ebook img

Separation of multiphase, multicomponent systems PDF

813 Pages·12.018 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Separation of multiphase, multicomponent systems

EmmanuilG.Sinaiski andEugeniyJ.Lapiga SeparationofMultiphase, MulticomponentSystems Emmanuil G. Sinaiski and Eugeniy J. Lapiga Separation of Multiphase, Multicomponent Systems TheAuthors 9 AllbookspublishedbyWiley-VCHare carefullyproduced.Nevertheless,authors, E.G.Sinaiski editors,andpublisherdonotwarrantthe Leipzig,Germany informationcontainedinthesebooks, e-mail:[email protected] includingthisbook,tobefreeoferrors. Readersareadvisedtokeepinmindthat E.J.Lapiga statements,data,illustrations,procedural Moscow,Russia detailsorotheritemsmayinadvertentlybe e-mail:[email protected] inaccurate. Cover LibraryofCongressCardNo.:appliedfor E.J.Lapiga:Oilrig,developedbyEITEK BritishLibraryCataloguing-in-PublicationData Acataloguerecordforthisbookisavailable fromtheBritishLibrary. Bibliographicinformationpublishedby theDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhis publicationintheDeutscheNational- bibliografie;detailedbibliographicdatais availableintheInternetathhttp://dnb.d-nb.dei. 82007WILEY-VCHVerlagGmbH&Co. KGaA,Weinheim Allrightsreserved(includingthoseof translationintootherlanguages).Nopartof thisbookmaybereproducedinanyform– byphotoprinting,microfilm,oranyother means–nortransmittedortranslated intoamachinelanguagewithoutwritten permissionfromthepublishers.Registered names,trademarks,etc.usedinthisbook, evenwhennotspecificallymarkedassuch, arenottobeconsideredunprotectedbylaw. PrintedintheFederalRepublicofGermany Printedonacid-freepaper Composition AscoTypesetters,HongKong Printing straussGmbH,Mo¨rlenbach Bookbinding Litges&DopfGmbH, Heppenheim CoverDesign aktivCommGmbH,Weinheim WileyBicentennialLogo RichardJ.Pacifico ISBN 978-3-527-40612-8 V Contents Preface XI ListofSymbols XIII I TechnologicalFundamentalsofPreparationofNaturalHydrocarbonsfor Transportation 1 Introduction 3 1 TechnologicalSchemesofComplexOil,GasandCondensateProcessing Plants 7 2 ConstructionofTypicalApparatuses 13 2.1 Separators,Dividers,andSettlers 13 2.2 Absorbers 27 2.3 CoolingDevices 36 3 BasicProcessesofSeparationofMulti-phase,Multi-componentHydrocarbon Mixtures 39 References 40 II PhysicalandChemicalBasesofTechnologicalProcesses 43 4 TheTransferPhenomena 45 4.1 PhenomenologicalModels 45 4.2 MomentumTransfer 46 4.3 ThermalConductionandHeatTransfer 51 4.4 DiffusionandMassTransfer 51 4.5 Electro-ConductivityandChargeTransfer 55 5 ConservationLawsandEquationsofState 57 5.1 IsothermalProcesses 57 5.2 Non-isothermalProcesses 61 VI Contents 5.3 Multi-ComponentMixtures 65 5.4 Multi-PhaseMixtures 70 5.5 ChargedMixtures 75 5.6 TheCriteriaofSimilarity 78 5.7 TheStateEquations 82 5.7.1 TheStateEquationforanIdealGasandanIdealGasMixture 82 5.7.2 TheStateEquationforaRealGasandaRealGasMixture 86 5.7.3 MethodsofCalculationofLiquid–VaporEquilibrium 91 5.8 BalanceofEntropy–TheOnsagerReciprocalRelations 93 References 103 III Solutions 105 6 SolutionsContainingNon-chargedComponents 107 6.1 DiffusionandKineticsofChemicalReactions 107 6.2 ConvectiveDiffusion 112 6.3 FlowinaChannelwithaReactingWall 116 6.4 ReverseOsmosis 119 6.5 DiffusionTowardaParticleMovinginaSolution 128 6.6 DistributionofMatterIntroducedIntoaFluidFlow 133 6.7 DiffusionFluxinaNaturalConvection 140 6.8 DynamicsoftheBubbleinaSolution 145 6.9 EvaporationofaMulti-componentDropIntoanInertGas 151 6.10 Chromatography 160 6.11 TheCapillaryModelofaLow-permeablePorousMedium 164 7 SolutionsofElectrolytes 167 7.1 ElectrolyticCell 167 7.2 Electrodialysis 175 7.3 ElectricDoubleLayer 182 7.4 ElectrokineticPhenomena 186 7.5 Electroosmosis 187 References 192 IV SuspensionsandColloidSystems 195 8 SuspensionsContainungNon-chargedParticles 197 8.1 MicrohydrodynamicsofParticles 197 8.2 BrownianMotion 211 8.3 ViscosityofDilutedSuspensions 222 8.4 SeparationintheGravitatonialField 228 8.5 SeparationintheFieldofCentrifugalForces 237 9 SuspensionsContainingChargedParticles 245 9.1 ElectricChargeofParticles 245 9.2 Electrophoresis 247 Contents VII 9.3 TheMotionofaDropinanElectricField 253 9.4 SedimentationPotential 257 10 StabilityofSuspensions,CoagulationofParticles,andDepositionofParticles onObstacles 259 10.1 StabilityofColloidSystems 259 10.2 Brownian,Gradient(Shear)andTurbulentCoagulation 266 10.2.1 BrownianCoagulation 268 10.2.2 Gradient(Shear)Coagulation 270 10.2.3 TurbulentCoagulation 272 10.3 Particles’DepositionontheObstacles 275 10.3.1 BrownianDiffusion 276 10.3.2 Particles’CollisionswithanObstacle 278 10.4 TheCaptureofParticlesDuetoSurfaceandHydrodynamicForces 280 10.5 InertialDepositionofParticlesontheObstacles 288 10.6 TheKineticsofCoagulation 289 10.7 TheFilteringandaModelofaHighlyPermeablePorousMediumwith Resistance 293 10.8 ThePhenomenonofHydrodynamicDiffusion 296 References 297 V Emulsions 301 11 BehaviorofDropsinanEmulsion 303 11.1 TheDynamicsofDropEnlargement 303 11.2 TheBasicMechanismsofDropCoalescence 312 11.3 MotionofDropsinaTurbulentFlowofLiquid 317 11.4 ForcesofHydrodynamicInteractionofDrops 325 11.5 MolecularandElectrostaticInteractionForcesActingonDrops 330 11.6 TheConductingDropsinanElectricField 333 11.7 BreakupofDrops 338 12 InteractionofTwoConductingDropsinaUniformExternalElectric Field 347 12.1 PotentialofanElectricFieldintheSpaceAroundDrops 347 12.2 StrengthofanElectricFieldintheGapBetweenDrops 355 12.3 InteractionForcesofTwoConductingSphericalDrops 361 12.4 InteractionForcesBetweenTwoFar-spacedDrops 367 12.5 InteractionofTwoTouchingDrops 370 12.6 InteractionForcesBetweenTwoCloselySpacedDrops 379 12.7 RedistributionofCharges 388 13 CoalescenceofDrops 393 13.1 CoalescenceofDropsDuringGravitationalSettling 393 13.2 TheKineticsofDropCoalescenceDuringGravitationalSeparationofan EmulsioninanElectricField 410 VIII Contents 13.3 GravitationalSedimentationofaBidisperseEmulsioninanElectric Field 416 13.4 TheEffectofElectricFieldonEmulsionSeparationinaGravitational Settler 419 13.5 EmulsionFlowThroughanElectricFilter 423 13.6 CoalescenceofDropswithFullyRetardedSurfacesinaTurbulent EmulsionFlow 430 13.7 CoalescenceofDropswithaMobileSurfaceinaTurbulentFlowofthe Emulsion 436 13.7.1 FastCoagulation 440 13.7.2 SlowCoagulation 443 13.8 CoalescenceofConductingEmulsionDropsinaTurbulentFlowinthe PresenceofanExternalElectricField 451 13.9 KineticsofEmulsionDropCoalescenceinaTurbulentFlow 456 References 458 VI Gas–LiquidMixtures 463 14 FormationofaLiquidPhaseinaGasFlow 465 14.1 FormationofaLiquidPhaseintheAbsenceofCondensation 466 14.2 FormationofaLiqidPhaseintheProcessofCondensation 469 15 CoalescenceofDropsinaTurbulentGasFlow 481 15.1 InertialMechanismofCoagulation 483 15.2 MechanismofTurbulentDiffusion 484 15.3 CoalescenceofaPolydisperseEnsembleofDrops 488 16 FormationofaLiquidPhaseinDevicesofPreliminaryCondensation 495 16.1 CondensationGrowthofDropsinaQuiescentGas–LiquidMixture 495 16.2 CondensationGrowthofDropsinaTurbulentFlowofaGas–Liquid Mixture 505 16.3 EnlargementofDropsDuringthePassageofaGas–LiquidMixture ThroughDevicesofPreliminaryCondensation 514 16.4 FormationofaLiquidPhaseinaThrottle 519 16.5 FomationofaLiquidPhaseinaHeat-Exchanger 531 17 SurfaceTension 539 17.1 PhysicsofSurfaceTension 539 17.2 CapillaryMotion 545 17.3 MoisteningFlows 548 17.4 WavesattheSurfaceofaLiquidandDesintegrationofJets 552 17.5 FlowCausedbyaSurfaceTensionGradient–TheMarangoni Effect 561 17.6 PulverizationofaLiquidandBreakupofDropsinaGasFlow 573 Contents IX 18 EfficiencyofGas-LiquidSeparationinSeparators 581 18.1 TheInfluenceofNon-UniformityoftheVelocityProfileontheEfficiency CoefficientofGravitationalSeparators 584 18.2 TheEfficiencyCoefficientofaHorizontalGravitationalSeparation 587 18.3 TheEfficiencyCoefficientofVerticalGravitationalSeparators 593 18.4 TheEffectofPhaseTransitionontheEfficiencyCoefficientofa Separator 595 18.5 TheInfluenceofDropCoalescenceontheEfficiencyCoefficientofa Separator 601 18.6 TheEffectofCurvatureoftheSeparatorWallontheEfficiency Coefficient 603 18.7 TheInfluenceofaDistanceBetweenthePreliminaryCondensation DeviceandtheSeparatorontheEfficiencyCoefficient 604 19 TheEfficiencyofSeparationofGas–LiqidMixturesinSeparatorswithDrop CatcherOrifices 607 19.1 TheEfficiencyCoefficientofSeparatorswithJalousieOrifices 608 19.2 TheEfficiencyCoefficientofaSeparatorwithMulticycloneOrifices 610 19.3 TheEfficiencyCoefficientofaSeparatorwithStringOrifices 618 19.4 TheEfficiencyCoefficientofaSeparatorwithMeshOrifices 629 20 AbsorptionExtractionofHeavyHydrocarbonsandWaterVaporfromNatural Gas 635 20.1 ConcurrentAbsorptionofHeavyHydrocarbons 635 20.2 MultistageConcurrentAbsorptionofHeavyHydrocarbons 641 20.3 Counter-CurrentAbsorptionofHeavyHydrocarbons 646 20.4 GasDehydrationinConcurrentFlow 650 20.5 GasDehydrationinCounter-CurrentAbsorberswithHigh-Speed Separation-ContactElements 659 21 PreventionofGas-HydrateFormationinNaturalGas 667 21.1 TheDynamicsofMassExchangebetweenHydrate-InhibitorDropsand HydrocarbonGas 671 21.2 EvolutionoftheSpectrumofHydrate-InhibitorDropsInjectedintoa TurbulentFlow 682 References 695 VII Liquid–GasMixtures 699 22 DynamicsofGasBubblesinaMulti-ComponentLiquid 701 22.1 MotionofaNon-GrowingBubbleinaBinarySolution 702 22.2 DiffusionGrowthofaMotionlessBubbleinaBinarySolution 706 22.3 TheInitialStageofBubbleGrowthinaMulti-ComponentSolution 710 22.4 BubbleDynamicsinaMulti-ComponenetSolution 713 22.5 TheEffectofSurfactantsonBubbleGrowth 716

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.