Survival in Nuclear Waste, Extreme Resistance, and Potential Applications Gleaned from the Genome Sequence of KineococcusradiotoleransSRS30216 ChristopherE. Bagwell1, Swapna Bhat3, Gary M. Hawkins3, Bryan W. Smith1, Tapan Biswas2, Timothy R. Hoover3, Elizabeth Saunders4, Cliff S. Han4, Oleg V. Tsodikov2, Lawrence J. Shimkets3* 1SavannahRiverNationalLaboratory,EnvironmentalSciencesandBiotechnology,Aiken,SouthCarolina,UnitedStatesofAmerica,2DepartmentofMedicinalChemistry, CollegeofPharmacy,UniversityofMichigan,AnnArbor,Michigan,UnitedStatesofAmerica,3DepartmentofMicrobiology,UniversityofGeorgia,Athens,Georgia,United StatesofAmerica,4DOEJointGenomeInstitute,BioscienceDivision,LosAlamosNationalLaboratory,LosAlamos,NewMexico,UnitedStatesofAmerica Abstract KineococcusradiotoleransSRS30216wasisolatedfromahigh-levelradioactiveenvironmentattheSavannahRiverSite(SRS) and exhibits c-radiationresistance approaching thatofDeinococcus radiodurans.Thegenome wassequencedby the U.S. Department of Energy’s Joint Genome Institute which suggested the existence of three replicons, a 4.76 Mb linear chromosome, a 0.18 Mb linear plasmid, and a 12.92 Kb circular plasmid. Southern hybridization confirmed that the chromosomeislinear.TheK.radiotoleransgenomesequencewasexaminedtolearnaboutthephysiologyoftheorganism withregardtoionizingradiationresistance,thepotentialforbioremediationofnuclearwaste,andthedimorphiclifecycle. K.radiotoleransmayhaveauniquegenetictoolboxforradiationprotectionasitlacksmanyofthegenesknowntoconfer radiationresistanceinD.radiodurans.Additionally,genesinvolvedinthedetoxificationofreactiveoxygenspeciesandthe excisionrepairpathwayareoverrepresented.K.radiotoleransappearstolackdegradationpathwaysforpervasivesoiland groundwaterpollutants.However,itcanrespireontwoorganicacidsfoundinSRShigh-levelnuclearwaste,formateand oxalate,whichpromote the survivalof cellsduring prolonged periodsofstarvation. Thedimorphic lifecycle involvesthe productionofmotilezoospores.Theflagellarbiosynthesisgenesarelocatedonamotilityisland,thoughitsregulationcould notbefullydiscerned.TheseresultshighlighttheremarkableabilityofKradiotoleranstowithstandenvironmentalextremes and suggest thatinsitubioremediationoforganiccomplexants from highlevelradioactive wastemay befeasible. Citation:BagwellCE,BhatS,HawkinsGM,SmithBW,BiswasT,etal.(2008)SurvivalinNuclearWaste,ExtremeResistance,andPotentialApplicationsGleaned fromtheGenomeSequenceofKineococcusradiotoleransSRS30216.PLoSONE3(12):e3878.doi:10.1371/journal.pone.0003878 Editor:NiyazAhmed,CentreforDNAFingerprintingandDiagnostics,India ReceivedOctober6,2008;AcceptedNovember4,2008;PublishedDecember5,2008 Thisisanopen-accessarticledistributedunderthetermsoftheCreativeCommonsPublicDomaindeclarationwhichstipulatesthat,onceplacedinthepublic domain,thisworkmaybefreelyreproduced,distributed,transmitted,modified,builtupon,orotherwiseusedbyanyoneforanylawfulpurpose. Funding:CEBwouldliketoacknowledgesupportfromtheU.S.DepartmentofEnergy,OfficeofEnvironmentalManagementasadministeredthroughthe LaboratoryDirectedResearchandDevelopmentProgram,andtheU.S.DepartmentofEnergy,OfficeofScience,OfficeofBiologicalandEnvironmentalResearch, EnvironmentalRemediationSciencesProgram(Contract#KP1302000).LJSwouldliketoacknowledgesupportfromtheOfficeoftheVicePresidentforResearch, UniversityofGeorgia.Thefundershadnoroleinstudydesign,datacollectionandanalysis,decisiontopublish,orpreparationofthemanuscript. CompetingInterests:Theauthorshavedeclaredthatnocompetinginterestsexist. *E-mail:[email protected] Introduction decontamination reagents is oxalic acid, which can create problems for storage and final disposal due to its solubility High-level radioactive waste (HLW) is an anthropogenic propertiesasasodiumsalt.AdditionalreagentsinuseatSRSand disturbance to which few organisms are resistant. During the Cold War, Pu239 production for national defense began by Hanford include glycolic acid, citric acid, and formic acid. Removal of organic constituents directly in HLW tanks could irradiatinguraniumorothertargetelementsinanuclearreactor. At Hanford, WA and the Savannah River Site (SRS), SC, greatly improve processing efficiencyof HLW. irradiated fuel and targets were reprocessed to reclaim approxi- In 2001, the Committee on Long-Term Research Needs for mately 99% of the U235 and Pu239 isotopes. All remaining Radioactive High-Level Waste at Department of Energy Sites radionuclides,fissionproducts,fuelcomponents,andnonradioac- recommended the investigation of radioactive waste to identify tivechemicalsusedduringreclamationmakeuptheHLW,which promising new radiation resistant microorganisms that might be currently resides at over 100 different sites across the contiguous used to degrade some of the organic constituents in the HLW. U.S.andexceeds1billioncuries.ThemajorityofthislastingCold Radiation dosage is measured in gray (Gy); 1 Gy causes the first WarlegacyislocatedatHanford(roughly65milliongallons)and signsofradiationsicknessinhumans.Halfofallpeopleexposedto SRS (roughly 35milliongallons). 4.5 Gy die, and doses of 8 Gy or more are invariably fatal to The SRS waste contains Fe, Al, Si, Ca, F, K, alkali cations, humans. Bacteria are the most extreme examples of radiation organic solvents, radionuclides, and other fission products. resistantorganisms.TheparadigmisDeinococcusradiodurans,which Organicconstituentsincludecomplexantsusedduringseparations, wasisolatedfromcannedmeatthatreceived4,000Gyofionizing- radiolysisproductsfromdegradationofcomplexantsandsolvents, radiation[1],butmanyotherradiationresistantbacteriahavealso and waste tank decontamination reagents. One of the preferred been identified. PLoSONE | www.plosone.org 1 December2008 | Volume 3 | Issue 12 | e3878 ResistanceofK.radiotolerans KineococcusradiotoleransSRS30216wasisolatedfromHLWwithin thoughttobeduetoaccumulatedmutationalbiasesduringleading a shielded cell work area at the SRS [2]. K. radiotolerans is an vs lagging strand synthesis. There is no obvious GC skew at the orange-pigmented, aerobic bacterium belonging to the Actino- center of the chromosome (Figure 1, compare green vs magenta bacteria phylum that is capable of withstanding relatively high peaksininnercircle).ThereishoweveraremarkableGCskewat concentrationsofmetalsandalkalications,aswellasexposureto the telomers but it seems unlikely that replication proceeds from extreme doses of ionizing radiation. K. radiotolerans exhibits thetelomerstowardthecenterbasedontheBorreliaandStreptomyces radiation resistance approaching that of D. radiodurans [2]. D. systems.AsecondmethodusedtolocateoriCisthepresenceofthe radiodurans and K. radiotolerans belong to different phyla and it dnaA gene and DnaA binding sites. dnaA (Krad0001) is near the remains unknown whether both organisms attain radiation center of the chromosome, as with Streptomyces and Borrelia. resistance through a common set of gene products. Because K. Putative, imperfect blocks of DnaA binding sites, observed using radiotoleranssurvivedaHLWenvironment,itisexpectedtopossess DoriC [6], are widely scattered in the center of the chromosome potent cellular defense and repair mechanisms for radiation with theclosest beingabout 94Kb fromthe dnaAgene. exposure,osmoticstressandchemicaltoxicity.Theoccurrenceof ThetopologyofthechromosomewasinvestigatedbySouthern all these features in a naturally occurring bacterium may have hybridization using an end-specific probe homologous with direct applications for thebioremediation of nuclearwaste. Krad2223. Three restriction enzymes were predicted to generate In this work the genome sequence of K. radiotolerans SRS30216 singlefragmentswiththisprobe.Ifthechromosomeislinearthen was examined in three different contexts. First, the presence of products with sizes predicted from the DNA sequence should be genes known to confer radiation resistance in D. radiodurans was visibleafterhybridization.Ifthechromosomeiscircularthenthe examined in the K. radiotolerans genome. Second, the capacity for hybridization products with the probe should be the sum of the bioremediation was assessed by comparative genomics as well as sizesofthepredictedrestrictionfragmentsfromeachendplusany growthandrespirationstudies.Finally,thedimorphiclifecycleof missing sequence. Restriction fragments homologous with the theorganism,inparticulartheproductionofmotilezoospores,was Krad2223 probe were similar in size to those predicted by the examined by identifying genes involved in flagellar motility and DNA sequence (Fig. 2). These hybridization results confirm the chemotaxis. lineartopologypredictedbytheinabilityofJGItoclosetheDNA sequence. Results and Discussion The ends of linear DNA replicons have special features that preserve their integrity. B. burgdorferi linear replicons contain Phylogeny covalently closed hairpin ends [4]. ResT, telomere resolvase, K. radiotolerans belongs to the suborder Frankineae in the order hydrolyzesaphosphodiesterbondoneachDNAstrandthenjoins Actinomycetales and the phylum Actinobacteria. Complete the opposite strands to form a covalently closed telomere. The genome sequences are available for only two other members of process is reversed during chromosome replication and ResT is the Frankineae suborder, Frankia alni and Acidothermus cellulolyticus. essentialforB.burgdorferigrowth.AResThomologisnotencoded F.alniisdistinguishedbyitsabilitytofixnitrogeninsymbiosiswith bytheK.radiotoleransgenome.Streptomycescoelicolorrepliconendsare alder (Alnus spp.) and myrtle (Myrica spp.), two pioneer plants in composedofsingle-strandedsequencesthatcanannealtoforma temperateregions.TheK.radiotoleransgenomeshowsnopotential noncovalent circular molecule [3]. Streptomyces telomeres bind a for nitrogen fixation. A. cellulolyticus is a thermotolerant organism family of conserved terminal binding proteins that have no isolated from the hot spring in Yellowstone National Park that orthologsintheK.radiotoleransgenome.Thus,uniquemechanisms degrades cellulose. While the K. radiotolerans genome may encode must protect theK.radiotolerans telomers. proteins with the potential for degrading complex carbohydrates likecellulose(Krad4622,3823),cellobiose(Krad0408,2526,2530, Ionizing radiation resistance 2531, 2539, 3436, 3480, 3961), glycogen, and starch (Krad1294, Gamma radiation is one of the most energetic forms of 1298), growth on these substrates has not been demonstrated electromagnetic radiation. Gamma rays penetrate tissues and experimentally. cells, causing direct damage to DNA (namely double strand More distant relatives in the same phylum include Streptomyces breaks),proteins,andmembranes.Gammaradiationalsoinduces and Mycobacterium, whose physiology has been extensively indirect cellular damage through the ionization of water with examined, and which serve as reference points for comparative formation of free radical species, primarily NOH. Oxygen free genomics. radicals are extremely reactive, compounding cellular and DNA damage.DNAdamageblockstranscriptionandreplication,andif Genome size and organization not correctly repaired, could introduce detrimental mutations or TheK.radiotoleransSRS30216genomewassequencedbytheUS causecelldeath.RelativelyfewDNAdoublestrandbreaks(DSB) DOEJointGenomeInstitutewiththediscoveryofthreereplicons. arelethalformostbacteria.Escherichiacolicellssuccumbtoaround The bulk of the DNA is contained on a 4,761,183 bp linear 10 DSB and Shewanella oneidensis cells die after 1 DSB (based on chromosome(CP000750).Inadditionthereisa182,572bplinear calculations of0.0114 DSBs/Gy/Genome; Daly etal.,2004). plasmid(pKRAD01;CP000751)anda12,917bpcircularplasmid Radioresistance has been partially characterized for K. radio- (pKRAD02; CP000752). The three contigs were derived from at tolerans(Figure3).Acutelyirradiated,exponentiallygrowncultures least 20 reads and average 74.2mol % G+C. The genome is have a broad shoulder of death, which contrasts with the predicted tocontain4,715 genes. exponential death of E. coli. This shoulder is due in part to Linear chromosomes are rare among prokaryotes. Aside from efficient repair systems and in part to the multicellular nature of one atypical Agrobacterium isolate, the two principle examples are the organism. In rich medium K. radiotolerans grows in cubical Streptomycesspecies[3]andBorreliaburgdorferi[4].InbothStreptomyces packetsthatformbyalternatingcelldivisionplanes(Phillipsetal. andBorreliabidirectionalreplicationoccursfromasingleoriginof 2002). Thus, the colony forming unit method used to estimate replication(oriC)locatednearthemiddleofthereplicon.Aplotof survivorship likely overestimates culture viability. Nevertheless, the GC skew=(C2G)/(C+G) along the chromosome sometimes these results may portray a more ecologically relevant context as inverts at the replication origin [5]. The shift in GC skew is cell clustering is common for certain species or developmental PLoSONE | www.plosone.org 2 December2008 | Volume 3 | Issue 12 | e3878 ResistanceofK.radiotolerans Figure1.Genedistributionofthe4.76MbKineococcusradiotoleransSRS30216linearchromosomedepictedincircularform.The breakisindicatedbyawavylineat12o’clock.Fromtheoutertotheinnerconcentriccircle:circles1and2,predictedproteincodingsequences(CDS) indicatedbybluearrowsontheforward(outerwheel)andreverse(innerwheel)strands.RedindicatestRNAgenesandpurpleindicatesrRNAgenes; circle3,GCcontentshowingdeviationfromaverage(74.2%);circle4,GCskew(+isgreenand2ispurple);circle5,genomicpositioninkbbeginning withKrad2223andproceedingclockwise.ThechromosomemapwasgeneratedusingCGview[56]. doi:10.1371/journal.pone.0003878.g001 stages of Actinobacteria (eg., Frankia, Geodermatophilus, Actinoplanes, resistantbacterialspeciesarefoundintheActinobacteriathanany Micrococcus) or other extremophiles (Kocuria, Deinococcus, Chroococci- otherphylum,radiationresistanceisnotawidespreadtraitinthis diopsis). Remarkably though, Kineococcus can withstand the phylum and may have multiple evolutionary origins. The damagingeffectsof20kGyofc-radiation(theoreticallygenerating mechanisms that render this trait remain poorly understood. more than200DSB/genome; Dalyetal.,2004)andcelldivision Radiationresistantbacteriasufferseveredamagefromc-radiation resumes within4days (Figure4). [8], which implies that molecular repair processes function with Several other Actinobacteria species exhibit extraordinary high efficiency. radiation resistance including Rubrobacter radiotolerans, Rubrobacter Analysis of genes common to four ionizing radiation resistant xylanophilus, and Kocuria rosea [7]. While more ionizing radiation bacteriawithfullysequencedgenomesindicatedthatDNArepair PLoSONE | www.plosone.org 3 December2008 | Volume 3 | Issue 12 | e3878 ResistanceofK.radiotolerans homologs of the D. radiodurans pprA, ddrA, ddrB, ddrC, ddrD genes [11]. Mutations in recA render D. radiodurans as sensitive to ionizing radiation as E. coli illustrating the importance of recombinational repairinrepairingDSB(table1).D.radioduranscellsexposedto10 kGyc-radiationaccumulateabout100DSBpergenomethatare repaired over the course of several hours. D. radiodurans DSB are repairedbyhomologousrecombinationintheextendedsynthesis- dependentstrandannealing(ESDSA)process[12].ESDSArepair is carried out by RecA and PolA, enzymes found in the K. radiotoleransgenome(table2).Basedontheirgenomicanalysis,recA andpolAexhibitsignsofcoevolutioninionizingradiation-resistant bacteria [9]. Genes involved in carotenoid biogenesis have been shown to conferamodestlevelofradiationresistance[13–15]byscavenging electrons from reactive oxygen species (table 1). K. radiotolerans Figure2.Southernhybridizationrevealsalinearchromosome. producescarotenoids[2]andthecarotenoidbiosyntheticpathway PCRwasusedtogenerateprobesforthefirstendinthepresumptive issimilartothatfoundinotherorganisms.Inadditiontothetwo linear chromosome homologous with a portion of the first gene Krad2223. The genome was digested with one of three restriction geneslistedintableIencodingphytoenesynthetaseandphytoene enzymespredictedfromtheDNAsequencetogenerateahybridization desaturase, K. radiotolerans produces polyprenyl synthase product with each probe. Lane 1, NcoI; Lane 2, BamHI; Lane 3, BglII. (Krad3227),lycopenecyclase(crtY,Krad0091),andneurosporene Sizes of molecular markers in base pairs are given in the right hand dehydrogenase(crtD,Krad3225).Ahydroxlasegene(crtZ)wasnot column. The predicted sizes of the homologous restriction fragments discovered suggesting that the K. radiotolerans carotenoids are not fromtheDNAsequenceareNcoI,865bp,BamHI,3692bp,andBglII, hydroxylated. 1619bpwiththeKrad2223probe.Thepredictedsizesoftherestriction fragments from the other end of the chromosome are NcoI, 775 bp, Higher eukaryotes repair DSB using nonhomologous end BamHI,1363bp,andBglII,4018bp.Theobservedsizeswerecalculated joining(NHEJ)([16,17]Rihaetal.2006).NHEJrepairismediated usingbacteriophagelambdaDNAstandardsdigestedwithHindIII.Inall by the Ku complex and the Ligase IV/XRCC4 complex along cases the observed sizes were approximately equal to the sizes withotherproteinswhoseprecisebiochemicalfunctionsremainto predictedfromalinearchromosomeratherthanthesumofthesizes be elucidated. While E. coli lacks the NHEJ pathway, some frombothendssuggestingalineartopology. doi:10.1371/journal.pone.0003878.g002 Actinobacteria genera such as Mycobacterium have this repair pathway. Mycobacterial Ku binds DNA ends and recruits a must have played a major role in evolutionary adaptation to polyfunctional DNA ligase/polymerase(LigD) invitro(Della etal. ionizingradiation[9].D.radioduranshasservedastheparadigmfor 2004). Though repair is mutagenic, it does help maintain cell radiation resistant organisms and both genetic and biochemical viability and loss of Ku and LigD increases sensitivity to ionizing approachesareconvergingtorevealacomplexnetworkofrepair radiation(Stephanouetal.2007).K.radiotoleransappearstolacka and protection processes [7,10]. Many D. radiodurans genes Ku-like DNA binding protein. While it does encode an ATP- required for ionizingradiation resistance havebeen identified. In dependentDNAligase(Cdc9,orLigB;table2)NHEJrepairisnot table1theyareorderedaccordingtothec-radiationsensitivityof likelywithout Ku. a D. radiodurans strain lacking that gene based on published kill Ionizing radiation also causes many other types of DNA curves.Whiletherolesofonlyafewofthesegenesareknownwith damage.TheK.radiotoleransDNAreplication,recombinationand certainty, K. radiotolerans apparently employs a different genetic repair gene set is overlapping with [9], but generally different toolboxfromthatofD.radiodurans.AbsentfromK.radiotoleransare from those of D. radiodurans [18] and E. coli [19] which may be expectedsincetheseorganismsbelongtodifferentphyla(table2). As one illustration of this difference, K. radiotolerans but not D. radiodurans contains RecB and RecC which are involved in recombinational repair in E. coli (reviewed in [20]). DNA replication, repair and recombination systems in K. radiotolerans are more similar to those of Mycobacterium tuberculosis [21], possibly a reflection of the phylogenetic proximity of the two organisms. In addition, M. tuberculosis is at least 10-fod more resistant to ionizing radiation than E. coli [22]. Because M. tuberculosis is an actively studied pathogen its genome is well- annotated. Because it has coevolved the majority of its DNA replication, repair, and recombination mechanisms with K. radiotoleranswechoseitasareferenceorganism,togetherwithE. coli and . BothK.radiotoleransandM.tuberculosislacktheclassicalbacterial mismatchrepairgenesMutS,MutH,MutL,RecJ,ExoVIII,ExoI and Mug (table 2). A compensating factor may be production of Figure 3. Resistance of K.radiotoleransto acute c-radiation DNA polymerases with increased fidelity and proofreading exposure. E. coli was used as a reference strain. Prior to irradiation, efficiency as K. radiotolerans contains four exonuclease (e; DnaQ) both strains were grown to exponential phase in TGY and LB, respectively. Colony forming units determinations were conducted in subunits,three polymerase (a; DnaE)subunits andtwob(DnaN) triplicate. subunits of thereplicative DNA polymerase III.Mismatch repair doi:10.1371/journal.pone.0003878.g003 in K. radiotolerans may also be handled by proteins unrelated to PLoSONE | www.plosone.org 4 December2008 | Volume 3 | Issue 12 | e3878 ResistanceofK.radiotolerans recombinational repair, or maintain multiple chromosomes. The directreversalpathwayusedtorepairpyrimidinedimersincludes two copies of the phrB photolyase gene and an additional, splB photolyase gene, which is absent in E. coli, D. radiodurans and M. tuberculosis. Other differences from M. tuberculosis include the presenceinK.radiotoleransofPolA,TopoIV,HolIII,YejH,which are absent in M. tuberculosis. The translesion DNA repair system UmuC/UmuD, present in E. coli but not D. radiodurans or M. tuberculosis,isalso a part oftheK. radiotolerans genome. Similar tomycobacteria, the K. radiotolerans replicationgene set lacks a well-defined homolog of the helicase loader (DnaC), but contains the other main replication genes (DnaA, DnaB, DnaG). K. radiotolerans and M. tuberculosis both contain a eukaryotic-like DNA primase gene. Figure 4. Post-irradiation recovery and growth of K.radio- In summary, many of the genes known to confer radiation tolerans. The irradiated cultures were exposed to 20 kGy c-radiation resistanceinD.radioduransaremissingfromK.radiotoleranssuggesting (open circles), and control cultures were incubated under laboratory conditions(closedcircles). novel components to the repair and protection toolbox. Two doi:10.1371/journal.pone.0003878.g004 pathways are involved in DSB repair in other organisms, ESDSA repairmediatedbyRecAandPolAandNHEJrepairmediatedby KuandLigD.RecAandPolAarepresentandmaybeaidedbythe classical bacterial mismatch repair proteins. Some base excision presence of RecB and RecC. K. radiotolerans lacks the Ku protein repair genes that may take on such roles are also uniquely makingthepresenceoftheNHEJpathwayunlikely.Baseexcision overrepresented. There are three Fpg and four Nei base andnucleotideexcisionrepairpathwaygenesareoverrepresentedin excisionases in K. radiotolerans, compared with one Fpg and no K.radiotoleransrelativetootherbacteria. Nei homologs in D. radiodurans. As an additional example of divergencewithD.radiodurans,3-methyladenineDNAglycosylaseI Reactive oxygen species detoxification (Tag) ispresent in K.radiotolerans,but absent fromD. radiodurans. Most organisms have both RecA and PolA without exhibiting Thenucleotideexcisionrepairpathwayisalsooverrepresented extreme radiation resistance. Remarkably, D. radiodurans cells in K. radiotolerans by three uvrA orthologs and by five genes rendered ionizing radiation-sensitive by a polA mutation are fully encodingUvrD-likehelicases.Inadditiontothesehelicases,theK. complemented by expression of the polA gene from ionizing radiotolerans genome, similarly to M. tuberculosis, contains an radiation-sensitive E. coli [24]. Repair proteins, either native or ERCC3 (XPB)-like superfamily II helicase, whose eukaryotic cloned,mayfunctionbetterafterirradiationinD.radioduranscells homologperformsessentialfunctionsinnucleotideexcisionrepair due to protection from protein oxidation [25]. The genetic andtranscription[23].TheK.radiotoleransandM.tuberculosisXPB components and molecular mechanisms of protein repair/ helicaseshavebeenrecentlydemonstratedtobefunctionalinvitro protection remain unknown but appear to be correlated with a (Biswas andTsodikov, unpublished). Mn/Feratiointherangeof0.12–0.37[26].TheMn/Feratioin Fivehomologsofhistone-likeproteins(IHForHupB-like)may K. radiotolerans is 0.09, slightly lower than Deinococcus but much package DNA in order to protect it from damage, aid higherthan that of radiation sensitiveorganisms [27]. Table1. Genesconferring ionizing radiation resistance inDeinococcus radiodurans andtheirhomologs inKineococcus radiotolerans. D.radioduransgene Function D (kGy)1 Reference Kradlocustag 10 recA Homologousrecombination 0.1 [11] 1492 polA DNApolymerase 1.0 [24] 2951 pprA StimulatesDNAligase 2.0 [57] none recQ DNAhelicase 6.0 [58] 0829 recD Helicase/exonuclease 6.0 [59] 0992 ddrB Unknown 8.0 [11] none crtB Phytoenesynthase 9.0 [13] 3229 crtI Phytoenedesaturase 9.0 [13] 3228 ddrA ssDNAbindingprotein 12.0 [11] none ddrC Unknown .14.0 [11] none ddrD Unknown .14.0 [11] none sbcCsbcD ssendonucleases39-59dsexonuclease 15.0 [60] 25532554 polX ssendonucleases39-59dsexonuclease 15.0 [61] 4036 1Doseofcradiationrequiredfora90%reductionincellviabilityestimatedfromdatasuppliedintherelevantreference.Forcomparison,theD10forwildD. radiotoleransstrainsrangesfrom10–20kGydependingonthestrainandtheassayconditions. doi:10.1371/journal.pone.0003878.t001 PLoSONE | www.plosone.org 5 December2008 | Volume 3 | Issue 12 | e3878 ResistanceofK.radiotolerans 1 3 1 7 0 5 7 5 1 0 4 0 KineococcusradiotoleransSRS30216(locus) Krad_2866 Krad_4325Krad_3854 Nohomologs Krad_4316 Krad_3435 Nohomologs Krad_4243 Krad_0734(putativeDcm) Krad_4326Krad_3213 Krad_4334 Krad_1504 Krad_0001 Krad_4333 Krad_3187Krad_3215Krad_Krad_4598(onpKRAD01) Krad_3361 Krad_1769Krad_0002 Krad_4419Krad_3247Krad_Krad_1768 Krad_0466 Krad_1557 Krad_3612 Krad_2983 Krad_1377Krad_0158Krad_ Krad_1482 Krad_0007 Krad_0006 Krad_3762 Krad_0757(putativeUvrD) Krad_1885Krad_0173 Krad_1013 Nohomologs osis ndK.radiotolerans. MycobacteriumtuberculH37Rv(locus) Nohomologs Rv1317c TIGRlocus:NT02MT1098 Rv3062 Rv2415c Nohomologs Rv0321 Rv3037c(putativeDcm) Rv3056Rv1537(DinX) Rv2836c Rv1329c Rv0001c Rv0058c Rv1547cRv3370c Rv2343c Rv0002 Rv3711c Rv3721c Rv2697c Rv0861c Rv1407 Rv2924cRv0944 Rv2748c Rv0006 Rv0005 Rv1341 Nohomologs Rv2092c(HelY) Rv2101(HelZ) Rv2756c a urans,M.tuberculosis DeinococcusradioduransR1(locustag) Nohomologs DR_2584,DR_2074 Nohomologs Nohomologs DR_1855 Nohomologs Nohomologs Nohomologs Nohomologs DR_0792 Nohomologs DR_0002 DR_0549 DR_0507 DR_0601 DR_0001 DR_0856 DR_2410 Nohomologs DR_A0131 DR_2168 DR_0493 DR_0400 DR_1913 DR_0906 DR_0179 DR_1775(putativeUvrD) Nohomologs DR_1259 Nohomologs d o adi oli E.coli,D.r Escherichiac Ada AlkA AlkB Nohomologs ComEA Dam Dcd Dcm DinB DinF DinG DnaA DnaB DnaE DnaG DnaN DnaQ DnaZ/X Dut Nohomologs Fmu Fpg/MutM FtsK GyrA GyrB HAM1/YggV HelD Nohomologs Nohomologs HsdM n i s n o cti n fu pe d escodingforreplication,repairandrecombination BProteindescriptionandcomments O-6-methylguanine/O-4-methylthymineDNAmethyltransferase 3-methyladenineDNAglycosylaseII;DR_2584isofeukaryoticty Alkylationrepairprotein ATP-dependentDNAligase DNAuptakeprotein GATCspecificN6-adeninemethylase dCTPdeaminase Site-specificC-5cytosinemethlytransferase;VSPrepairistargetetowardhotspotscreatedbyDcm DNAdamageinducibleproteinP(DNApolymeraseIV) PossibleDNA-damage-inducibleproteinF;integralmembrane+-drivenmultidrugeffluxpumpprotein;Na ATP-dependentDNAhelicase;SOSinducer Chromosomalreplicationinitiatorprotein ReplicativeDNAhelicase aDNApolymeraseIII(holoenzyme),subunit DNAPrimase bDNApolymeraseIII(holoenzyme),subunit e99DNApolymeraseIII(holoenzyme),subunit-3-5exonuclease ctDNApolymeraseIII(holoenzyme),/subunit dUTPase XPB/ERCC3helicase rRNASAM-dependentmethyltransferase Formamidopyrimidineand8-oxoguanineDNAglycosylase(HomologofNei;seebelow) Chromosomeresolutionandpositioning DNAgyrase,subunitA DNAgyrase,subunitB Xantosinetriphosphatepyrophosphatase,prevents6-N-hydroxylaminopurinmutagenesis 99HelicaseIV(ATP-dependent3-to-5DNAhelicase)involvedintheRecFpathwayofrecombination Probablehelicase,Ski2subfamily(ATP-dependentRNAhelicase) ProbablehelicasewithaZincfingerdomain,Snf2/Rad54family TypeIrestriction/modificationsystemDNAmethylase n Ge me Table2. Proteinna Ada AlkA AlkB Cdc9(LigB) ComEA Dam Dcd Dcm DinB/DinP DinF DinG DnaA DnaB DnaE DnaG DnaN DnaQ DnaZ/X Dut ERCC3 Fmu Fpg/MutM FtsK GyrA GyrB HAM1/YggV HelD HelY HelZ HsdM PLoSONE | www.plosone.org 6 December2008 | Volume 3 | Issue 12 | e3878 ResistanceofK.radiotolerans A) ol H 5 0 4 KineococcusradiotoleransSRS30216(locus) Nohomologs Nohomologs Krad_3422(unrelatedtoE.coli Krad_0490 Nohomologs Nohomologs Krad_2840 Krad_3104Krad_1244 Krad_2337Krad_1360Krad_280Krad_2005Krad_3371 Krad_1506 Krad_1489 Krad_1315 Nohomologs Krad_0653 Krad_1067 Krad_3154 Nohomologs Nohomologs Nohomologs Nohomologs Nohomologs Krad_1131Krad_2346Krad_314Krad_2697Krad_0113 Krad_0599 Krad_1488Krad_3521Krad_029Krad_3396 Nohomologs Nohomologs Krad_0422 Krad_3712 A) ol obacteriumtuberculosisRv(locus) 55c(HsdS’) 52 13c(unrelatedtoE.coliH 44c omologs omologs omologs omologs 86c(HupB)Rv1388(IHF) 20 96 14c 38 31(LigC) 20 88 28c omologs omologs omologs omologs 85cRv1160cRv0413c 89c 97Rv2464c omologs 70 74c 16c MycH37 Rv27 Rv38 Rv24 Rv36 Noh Noh Noh Noh Rv29 Rv27 Rv32 Rv30 Rv09 Rv37 Rv10 Rv16 Rv25 Noh Noh Noh Noh Rv29 Rv35 Rv32 Noh Rv06 Rv36 Rv13 DeinococcusradioduransR1(locustag) Nohomologs Nohomologs DR_1244 DR_2332 Nohomologs Nohomologs Nohomologs DR_0420 DR_A0065 DR_A0344DR_A0074 Nohomologs DR_2069 Nohomologs Nohomologs DR_1532 DR_2074(alsoseeAlkA) DR_1877DR_0508DR_0587 DR_0715 Nohomologs DR_1976DR_1039containsaframeshift DR_1696 DR_0261 DR_2285 Nohomologs DR_2162 Nohomologs DR_2438,DR_0289,DR_0928 DR_0428 oli Escherichiac HsdS HNS HolA HolB HolC HolD HolE HrpA HupB LexA Lhr LigA LigB Nohomologs Mfd MPG Mrr Mug(ygjF) MutH MutS MutL MutT MutY Nei Nfi Nfo Nth Ogt n nt. BProteindescriptionandcomments TypeIrestriction/modificationsystemspecificitydeterminant HU-histoneprotein dDNApolymeraseIII(holoenzyme),subunit dDNApolymeraseIII(holoenzyme),’subunit DNApolymeraseIII(holoenzyme),chisubunit DNApolymeraseIII(holoenzyme),psisubunit DNApolymeraseIII(holoenzyme),thetasubunit ATP-dependenthelicase DNAbindingproteinII,Integrationhostfactor(IHF);histone-likeproteins Transcriptionalregulator,repressoroftheSOSregulon,autoprotease ATP-dependenthelicasesuperfamilyII DNAligase,NAD()-dependent+ DNAligase,NAD()-dependent+ ProbableDNAligase Transcriptionrepaircouplingfactor;helicase 3-MethylpurineDNAglycosylase TypeIVrestrictionendonuclease G/Tmismatch-specificthymineDNAglycosylase,distantlyrelatedtoDR_1751;Presentasadomainofmanymultidomainproteinsinmanyeukaryotes Endonuclease,ComponentoftheMutHLScomplexfunctionsinthemethyl-directedmismatchrepairpathway ATPase,ComponentoftheMutHLScomplexfunctionsinthemethyl-directedmismatchrepairpathway PredictedATPase,ComponentoftheMutHLScomplexfunctionsinthemethyl-directedmismatchrepairpathway 8-oxo-dGTPase.D.r.encodesadditional17paralogs;onlysomepredictedtofunctioninrepair 8-oxoguanineDNAglycosylase&AP-lyase,A-GmismatchDNAglycosylase EndonucleaseVIII(alsoseeFpgabove) EndonucleaseV EndonucleaseIV(APendonuclease) EndonucleaseIII&thymineglycolDNAglycosylase;DR_0928andDR_2438areofarchaealtypeandDR_0289isclosetoyeastprotei O-6-methylguanine/O-4-methylthymineDNAmethyltransferase Co me a 2. nn HF gjF) Table Protei HsdS HNS HolA HolB HolC HolD HolE HrpA HupB/I LexA Lhr LigA LigB LigC Mfd MPG Mrr Mug(y MutH MutS MutL MutT MutY Nei Nfi Nfo Nth Ogt PLoSONE | www.plosone.org 7 December2008 | Volume 3 | Issue 12 | e3878 ResistanceofK.radiotolerans 5 0 3 KineococcusradiotoleransSRS30216(locus) Krad_1546 Krad_1534 Krad_3276Krad_1149 Krad_4707Krad_4374 Krad_2951 Nohomologs Krad_2988 Nohomologs Krad_3554Krad_4047 Krad_4702 Nohomologs Krad_3035 Krad_1492 Krad_0993 Krad_1171 Krad_4407 Krad_1855 Krad_0992 Krad_0994 Nohomologs Krad_0004 Krad_1368 Nohomologs Krad_3147 Krad_3375 Krad_0829RecQ-like:Krad_4Krad_4391 Krad_0465 Krad_1418 Krad_1493 Krad_3054 osis ul c er b u t obacteriumRv(locus) omologs omologs 13 omologs omologs omologs 02 omologs omologs 85c omologs 59c 37c 30c 02c omologs 19 31c 29c omologs 03c 73c omologs 96c 62c 53 15c omologs 36c 93c MycH37 Noh Noh Rv22 Noh Noh Noh Rv14 Noh Noh Rv35 Noh Rv25 Rv27 Rv06 Rv32 Noh Rv21 Rv06 Rv06 Noh Rv00 Rv29 Noh Rv16 Rv23 Rv12 Rv37 Noh Rv27 Rv25 ns a ur d o radig) 2444 DeinococcusR1(locusta Nohomologs Nohomologs DR_0717 DR_C0005 DR_1707 Nohomologs DR_2606 Nohomologs Nohomologs DR_1105 Nohomologs DR_1898 DR_2340 Nohomologs Nohomologs Nohomologs Nohomologs Nohomologs DR_1902 Nohomologs DR_1089 DR_1916 DR_1126 DR_1477 DR_0819 DR_1289DR_ DR_0198 Nohomologs DR_1310 DR_1274 oli Escherichiac ParC ParE PepA PinR PolA PolB PriA PriB PhrB RadA(Sms) RadC RarA RecA RecB Nohomologs Nohomologs Nohomologs RecC RecD RecE RecF RecG RecJ RecN RecO RecQ RecR RecT RecX RuvA er nt. BProteindescriptionandcomments DNATopoisomeraseIV,subunitA(TypeIItopoisomerase) DNATopoisomeraseIV,subunitB(TypeIItopoisomerase) DNAbinding(independentofAminopeptidaseactivity)proteinrequiredformaintenanceofplasmidmonomers. Putativerecombinase DNApolymeraseI DNApolymeraseII Putativeprimosomalproteinn’(replicationfactorY) Corecomponentoftheprimosome,bindstoPriAandsingle-strandedDNA Photolyase(directmonomerizationcyclobutane-typepyrimidinedimers) PredictedATP-dependentprotease Predictedacyltransferase;predictedDNA-bindingprotein ProteinmayplayaroleinrecombinationassociatedwithDNAreplication;putativeATPaserelatedtothehelicasesubunitoftheHollidayjunctionresolvase Recombinase;ssDNA-dependentATPase,activatorofLexAautoproteolysis Helicase/exonuclease RecBfamilyexonuclease1 RecBfamilyexonuclease2 RecBfamilyexonuclease3 Helicase/exonuclease Helicase/exonuclease;ContainsthreeadditionalN-terminalhelix-hairpin-helixDNA-bindingmodules;closelyrelatedtoRecDfromB.subtilisandChlamydia ExonucleaseVIII PredictedATPase;requiredfordaughter-strandgaprepair Hollidayjunction-specificDNAhelicase;branchmigrationinduc Single-strandedDNA-specificexonuclease PredictedATPase Requiredfordaughter-strandgaprepair Helicase;suppressorofillegitimaterecombination Requiredfordaughter-strandgaprepair DNAannealingprotein RegulatoryproteinforRecA Holliday-junction-bindingsubunitoftheRuvABCresolvasome Co me 2. na o1) o2) o3) Table Protein ParC ParE PepA PinR PolA PolB PriA PriB PhrB RadA RadC RarA RecA RecB RecB(ex RecB(ex RecB(ex RecC RecD RecE RecF RecG RecJ RecN RecO RecQ RecR RecT RecX RuvA PLoSONE | www.plosone.org 8 December2008 | Volume 3 | Issue 12 | e3878 ResistanceofK.radiotolerans 7 2 4 D) 05 17 54 c 0 1 0 KineococcusradiotoleransSRS30216(locus) Krad_3053Krad_3828 Nohomologs Nohomologs Nohomologs Krad_2553 D)Krad_0868Krad_2554(BothunrelatedtoE.coliSb Krad_3772 Krad_1409Krad_4481 Krad_0827Krad_4460 Krad_1242Krad_0858 Krad_4338 Krad_0999 Krad_0487 Krad_3900 Nohomologs Nohomologs Krad_3639 Nohomologs Krad_2940Krad_1787Krad_ Krad_2942 Krad_2935 Krad_0757Krad_1179Krad_Krad_4408 Krad_1179 Nohomologs Krad_1122 Krad_1121 Krad_4198Krad_3979Krad_ Krad_1169 Nohomologs Krad_3612(seealsoERCC3) c obacteriumtuberculosisRv(locus) 92c 94c omologs omologs omologs 77(unrelatedtoE.coliSb 17 96c omologs 11Rv1253 54Rv2478c 10 46c 22 omologs omologs 76c omologs 38c 33c 20 49Rv3198c(putative) 98c omologs 08c 07c 27c 04 omologs omologs MycH37 Rv25 Rv25 Noh Noh Noh Rv12 Rv29 Rv28 Noh Rv32 Rv00 Rv12 Rv36 Rv03 Noh Noh Rv29 Noh Rv16 Rv16 Rv14 Rv09 Rv31 Noh Rv11 Rv11 Rv04 Rv32 Noh Noh ns 2) a D radiodurg) 1624 1663 A0188 ativeUvr 2 DeinococcusR1(locusta DR_0596 DR_0440 Nohomologs Nohomologs DR_1922 DR_1921 Nohomologs DR_0120 Nohomologs DR_0335DR_ DR_0099 Nohomologs DR_1374 DR_1751 Nohomologs Nohomologs DR_0689DR_ DR_1819 DR_1771DR_ DR_2275 DR_1354 DR_1775 DR_1775(put Nohomologs DR_0186 DR_2586 DR_0354 DR_0428 DR_C0020 DR_A0131_1_ Escherichiacoli RuvB RuvC RusA(YbcP) SbcB SbcC SbcD Nohomologs Smf Nohomologs RhlE Ssb Tag TopA UDG UmuC UmuD Ung Uve1/BS_YwjD UvrA UvrB UvrC UvrD UvrD2 Vsr XseA/nec7 XseB XthA YbaZ YhdJ YejH e et nt. BProteindescriptionandcomments HelicasesubunitoftheRuvABCresolvasome EndonucleasesubunitoftheRuvABCresolvasome Endonuclease/Hollidayjunctionresolvase ExodeoxyribonucleaseI Exonucleasesubunit,PredictedATPase Exonuclease DNAorRNAhelicaseofsuperfamilyII PredictedRossmannfoldnucleotide-bindingproteininvolvedinDNAuptake Photolyase SuperfamilyIIATP-dependenthelicase Single-strandbindingprotein;D.radioduransR1hasthreeincomplORFscorrespondingtodifferentfragmentsoftheSSB 3-methyladenineDNAglycosylaseI DNAtopoisomeraseI(TypeIAtopoisomerase)/DNAtopoisomeraseIII(TypeItopoisomerase) UracilDNAglycosylase Error-proneDNApolymerase;inconjunctionwithumuDandrecA,catalyzestranslesionDNAsynthesis InconjunctionwithUmuCandRecA,facilitatestranslesionDNAsynthesis;autoprotease UracilDNAglycosylase;DR_0689isalikelyhorizontaltransferfromaeukaryoteoraeukaryoticvirus UV-endonuclease;activitywascharacterizedinNeurospora ATPase,DNAbinding Helicase Nuclease DNAhelicaseII(DNA-dependenthelicaseactivity)initiatesunwindingfromanick;DR_1572hasaframeshift Putativehelicase Strand-specific,sitespecific,GTmismatchendonuclease;fixesdeaminationresultingfromDcm ExonucleaseVII,largesubunit ExonucleaseVII,smallsubunit ExodeoxyribonucleaseIII(APendonuclease) Possiblemethylated-DNA-[protein]-cysteineS-methyltransferase Adenine-specificDNAmethylase DNAorRNAhelicaseofsuperfamilyII CoTable2. Proteinname RuvB RuvC RusA(YbcP) SbcB SbcC SbcD SdrA Smf SplB SrmB Ssb Tag TopA/TopB UDG UmuC UmuD Ung Uve1/BS_YwjD UvrA UvrB UvrC UvrD UvrD2 Vsr XseA/nec7 XseB XthA YbaZ YhdJ YejH PLoSONE | www.plosone.org 9 December2008 | Volume 3 | Issue 12 | e3878 ResistanceofK.radiotolerans D. radiodurans is adept at detoxifying reactive oxygen species (ROS) during radiation exposure when many free radicals are generated from hydrolysis of water [13–15]. Like Deinococcus, K. ns radiotolerans produces carotenoids as one level of protection. K. a er radiotolerans also possesses an impressive suite of genes involved in ol 1 4 KineococcusradiotSRS30216(locus) Krad_3031 Krad_3139Krad_169 Krad_1887 Krad_0652Krad_415 Krad_0047 RbPtshuaaOegcthgtSeheorsogitadsetalnetipatochasxotbihpfraiooaccguartteetgirnhooisanfRoaaOf(rntemaSbiarnldoemneutamto3itnxe)aielfsliciymcosaummetcixophupnanoaresnasebedrNtleewestipoosstoreokorni.xaseitdh.goaonTtsioevhrreehfsooseetuarerneesd[ss2u8blit]nys. Bioremediation potential osis Because K. radiotolerans was isolated from a HLW facility, the cul genome was examined for gene products that could be used to er b generatecarbonorenergyfromorganiccompoundsinthetanks. u obacteriumtRv(locus) 54c 01Rv2894c 90 30cRv0269c 50cRv2310 Od(eDtehrtOteyhclDboteel)odnsgzesfeleonbcrete,elUodan.nSpgd.riinoDxgryietltpyeoanprektosmnllou(etwthnanetnstBdsoeTffgoErEraXnidneacrctlgoiuoymdnip(nDpogaOubtnhEedwn)sz)a,aeynncsdeh,wloDteorrielneufeaenntneosedet, MycH37 Rv25 Rv17 Rv20 Rv37 Rv37 hydrocarbons, polynuclear aromatic hydrocarbons, polychlori- natedbiphenyls,ketones,alkanes,phenols,phthalates,explosives, ans andpesticides.Severalhomologuesforatrazinedegradationwere diodur 0155 npaotthedwa(AytzseAeBmZs,iKncroamd1p9l4et7e,.4281, 0533, respectively), though the DeinococcusraR1(locustag) Nohomologs DR_C0018DR_ADR_B0104 DR_1707 Nohomologs Nohomologs cttiaoommTnihpnaelaentxdiSoaRnnptSrsroewHcaeghLseiscWnihntsgi.aanlttsCeotrhofmeecroSmenRtowaSniitnlhiysncdulloouswewddenmsoctrooxemalealcamputleelca,xhragenlywmtcseioicglaaahnltteds,toacdrbiegtirclaiaozntnaeic--, and formate. Growth using each organic acid as a sole carbon sourcewasevaluatedforK.radiotoleransincomparisonwithglucose oli asapositivecontroland0.1%yeastextractasanegativecontrol. Escherichiac YqgF XerC/XerDE/ 53EXOc Nohomologs Nohomologs ewrRaveetoreslepsuitruaiaonntndsiou.nibPtairobewmllieamasgsisnreoaxywraiyetmhldsitnssuuedodbinestsurgarsltiuenevcsgeoas(delOeadwt2aethcrneoaotnthscusiightmhroaepwtrteniot)a.hnnaRdnaengstpdlhyiorcasoCetliOaootne2f m othercarbonsources(table4).Biomassyieldswith5 mMoxalate Fi A, and5mMformateweregenerallyconsistentwiththe0.1%yeast m Cont.Table2. BProteinnameProteindescriptionandcomments YqgFPredictedHollidayjunctionresolvase XerC/XerDPutativerecombinaseinsegregationofchromosomes,homologousrecombination;tyrosinerecombinase/inversionofon/offregulatoroffiFimB 999953EXOc5-3exonuclease;T5type5-3exonucleasedomainsmayco-occurwithDNApolymeraseI(PolI)domains,orbepartofPolIcontainingcomplexes Predictedeukaryotic-typeDNAprimase Predictedsite-specificintegrase-resolvase doi:10.1371/journal.pone.0003878.t002 owreOaxxGGDOPFSTEACMrCa2ttaaeueeaynslllyrrankuu/lgppttdpscazayMoattbatesCo-yiaacllticwtonairndttametlyhnhmohhsietetpceyrexcssaoiieooodeuriui,almohdllam3nnerpkenamynpeoseyeae.dererdeptthltrarp,rhrrpEoeRecsoiokonibterpgdxofpexaioprilsoeuehondietoaxed.rAtctrirneeixmrcnhwadtomoiraestdedxoixseeadiiaaivfeidusserdinsounte,meaegnaedrdless,fshuoeouoeGsftrcfCxc,oayAhxSoitomsndrHayiOrentgmesmaPgh,ehcu2xasr,eaeeoaGesantdpendtrehe,uArtpcsG,rcoaCotapSdanontPesuidx-ecocSc,aeniytomelnnisaxos.tstarrneAdalW,atewitaotheeonn.irlxdeseifw230A13A300K1bibYc783057882bberoia515975614aEssrot703187557eetdehm,innotLtttbaonohsexcsetgiutceesp.rrnerTSoseaaipmdgstiuriilalncoattwriiKooley.nnr, doi:10.1371/journal.pone.0003878.t003 PLoSONE | www.plosone.org 10 December2008 | Volume 3 | Issue 12 | e3878
Description: