extinction for the combined Kertonetal.(2001)andMooreetal.(2007)sample.Forexample,thereare 5clumpswith1 6AV < 2ofwhich2haveassociatedYSOsand3do not.TherightmostbinincludesallclumpswithAV >20. Figure8.AsinFig.5butshowingthepositionofYSOsspatiallyassociated withsubmmclumps.Thesize ofthesymbols indicate theuncertainty in colour.YSOsareidentifiedusingthenomenclaturefromTable4,e.g.,the 4.2 GeneralYSOSpatialDistribution YSOfromthe“P2”sampleassociatedwithclump13islabeled“13.P2”.A lowerlimittothe(J−H)colourisindicatedbyanarrowsymbol. Visually there appear to be four concentrations of YSOs in the KR140molecularcloud(fordiscussionwewilldenotetheseRe- gions A through D) along with a noticeable lack of YSOs in the northeast portion of the molecular cloud (see Fig. 7). Region A is at the eastern end of the molecular filament near 2h22m, Re- gionBisassociatedwithsubmmclump1at2h21m,RegionCis nearthecentralPDRat2h20m,andfinallyRegionDisassociated with clumps 17, 18 and 19 near 2h19m30s. To quantify this vi- sualimpressionwedividedthemolecular cloudareainto2′ ×2′ boxesandcountedthenumber ofstarsfallingwithineachboxas aroughmeasureoftheYSOsurfacedensity.Theaveragenumber ofYSOs/boxis0.7±1.4(±1σ)andboxesnearthefourregions inquestion hadsurface densitiesof7, 7,6and11for AtoDre- spectively.Therewerenootherregionsinthemolecularcloudwith similar>3σdeviationsfromtheaveragevalue. RegionAconsistsof17YSOs,fourofwhichareassociated withsubmmclumps.AlloftheYSOsinthisregionareTTauri-like withanaverage(H−K)valueof0.92±0.25.NoneoftheYSOsare coincidentwithIRAS02186+6033(MSX6CG133.6890+00.1643), strengtheningitsidentificationasaClass0/IYSO. Figure9.AsinFig.6butshowingthepositionofYSOsspatiallyassociated withsubmmclumps.Thesize ofthesymbols indicate theuncertainty in The focal point of Region B is the submm clump KMJB 1 magnitude and colour. YSOs are identified using the nomenclature from which was identified as a Class I YSO (IRAS 02174+6052) Table4,e.g.,theYSOfromthe“P2”sampleassociatedwithclump13is in Kertonetal. (2001). The higher resolution of the MSX and labeled“13.P2”.Alowerlimittothe(H−K)colourisindicatedbyanarrow 2MASSdatarevealthatClump1containstwoYSOs,includingan symbol. intermediate-massHAeBewhichisalsoaMSX pointsourcewith averyredmid-infraredspectrum(F8.3 = 0.22Jy,F14.65 = 0.73 Jy). Just to the east of the clump there are two very red YSOs. donothaveassociatedYSOsanditisunlikelythatstarformation 2MASS02210851+6105582 isdetectedonlyinone2MASSband willoccurintheseclumps.Attheotherendoftheextinctionrange withK= 14.306 andalowerlimitcolour of (H−K)L > 3.26. It allthreeoftheclumpswithAV > 20haveYSOs.Theremaining isalsoabright MSX point source (MSX6CG133.5561+00.0919) 22 clumps with 4 < AV < 20 areessentially evenly split, with with an extremely red spectrum (F8.2 = 0.34 Jy, F14.65 = 1.4 10havingassociatedYSOsand12nothavingYSOs.Basedonthe Jy). The other YSO, 2MASS 02210610+6106043, is detected in studiesofotherstar-formingregionsmentionedaboveweinterpret boththeHandK bandsandhas(H−K)= 3.63andK = 11.899. theclumpsinthisextinctionrangewithoutYSOsasbeingpotential BothoftheseYSOsareprobablymorehighlyembeddedversions star-formationsites.ThelackofdetectableYSOswiththeseclumps of1.P1.Inaddition, justtothewestof KMJB1,thereisanother could reflect their relative youth, or it may be the case that any highlyembeddedYSOwithK = 15.208and(H−K)L > 2.30.It YSOsthathaveformedmaybeverylowmassandthusfallbelow isquite likelythat theseobjects haveformed together asasingle the2MASSdetectionlimitsevenforourP3sample. groupingofstars. StarFormationAroundKR 140 7 Table4.YSOsassociatedwithsubmmclumps. 2MASSYSOsample PDR(P) ClumpIDa P1 P1+ P2 P3 AV orIsolated(I) 1 02210449+6106045b ··· 02210217+6105496 ··· 5.1 I 2 ··· ··· ··· 02205994+6107173 1.6 I 3c ··· ··· ··· ··· 4.5 I 4 02205329+6108215 ··· ··· ··· 15.4 I 6 ··· ··· 02203428+6107425 ··· 13.1 P 12 ··· ··· 02195506+6105211 ··· 68.2 P 13 ··· ··· 02195384+6102192 ··· 1.4 P 16 ··· ··· 02194584+6101426 ··· 1.1 P 17 ··· ··· ··· 02193257+6107399 8.7 P 19 02192184+6107069 ··· 02192272+6107157 ··· 21.7 P 45m ··· ··· ··· 02214126+6105457 37.7 I 02214085+6105439 47m 02215369+6106275 ··· ··· ··· 6.8 I 49m ··· ··· 02215837+6106405 ··· 5.4 I 51m 02220660+6107253 ··· ··· ··· 6.5 I 52m ··· 02222067+61073111 ··· ··· 15.7 I 53md ··· ··· ··· ··· 13.4 I aMooreetal.(2007)IDnumbershaveatrailingm(e.g.7m),otherIDnumbersfromKertonetal.(2001) b2MASS02210449+6106045=MSX6CG133.5492+00.0900 cIRAS02171+6058 dIRAS02186+6033=MSX6CG133.6890+00.1643 RegionCisinterestingbecauseofitsassociationwiththePDR beyondthedirectinfluenceoftheHIIregion,andthePDR,which ridgeseenintheMSXimages.Themajorityofthestarsarefound istheregiondirectlyinfluencedbytheexpansionandUVfluxof tothe northeast of thePDR,while5 of the remaining 6starsare theHIIregionandwhichcanbeclearlytracedbyPAHemission.A foundalongthePDRwithoneoftheYSOsbeingcoincidentwith comparisonoftheYSOpopulationfoundineachoftheseregions asubmm clump. Thispattern suggests that star-formationispro- thengivesameasureof therelativeimportance ofsequential and gressingfromnortheasttosouthwestwiththesubmmclumpsfound spontaneousstarformationwithinthemolecularcloud. alongthePDRbeingthelatestroundofstarformation. To delineate these two regions we use the 1.5 × 10−6 Region D contains the submm clumps 17, 18, and 19. W m−2 sr−1 contour in the MSX Band A image to (generously) Intermediate-mass and solar-mass YSOs are associated with define the extent of the PDR. We find that 42% of the full YSO clump 19 and, just to the north of this clump, there are an addi- sample (P1, P1+, P2 and P3) lie within the PDR as defined and tional six T Tauri YSOs. All three of these clumps make up the 58% lieoutside thePDR. Theexact percentages willvary some- infrared source IRAS 02157+6053 which MSX and 2MASS now what depending on how the PDR is defined. For example, using clearly show is actually a concentration of YSOs combined with a more conservative definition for the PDR region (1.75×10−6 extendedemissionfromthePDR. Wm−2sr−1)resultsin31%oftheYSOswithinthePDRand69% outsidethePDR.Thepercentages,inbothcases,arethesamefor theYSOpopulationbothwithandwithoutincludingtheP1+sam- ple. In all cases it is clear that a substantial fraction of the YSO 5 DISCUSSION populationliesbeyondthePDRinthisstar-formingregionandis 5.1 SpontaneousversusSequentialStarFormation thusnottheresultofsequentialstarformationassociatedwiththe HIIregion. When examining star formation processes within a molecu- lar cloud containing an HII region, a key distinction is be- tween sequential star formation, where the trigger for star for- 5.2 AScenarioforStarFormationinKR140 mation is directly related to the presence of the HII region (e.g., Deharveng,Zavagno&Caplan2005),andspontaneousstarforma- TheexcitingstaroftheHII region,VES735,isabout2Myrold tion, which occurs with no apparent causal relationship with the (Kertonetal. 1999), and kinematic models of the HII region set HIIregion.Itiswellknownthatforbothclassicaldensity-bounded expansiontimescalesof1-2Myr(Ballantyneetal.2000).Ourob- HII regions and blister/champagne-flow HII regions, the ioniza- servationsandanalysisofKR140areconsistentwithamolecular tion front (IF) is preceded by a shock front as it propagates into cloudundergoingcontinuousstarformationoverthisperiod.There the molecular cloud (Osterbrock 1985; Bedijn&Tenorio-Tagle isnoclearsignatureofasignificantolderpopulationofstarsseen 1981).Time-dependentmodelsofPDR/IFdevelopmentaroundOB inthe2MASSphotometryoftheregion(seeFigs.5and6).Lower stars(Roger&Dewdney1992;Diaz-Miller,Franco&Shore1998) massYSOsthatformedatthesametimeasVES735havehadtime show that the IF and PD front merge rapidly, i.e., on time scales todispersethroughthemolecularcloudandmayformsomeofthe lessthanthemain-sequencelifetimeoftheexcitingstar,fortypical morespatiallydistributedpopulationofYSOsseeninoursample. molecularclouddensities.Withthisinminditisusefultoconsider TheexpansionoftheHIIregionhassweptupmaterialwhich two distinct environments within the molecular cloud; the region hassubsequentlycollapsedtoformthesubmmclumpsthatweob- 8 Kertonet al. serveinthePDR.Atthesametimetheelongatedmorphology of Bessell,M.S.,Brett,J.M.,1988,PASP,100,1134 the densest portion of the molecular cloud has resulted in ongo- Cohen,M.,Green,A.J.,2001,MNRAS,325,531 ing star formation inregions well away from thedirect influence Cutri, R.M. et al., 2003, Explanatory Supplement to the oftheHIIregion.Asdiscussedearlier,theassociationofHAeBe 2MASS All Sky Data Release (Washington: NASA), andTTauristarswithdenseregionstracedinthesubmmandC18O http://www.ipac.caltech.edu/2mass/releases/allsky/doc/explsup.html supportagesof. 106 years.ThepresenceoftheClass0/IYSOs, Diaz-Miller,R.I.,Franco,J.,Shore,S.N.,1998,ApJ,501,192 IRAS02171+6058andIRAS02186+6033showstherecontinuesto Deharveng, L., Zavangno, A., Salas, L., Porras, A., Caplan, J., be very recent star formation activity on the timescale of ∼ 105 Cruz-Gonzalez,I.,2003,A&A,399,1135 years(Robitailleetal.2006). Deharveng,L.,Zavagno,A.,Caplan,J.,2005,A&A,433,565 Finally, many of the massive, apparently starless, submm Draine,B.T.,Li,A.,2007,ApJ,657,810 clumpsassociatedwiththePDRmayrepresentthenextsitesofstar Elmegreen,B.G.,1998,inWoodward,C.E.,Shull,J.M.,Thronson formationinthemolecular cloud. Deeperimagesoftheregionat Jr., H.A., eds, ASP Conf. Ser., Vol. 148, Origins, Astron. Soc. longerwavelengthswouldbeabletodetermineiftheseclumpsare Pac.,SanFrancisco,p.150 starlessandtestthescenariooutlinedabovebybeingabletodistin- Erickson, N.R., Grosslein, R.M., Erickson, R.B., Weinreb, S., guishbetweendifferentYSOevolutionarystages(Robitailleetal. 1999,IEEETrans.MicrowaveTheoryTech.,47,2212 2006). Finkenzeller,U.,Mundt,R.,1984,A&AS,55,109 Fuente, A., Martin-Pintado, J., Bachiller, R., Neri, R., Palla, F., 1998,A&A,334,253 6 CONCLUSIONS Giard, M., Bernard, J.P., Lacombe, F., Normand, P., Rouan, D., 1994,A&A,291,239 Whilemuchofthefocusofstudiesofstarformationinandaround Hatchell, J., Richer, J.S., Fuller, G.A., Qualtrough, C.J., Ladd, HII regions is on the interface regions, our study of KR 140 il- E.F.,Chandler,C.J.,2005,A&A,440,151 lustratesthatspontaneousstarformationoccurringawayfromthe Johnstone,D.,DiFrancesco,J.,Kirk,H.,2004,ApJ,611,L45 interfaceregionsinthesemolecularcloudscanbeasimportantas Kallas,E.,Reich,W.,1980,A&AS,42,227 sequential or triggered star formation related to the expansion of Kenyon,S.J,Hartmann,L.,1995,ApJS,101,117 theHIIregion.Ouranalysisshowsthatthemolecularcloudasso- Kerton,C.R.,Ballantyne,D.,Martin,P.G.,1999,AJ,117,2485 ciatedwithKR140containsanextensivepopulationofYSOsthat Kerton,C.R.,Martin,P.G.,Johnstone,D.,Ballantyne,D.R.,2001, isnotassociatedwiththePDR. ApJ,552,601 We have also shown that this YSO population is not uni- Kirk,H.,Johnstone,D.,DiFrancesco,J.,2006,ApJ,646,1009 formlydistributedthoughthemolecularcloudbutisconcentrated Koornneef,J.,A&A,1983,128,84 in four distinct regions. Many of the YSOs are also clearly as- McKee,C.,1999,inLada,C.J.,Kylafis,N.D.,eds,TheOriginof sociated with a filamentary structure within the molecular cloud StarsandPlanetarySystems.Kluwer,Dordrecht,p.29 which is traced by C18O emission. Finally, we see that both Moore, T.J.T.,Bretherton, D.E.,Fujiyoshi, T.,Ridge, N.A.,All- low-mass and intermediate-mass YSOs are forming throughout sopp,J.,Hoare,M.G.,Lumsden, S.L.,Richer,J.S.,2007, MN- the molecular cloud. Particularly interesting is the region around RAS,379,663 KMJB 1 (IRAS 02174+6052) which contains a tight group- Neuhasuer, R., Frink, S., Torres, G., Sterzik, M.F., Roeser, S., ing of a number of embedded intermediate-mass and solar-mass Randich,S.,1998inDonahue,R.A.Bookbinder,J.A.,eds,ASP YSOsincludingtheveryhighlyembeddedintermediate-massYSO Conf. Ser. Vol. 154, The Tenth Cambridge Workshop on Cool 2MASS02210610+6106043. Stars,StellarSystemsandtheSun.Astron.Soc.Pac.,SanFran- cisco,p.1748 Onishi, T., Mizuno, A., Kawamura, A., Ogawa, H., Fukui, Y., ACKNOWLEDGMENTS 1998,ApJ,502,296 Osterbrock, D.E., 1985, Astrophysics of Gaseous Nebulae and ThisresearchhasmadeextensiveuseoftheNASA/IPACInfrared ActiveGalacticNuclei,UniversityScienceBooks,Sausalito,CA Science Archive (IRSA), the Canadian Astronomy Data Centre Price, S.D., Egan, M.P., Carey, S., Mizuno, D.R., Kuchar, T.A., (CADC),anddatafromtheTwoMicronAllSkySurvey(2MASS). 2001,AJ,121,2819 IRSAisoperatedbytheJetPropulsionLaboratory,CaliforniaIn- Rieke,G.H.,Lebofsky,M.J.,1985,ApJ,288,618 stituteofTechnology,undercontractwithNASA.2MASSisajoint Robitaille,T.P.,Whitney,B.A.,Indebetouw,R.,Wood,K.,Denz- projectoftheUniversityofMassachusettsandtheInfraredProcess- more,P.,2006,ApJS,167,256 ingandAnalysisCenter/CaliforniaInstituteofTechnology,funded Roger,R.S.,Dewdney,P.E.,1992,ApJ,385,536 byNASAandtheNSF.TheCADCisoperatedbytheNationalRe- Ruffle, D.P., Hartquist, T.W., Rawlings, J.M.C.,Williams, D.A., searchCouncilofCanadawiththesupportoftheCanadianSpace 1998,A&A,334,678 Agency.FCRAOwassupportedbyNSFgrantAST0540852. CB Rydgren,A.E.,Vrba,F.J.,1983,AJ,88,1017 issupported byanRCUKFellowshipattheUniversityofExeter, Skrutskie,M.F.etal.,2006,AJ,131,1163 UK.TheauthorswouldliketoacknowledgetheworkdonebyCar- Strong,A.W.,Mattox,J.R.,1996,A&A,308,21 olinePomerleauintheinitialstagesofthisprojectsupportedbythe The´,P.S.,deWinter,D.,Pe´rez,M.R.,1994,A&AS,104,315 WomeninEngineeringandScienceprogramofNRCCanada. REFERENCES Ballantyne,D.R.,Kerton,C.R.,Martin,P.G.,2000,ApJ,539,283 Bedijn,P.J,Tenorio-Tagle,G.,1981,A&A,98,85

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.